Skip to main content

Renal Replacement Therapy

  • Chapter
Surgery

Abstract

Acute renal failure (ARF) is a commonly anticipated diagnosis in critically ill patients in the intensive care unit (ICU). Its actual frequency varies from less than 10% to approximately 25% in different series including different patient demographics and definitions of ARF.15 The elevations in serum creatinine and urea nitrogen concentrations observed in a majority of these patients (more than 90%) are caused by renal hypoperfusion and related parenchymal dysfunction, the latter referred to as acute tubular necrosis (ATN)3,6 (Tables 33.1, 33.2). Between one-third and one-half of the observed ATN occurs during infection/sepsis, with the rest related to medical-surgical conditions, including hypotension and toxin exposure.3,6 ARF is typically accompanied by a number of comorbidities [i.e., respiratory failure (67%), heart failure (48%), and liver failure (31%)].7 In many series, more than one-half of the patients who develop ARF in the ICU require some form of renal replacement therapy (RRT).3,6,7

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schetz M. Non-renal indications for continuous renal replacement therapy. Kidney Int Suppl 1999;72:S88–S94.

    Article  PubMed  CAS  Google Scholar 

  2. van Deuren M, van der Meer JW. Hemofiltration in septic patients is not able to alter the plasma concentration of cytokines therapeutically. Intensive Care Med 2000;26:1176–1178.

    Article  PubMed  Google Scholar 

  3. Brivet FG, Kleinknecht DJ, Loirat P, Landais PJ. Acute renal failure in intensive care units: causes, outcome, and prognostic factors of hospital mortality; a prospective, multicenter study. French Study Group on Acute renal failure. Crit Care Med 1996;24:192–198.

    Article  PubMed  CAS  Google Scholar 

  4. de Mendonca A, Vincent JL, Suter PM, et al. Acute renal failure in the ICU: risk factors and outcome evaluated by the SOFA score. Intensive Care Med 2000;26:915–921.

    Article  PubMed  Google Scholar 

  5. Clermont, G, Acker CG, Angus DC, et al. Renal failure in the ICU: comparison of the impact of acute renal failure and end-stage renal disease on ICU outcomes. Kidney Int 2002;62:986–996.

    Article  PubMed  Google Scholar 

  6. Liano F, Junco E, Pascual J, et al. The spectrum of acute renal failure in the intensive care unit compared with that seen in other settings. The Madrid Acute Renal Failure Study Group. Kidney Int Suppl 1998;66:S16–S24.

    PubMed  CAS  Google Scholar 

  7. Kellum JA, Mehta RL, Angus DC, et al. The first international consensus conference on continuous renal replacement therapy. Kidney Int 2002;62:1855–1863.

    Article  PubMed  Google Scholar 

  8. Hoste EA, De Waele JJ. Physiologic consequences of acute renal failure on the critically ill. Crit Care Clin 2005;21:251–260.

    Article  PubMed  Google Scholar 

  9. Marsh JD, Margolis TI, Kim D. Mechanism of diminished contractile response to catecholamines during acidosis. Am J Physiol 1988;254:H20–H27.

    PubMed  CAS  Google Scholar 

  10. Marenzi G, Marana I, Lauri G, et al. The prevention of radiocontrast-agent-induced nephropathy by hemofiltration. N Engl J Med 2003;349:1333–1340.

    Article  PubMed  CAS  Google Scholar 

  11. Rabb H, Wang Z, Nemoto T, et al. Acute renal failure leads to dysregulation of lung salt and water channels. Kidney Int 2003;63:600–606.

    Article  PubMed  CAS  Google Scholar 

  12. Kelly KJ. Distant effects of experimental renal ischemia/reperfusion injury. J Am Soc Nephrol 2003;14:1549–1558.

    Article  PubMed  CAS  Google Scholar 

  13. Levy EM, Viscoli CM, Horwitz RI. The effect of acute renal failure on mortality. A cohort analysis. JAMA 1996;275:1489–1494.

    Article  PubMed  CAS  Google Scholar 

  14. Schiffl H, Lang SM, Fischer R. Daily hemodialysis and the outcome of acute renal failure. N Engl J Med 2002;346:305–310.

