Skip to main content

MEMS for Nanotechnology: Top-down Perspective

  • Chapter
Functional Nanostructures

Part of the book series: Nanostructure Science and Technology ((NST))

  • 2629 Accesses

Abstract

Since the invention of the transistor at Bell Labs in 1947, the semiconductor industry has achieved tremendous success in mass production of integrated circuits via planar batch processing (Brinkman et al. 1997). As predicted by Dr. R. Feynman in his classic talk in 1959 (Feynman), we have already gained the capability of “writing by putting atoms down in a certain arrangement” by exploring “new kind of forces and new kinds of possibilities at the atomic scale.” For nanoscaledevices, he envisioned photolithography and biologically inspired chemical assembly, which are now considered top-down and bottom-up approaches in nanotechnology, respectively. Massive parallel replication of electronic components using photolithography has realized the era of digital electronics in the past century. Based upon this success, revolutionary adaptation of microfabrication technology in various applications has resulted in an unprecedented amount of scientific and engineering feats in many arenas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Akeson, M., Branton, D., Kasianowicz, J. J., Brandin, E. and Deamer, D. W. (1999). Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and poiyuridylic acid as homopolymers or as segments within single RNA molecule. Biophys. J. 77: 3227–3233.

    Google Scholar 

  • Bau, H. H., Sinha, S., Kim, B., and Riegelman, M. (2005). Fabrication of Nanofluidic Devices and the Study of Fluid Transport Through Them. Nanofabrication: Technologies, Devices, and Applications, Philadelphia, PA, USA, 201.

    Google Scholar 

  • Bender, M., Otto, M., Hadam, B., Spangenberg, B., and Kurz, H. (2002). Multiple imprinting in UV-based nanoimprint lithography: relates material issues. Microelectronic Engineering 61–62: 407–413.

    Google Scholar 

  • Brinkman, W. F., Haggan, D. E., and Troutman, W. W. (1997). A history of the invention of the transistor and where it will lead us. IEEE J. Solid-State Circuits 32(12): 1858–1865.

    Google Scholar 

  • Brinkmann, M., Blossey, R., Arscott, S., Druon, C, Tabourier, P., Gac, S. I., and Rolando, C. (2004). Microfluidic design rules for capillary slot-based electrospray sources. Appl. Phys. Lett. 85(11): 2140.

    Google Scholar 

  • Bullen, D., Chung, S.-W., Wang, X., Zou, J., Mirkina, C. A., and Liu, C. (2004). Parallel dip-pen nanolithography with arrays of individually addressable cantilevers. Appl. Phys. Lett. 84(5): 789–791.

    Google Scholar 

  • Bustillo, J. M., Howe, R. T., and Müller, R. S. (1998). Surface micromachining for microelectromechanical systems. Proc. IEEE 86(8): 1552–1574.

    Google Scholar 

  • Descatoire, C., Troadec, D., Buchaillol, L., Ashcroft, A., and Arscott, S. (2005). A Nanofluidic Electrospray Source Fabricated Using Focussed Ion Beam Etching. Micro Total Analysis Systems 2005: 9th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Boston. Massachusetts, USA, 241–243.

    Google Scholar 

  • Cao, H., Yu, Z., Wang, J., Tegenfeldt, J. O., Austin, R. H., Chen, E., Wu, W., and Chou, S. Y. (2002). Fabrication of 10 nm enclosed nanofluidic channels. Appl. Phys. Lett. 81(1): 174.

    Google Scholar 

  • Chan, R. H. M., Fung, C. K. M., and Li, W. J. (2004). Rapid assembly of carbon nanolubes for nanosensing by dielectrophoretic force. Nanotechnology 15: S672–S677.

    Google Scholar 

  • Chang, H., Kosari, F., Andreadakis, G., Alam, M. A., Vasmatzis, G., and Bashir, R. (2004). DNA-medialed fluctuations in ionic current through silicon oxide nanopore channels. Nana Lett. 4(8): 1551–1556.

    Google Scholar 

  • Chang, T. H. P., Mankos, M., Lee, K. Y., and Muray, L. P. (2001). Multiple electron-beam lithography. Microelectronic Engineerings 57–58: 117–135.