    Article  PubMed  Google Scholar 

  15. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification and stratification. Am J Kidney Dis 2003;29(suppl 1):S17–S31.

    Google Scholar 

  16. Winchester JF, Kitiyakara C. Use of dialysis and hemoperfusion in treatment of poisoning. In: Daugirdas J, Blake PG, Ing T, eds. Handbook of Dialysis. 3rd edition. Philadelphia, Lippincott Williams & Wilkins 2000;263–280.

    Google Scholar 

  17. Reuler JB, Parker RA. Peritoneal dialysis in the management of hypothermia. JAMA 1978;240:2289–2290.

    Article  PubMed  CAS  Google Scholar 

  18. Zavada E. Treatment of profound hypothemia with peritoneal dialysis. Dial Transplant 1980;9:255–258.

    Google Scholar 

  19. Ranson J, Spencer FC. The role of peritoneal lavage in severe acute pancreatitis. Ann Surg 1977;187:565–575.

    Google Scholar 

  20. Wall AJ. Peritoneal dialysis in the treatment of severe acute pancreatitis. Med J Aust 1965;2:281–283.

    PubMed  CAS  Google Scholar 

  21. Gjessing J. Peritoneal dialysis in severe acute hemorrhagic pancreatitis. Acta Chir Scand 1967;133:645–647.

    PubMed  CAS  Google Scholar 

  22. Mayer AD, McMahon MJ, Corfield AP, et al. Controlled clinical trial of peritoneal lavage for the treatment of severe acute pancreatitis. N Engl J Med 1985;312:399–404.

    PubMed  CAS  Google Scholar 

  23. Grootendorst AF, van Bommel EF, van der Hoven B. High volume hemofiltration improves right ventricular function in endotoxin-induced shock in the pig. Intensive Care Med 1992;18:235–240.

    Article  PubMed  CAS  Google Scholar 

  24. Hoffmann JN, Hartl WH, Deppisch R, et al. Effect of hemofiltration on hemodynamics and systemic concentrations of anaphylatoxins and cytokines in human sepsis. Intensive Care Med 1996;22:1360–1367.

    Article  PubMed  CAS  Google Scholar 

  25. Ronco C, Ricci Z, Brendolan A, et al. Ultrafiltration in patients with hypervolemia and congestive heart failure. Blood Purif 2004;22:150–163.

    Article  PubMed  CAS  Google Scholar 

  26. Cole L, Bellomo R, Hart G, et al. A phase II randomized, controlled trial of continuous hemofiltration in sepsis. Crit Care Med 2002;30:100–106.

    Article  PubMed  CAS  Google Scholar 

  27. Sharma A, Hermann DD, Mehta RL. Clinical benefit and approach of ultrafiltration in acute heart failure. Cardiology 2001;96:144–154.

    Article  PubMed  CAS  Google Scholar 

  28. Marenzi G, Agostoni P. Hemofiltration in heart failure. Int J Artif Organs 2004;27:1070–1076.

    PubMed  CAS  Google Scholar 

  29. Vogt B, Ferrari P, Schonholzer C, et al. Prophylactic hemodialysis after radiocontrast media in patients with renal insufficiency is potentially harmful. Am J Med 2001;111:692–698.

    Article  PubMed  CAS  Google Scholar 

  30. Abdeen O, Mehta RL. Dialysis modalities in the intensive care unit. Crit Care Clin 2002;18:223–247.

    Article  PubMed  Google Scholar 

  31. Hyman A, Mendelssohn DC. Current Canadian approaches to dialysis for acute renal failure in the ICU. Am J Nephrol 2002;22:29–34.

    Article  PubMed  CAS  Google Scholar 

  32. Gokal R, Khanna R, Krediet RT, Nolph KD, eds. Textbook of Peritoneal Dialysis, 2nd ed. Dordrecht: Kluwer. Academic Publishers, 2000.

    Google Scholar 

  33. Leypoldt JK. Solute transport across the peritoneal membrane. J Am Soc Nephrol 2002;13(suppl 1):S84–S91.

    PubMed  CAS  Google Scholar 

  34. Rippe B, Rosengren BI, Venturoli D. The peritoneal microcirculation in peritoneal dialysis. Microcirculation 2001;8:303–320.

    Article  PubMed  CAS  Google Scholar 

  35. Fischbach M, Dheu C, Helms P, et al. The influence of peritoneal surface area on dialysis adequacy. Perit Dial Int 2005;25(suppl 3):S137–S140.

    PubMed  Google Scholar 

  36. Miyata T, van Ypersele de Strihou C, Imasawa T, et al. Toward better dialysis compatibility: advances in the biochemistry and pathophysiology of the peritoneal membranes. Kidney Int 2002;61:375–386.

    Article  PubMed  CAS  Google Scholar 

  37. Sobiecka D, Waniewski J, Weryriski A, Lindholm B. Peritoneal fluid transport in CAPD patients with different transport rates of small solutes. Perit Dial Int 2004:24:240–251.

    PubMed  CAS  Google Scholar 

  38. Flanigan M, Gokal R. Peritoneal catheters and exit-site practices toward optimum peritoneal access: a review of current developments. Perit Dial Int 2005;25:132–139.

    PubMed  Google Scholar 

  39. Daugirdas JT, Blake PG, Ing TS. Handbook of dialysis, 3rd ed. New York: Lippincott Williams & Wilkins, 2001:333–343.

    Google Scholar 

  40. Smit W, Struijk DG, Ho-Dac-Pannekeet MM, Krediet RT. Quantification of free water transport in peritoneal dialysis. Kidney Int 2004;66:849–854.

    Article  PubMed  Google Scholar 

  41. Ronco C, Clark W. Factors affecting hemodialysis and peritoneal dialysis efficiency. Semin Dial 2001;14:257–262.

    Article  PubMed  CAS  Google Scholar 

  42. Piraino B, Bailie GR, Bernardini J, et al. ISPD Ad Hoc Advisory Committee. Peritoneal dialysis-related infections recommendations: 2005 update. Perit Dial Int 2005;25:107–131.

    PubMed  Google Scholar 

  43. Thodis E, Passadakis P, Ossareh S, et al. Peritoneal catheter exit-site infections: predisposing factors, prevention and treatment. Int J Artif Organs 2003;26:698–714.

    PubMed  CAS  Google Scholar 

  44. Bernardini J, Bender F, Florio T, et al. Randomized, double-blind trial of antibiotic exit site cream for prevention of exit site infection in peritoneal dialysis patients. J Am Soc Nephrol 2005;16:539–545.

    Article  PubMed  CAS  Google Scholar 

  45. Sieberth HG, Kierdorf HP. Is cytokine removal by continuous hemofiltration feasible? Kidney Int Suppl 1999;72:S79–S83.

    Article  PubMed  CAS  Google Scholar 

  46. de Vries PM, Olthof CG, Solf A, et al. Fluid balance during haemodialysis and haemofiltration: the effect of dialysate sodium and a variable ultrafiltration rate. Nephrol Dial Transplant 1991;6:257–263.

    PubMed  Google Scholar 

  47. Fauchald P. Effects of ultrafiltration on body fluid volumes and transcapillary colloid osmotic gradient in hemodialysis patients. Contrib Nephrol 1989;74:170–175.

    PubMed  CAS  Google Scholar 

  48. Pierratos A. Daily hemodialysis: why the renewed interest? Am J Kidney Dis 1998;32(6 suppl 4):S76–S82.

    Article  PubMed  CAS  Google Scholar 

  49. Marshall MR, Ma T, Galler D, et al. Sustained low-efficiency daily diafiltration (SLEDD-f) for critically ill patients requiring renal replacement therapy: towards an adequate therapy. Nephrol Dial Transplant 2004;19:877–884.

    Article  PubMed  Google Scholar 

  50. Van Biesen W, Vanholder R, Lameire N. Dialysis strategies in critically ill acute renal failure patients. Curr Opin Crit Care 2003;9:491–495.

    Article  PubMed  Google Scholar 

  51. Marshall MR, Golper TA, Shaver MJ, et al. Sustained low-efficiency dialysis for critically ill patients requiring renal replacement therapy. Kidney Int 2001;60:777–785.

    Article  PubMed  CAS  Google Scholar 

  52. Weijmer MC, ter Wee PM. Temporary vascular access for hemodialysis treatment. Current guidelines and future directions. Contrib Nephrol 2004;142:94–111.