    Google Scholar 

  • Chen, P., Gu, J., Brandin, E., Kim, Y.-R., Wang, Q., and Branton, D. (2004). Probing single DNA molecule transport using fabricated nanopores. Nemo Lett. 4(11): 2293–2298.

    Google Scholar 

  • Chen, X., and Guo, L.J. (2004). A combined-nanoimpnnt-and-photolithography patterning technique. Microelectronic Engineering 71(3–4): 288–293.

    Google Scholar 

  • Cheng, L.-J., Chang, S.-T., and Guo, L. J. (2005). Nanoimprint of Nanofluidic Channels by Using Hydrophilic Hydrogen Silsesquioxane (HSQ). Micro Total Analysis Systems 2005:9th International Conference on Miniaturized Systems for Chemistry and Life Sciences. Boston, Massachusetts, USA, 518–520.

    Google Scholar 

  • Chiu, G. L.-T, and Shaw, J. M. (1997). Optical lithography: Introduction. IBMJ. Res. Develop. 41(1/2): 3–6.

    Google Scholar 

  • Chopra, S., and Pham, A. (2002). Carbon-nanotube based resonant-circuit sensor for ammonia. Appl. Phys. Lett. 80(24): 4632–4634.

    Google Scholar 

  • Chou, S. Y. (1996). Nanoimpimt lithography. J. Vac. Sci. Technol. M 14(6): 4129–4133.

    Google Scholar 

  • Chou, S. Y., Keimel, C. and Gu, J. (2002). Ultrafast and direct imprint of nanostructures in silicon. Nature 417: 835–837.

    Google Scholar 

  • Chou, S. Y. and Krauss, P. R. (1997). Imprint lithography with sub-10nm feature size and high throughput. Microelectronic Engineering 35: 237–240.

    Google Scholar 

  • Chou, S. Y., Krauss, P. R., and Renstrom, P. J. (1995). Imprint of sub-25 nm vias and trenches in polymers. Appl. Phys. Lett. 67(21): 3114–3116.

    Google Scholar 

  • Christopher, P. D., Chan, K. K., and Blum, J. (1992). Deep trench plasma etching of single crystal silicon using SF6/O2 gas mixture. J. Vac. Sci. Technol. B 10: 1105–1110.

    Google Scholar 

  • Chung, J., and Lee, J. (2003). Nanoscale gap fabrication and integration of carbon nanotubes by micromachining. Sens. Actuators A 104: 229–235.

    Google Scholar 

  • Chung, J., Lee, K.-H., and Lee, J. (2003). Nanoscale gap fabrication by carbon nanolube-extracted lithography (CEL.). Nanoletters 3(8): 1029–1031.

    Google Scholar 

  • Cui, Y., Wei, Q., Park, H. and Lieber, C.M. (2001). Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293: 1289–1292.

    Google Scholar 

  • Davis, R. C, Williams, C. C. and Neuzil, P. (1995). Micromachined submicrometer photodiode for scanning probe microscopy. Appl. Phys. Lett. 66(18): 2309–2311.

    Google Scholar 

  • Davis, Z. J. and Boisen, A. (2005). Aluminum nanocantilevers for high sensitivity mass sensors. Appl. Phys. Lett. 87(1): 013102-1–13012-3.

    Google Scholar 

  • Dhaliwal, R. S., Enichen, W. A., Golladay, S. D., Gordon, M. S., Kendall, R. A., Lieberman, J. E., Pfeiffer, H. C., Pinckney, D. J., Robinson, C. F., Rockrohr, J. D., Sticket, W., and Tressler, E. V. (2001). PREVAIL—electron projection technology approach for next-generation lithography. IBMJ. Res. Develop. 45(5): 615–638.

    Google Scholar 

  • Dong-Weon, L., Ono, T., Abe, T., and Esashi, M. (2002). Microprobe array with electrical interconnection for thermal imaging and data storage. Microelectromechanical Systems, Journal of 11(3): 215.

    Google Scholar 

  • Emmelkamp, J., Gardeniers, J. G. E., Anderson, H., and Berg, A. v. d. Planar Nanoneedles On-Chipfor Intracelluler Measurements. Micro Total Analysis Systems 2005:9th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Boston. Massachusetts, USA, 400–402.

    Google Scholar 

  • Fasching, R. J., Tao, Y, and Prinz, F. B. (2005). Cantilever tip probe arrays for simultaneous SECM and AFM analysis. Sens. Actuators B 108: 964–972.

    Google Scholar 

  • Favier, F., Walter, E. C., Zach, M. P., Benter, T. and Penner, R.M. (2001). Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science 293: 2227–2231.

    Google Scholar 

  • Feynman, R. There’s Plenty of Room al the Bottom, http://www.zyvex.com/nanotech/feynman.html.

    Google Scholar 

  • Fologea, D., Gershow, M., Ledden, B., McNabb, D. S., Golovchenko, J. A., and Li, J. (2005a). Detecting single stranded DNA with a solid state nanopore. Nana Lett. 5(10): 1905–1909.

    Google Scholar 

  • Fologea, D., Uplinger, J., Thomas, B., McNabb, D. S., and Li, J. (2005b). Slowing DNA translocation in a solid-state nanopore. Nano Lett. 5(9): 1734–1737.

    Google Scholar 

  • French, P. J. and Sarro, P. M. (1998). Surface versus bulk micromachining: the contest for suitable applications. J. Micromech. Microeng. 8: 45–53.

    Google Scholar 

  • Fujita, H. (2003). Micromachines as Tools for Nanotechnology, Springer.

    Google Scholar 

  • Gates, B. D., Xu, Q., Love, J. C., Wolfe, D. B., and Whitesides, G. M. (2004). Unconventional nanofab-rication. Annu. Rev. Mater. Res. 34: 339–372.

    Google Scholar 

  • Gel, M., Edura, T., Wada, Y., and Fujita, H. Controllable Nano-Gap Mechanism For Characterization Of Nanoscale Objects. Micro Total Analysis Systems 2005: 9th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Boston, Massachusetts, USA, 739–741.

    Google Scholar 

  • Goto, M., Sato, K., Murakami, A., Tokeshi, M., and Kitamori, T. (2005a). Development of a microchipbased bioassay system using cultured cells. Anal. Chem. 77(7): 2125–2131.

    Google Scholar 

  • Goto, M., Sato, K., Yamato, M., Hibara, A., and Kitamori, T. (2005b). Fabrication of Nana-Patte med Surfaces for Cell Adhesion in Microchips. Micro Total Analysis Systems 2005: 9th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Boston, Massachusetts, USA, 1282–1282.

    Google Scholar 

  • Grigaliunas, V., Tamulevicius, S., Tomasiunas, R., Kopustinkas, V., Guobiene, A., and Jucius, D. (2004). Laser pulse assisted nanoimprint lithography. Thin Solid Films 453–454: 13–15.

    Google Scholar 

  • Grujicic, M., Cao, G., and Roy, W. N. (2004). A computational analysis of the carbon-nanotube-based resonant-circuit sensors. Appl. Surf. Sci. 229(1–4): 316.

    Google Scholar 

  • Guo, L. J. (2004). Recent progress in nanoimprint technology and its applications., J. Phys. D: Appl. Phy. 37:R123–141.

    Google Scholar 

  • Guo, L. J., Cheng, X., and Chou, C.-F. (2004). Fabrication of size-controllable nanofluidic channels by nanoimprinting and its application for DNA stretching. Nano Lett. 4(1): 69–73.

    Google Scholar 

  • Hanafi, H. I., Tiwari, S., and Khan, I. (1996). Fast and long retention-time nano-crystal memory. Electron Devices, IEEE Transactions on 43(9): 1553–1558.

    Google Scholar 

  • Heins, E. A., Siwy, Z. S., Baker, L. A., and Martin, C. R. (2005). Detecting single porphyrin molecules in a conically shaped synthetic nanopore. Nano Lett. 5(9): 1824–1829.

    Google Scholar 

  • Hertel, T., Martel, R., and Avouris, P. (1998). Manipulation of individual carbon nanotubes and their interaction with surfaces. J. Phys. Chem. B 102: 910–915.

    Google