    Article  PubMed  Google Scholar 

  53. Schillinger F, Schillinger D, Montagnac R, Milcent T. Post catheterisation vein stenosis in haemodialysis: comparative angiographic study of 50 subclavian and 50 internal jugular accesses. Nephrol Dial Transplant 1991;6:722–724.

    PubMed  CAS  Google Scholar 

  54. Ponikvar R. Hemodialysis catheters. Ther Apher Dial 2005;9:218–222.

    Article  PubMed  Google Scholar 

  55. Warren SE, O’Connor DT, Steinberg SM. Recirculation: a uremic syndrome complicating the use of prosthetic arteriovenous fistulas for hemodialysis. J Dial 197;2:251–259.

    Google Scholar 

  56. Little MA, Conlon PJ, Walshe JJ. Access recirculation in temporary hemodialysis catheters as measured by the saline dilution technique. Am J Kidney Dis 2000;36:1135–1139.

    Article  PubMed  CAS  Google Scholar 

  57. NKF-K/DOQI Clinical Practice Guidelines for Vascular Access: update 2000. Am J Kidney Dis 2001;37(1 suppl 1):S137–S181.

    Google Scholar 

  58. Craddock PR, Fehr J, Brigham KL, et al. Complement and leukocyte-mediated pulmonary dysfunction in hemodialysis. N Engl J Med 1977;296:769–774.

    Article  PubMed  CAS  Google Scholar 

  59. Hakim RM, Wingard RL, Parker RA. Effect of the dialysis membrane in the treatment of patients with acute renal failure. N Engl J Med 1994;331:1338–1342.

    Article  PubMed  CAS  Google Scholar 

  60. Ludlow MK. Heparin-free dialysis. ANNA J 1989;16:295–298.

    PubMed  CAS  Google Scholar 

  61. Raja RM, Po CL. Plasma refilling during hemodialysis with decreasing ultrafiltration. Influence of dialysate sodium. ASAIO J 1994;40:M423–M425.

    Article  PubMed  CAS  Google Scholar 

  62. Coli L, Ursino M, Donati G, et al. Clinical application of sodium profiling in the treatment of intradialytic hypotension. Int J Artif Organs 2003;26:715–722.

    PubMed  CAS  Google Scholar 

  63. Sherman RA, Rubin MP, Cody RP, Eisinger RP. Amelioration of hemodialysis-associated hypotension by the use of cool dialysate. Am J Kidney Dis 1985;5:124–127.

    PubMed  CAS  Google Scholar 

  64. Splendiani G, Costanzi S, Passalacqua S, et al. Sodium and fluid modulation in dialysis: new approach. Nephron 2001;89:377–380.

    Article  PubMed  CAS  Google Scholar 

  65. Van der Sande FM, Luik AJ, Kooman JP, et al. Effect of intravenous fluids on blood pressure course during hemodialysis in hypotensive-prone patients. J Am Soc Nephrol 2000;11:550–555.

    PubMed  Google Scholar 

  66. Emili S, Black NA, Paul RV, et al. A protocol-based treatment for intradialytic hypotension in hospitalized hemodialysis patients. Am J Kidney Dis 1999;33:1107–1114.

    Article  PubMed  CAS  Google Scholar 

  67. Murray PT, Reddy BV, Grossman EJ, et al. A prospective comparison of three argatroban treatment regimens during hemodialysis in end-stage renal disease. Kidney Int 2004;66:2446–2453.

    Article  PubMed  CAS  Google Scholar 

  68. Apsner R, Buchmayer H, Gruber D, Sunder-Plassmann G. Citrate for long-term hemodialysis: prospective study of 1,009 consecutive high-flux treatments in 59 patients. Am J Kidney Dis 2005;45:557–564.

    Article  PubMed  CAS  Google Scholar 

  69. Kessler E, Ritchey NP, Castro F, et al. Urea reduction ratio and urea kinetic modeling: a mathematical analysis of changing dialysis parameters. Am J Nephrol 1998;18:471–477.

    Article  PubMed  CAS  Google Scholar 

  70. Kramer P, Schrader J, Bohnsack W, et al. Continuous arteriovenous haemofiltration. A new kidney replacement therapy. Proc Eur Dial Transplant Assoc 1981;18:743–749.

    PubMed  CAS  Google Scholar 

  71. Gabutti L, Marone C, Monti M, et al. Does continuous venovenous hemodiafiltration concomitant with radiological procedures provide a significant and safe removal of the iodinated contrast ioversol? Blood Purif 2003;21:152–157.

    Article  PubMed  CAS  Google Scholar 

  72. Phu NH, Hien TT, Mai NT, et al. Hemofiltration and peritoneal dialysis in infection-associated acute renal failure in Vietnam. N Engl J Med 2002;347:895–902.

    Article  PubMed  Google Scholar 

  73. Uchino S, Fealy N, Baldwin I, et al. Pre-dilution vs. post-dilution during continuous veno-venous hemofiltration: impact on filter life and azotemic control. Nephron Clin Pract 2003;94:c94–c98.

    Article  PubMed  Google Scholar 

  74. Gilman CM, Coffel BE, Gunn SK. Continuous venovenous hemofiltration: a cost-effective therapy for the pediatric patient. ANNA J 1997;24:337–341.

    PubMed  CAS  Google Scholar 

  75. Lin BS, Huang TP, Tang GJ, et al. Ultrasound-guided cannulation of the internal jugular vein for dialysis vascular access in uremic patients. Nephron 1998;78:423–428.

    Article  PubMed  CAS  Google Scholar 

  76. Locatelli F, Pontoriero G, Di Filippo S. Electrolyte disorders and substitution fluid in continuous renal replacement therapy. Kidney Int Suppl 1998;66:S151–S155.

    PubMed  CAS  Google Scholar 

  77. Ronco C, Bellomo R, Homel P. Effects of different doses in continuous veno-venous haemofiltration on outcomes of acute renal failure: a prospective randomised trial. Lancet 2000;356:26–30.

    Article  PubMed  CAS  Google Scholar 

  78. Tang IY, Cox DS, Patel K, et al. Argatroban and renal replacement therapy in patients with heparin-induced thrombocytopenia. Ann Pharmacother 2005;39:231–236.

    Article  PubMed  CAS  Google Scholar 

  79. Schneider T, Heuer B, Delle A, Boesken WH. Continuous haemofiltration with r-hirudin (lepirudin) as anticoagulant in a patient with heparin induced thrombocytopenia (HIT II). Wien Klin Wochenschr 2000;112:552–555.

    PubMed  CAS  Google Scholar 

  80. Tan HK, Baldwin I, Bellomo R. Continuous veno-venous hemofiltration without anticoagulation in high-risk patients. Intensive Care Med 2000;26:1652–1657.

    Article  PubMed  CAS  Google Scholar 

  81. Bouman CS, Oudemans-Van Straaten HM, Tijssen JG, et al. Effects of early high-volume continuous venovenous hemofiltration on survival and recovery of renal function in intensive care patients with acute renal failure: a prospective, randomized trial. Crit Care Med 2002;30:2205–2211.

    Article  PubMed  Google Scholar 

  82. Cho KC, Himmelfarb J, Pagainini E, et al. Survival by dialysis modality in critcally ill patients with acute kidney injury. J Am Soc Nephrol 2006;17:3132–3138.

    Article  PubMed  Google Scholar 

  83. Vinsonneau C, Camus C, Combes A, et al. Hemodiafe Study Group. Continuous venovenous hemodiafiltration versus intermittent haemodialysis for acute renal failure in patients with multiple-organ dysfunction syndrome: a multivariate randomized trial. Lancet 2006;368:379–385.

    Article  PubMed  Google Scholar 

  84. Baldwin I, Naka T, Koch B, et al. A pilot randomized controlled comparison of continuous veno-venous haemofiltration and extened daily dialysis with filtration: effect on small solutes and acid-base balance. Intensive Care Med 2007;33:830–835.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wang, J.C.L., Bologa, R.M., Saal, S.D. (2008). Renal Replacement Therapy. In: Norton, J.A., et al. Surgery. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68113-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68113-9_33

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-30800-5

  • Online ISBN: 978-0-387-68113-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics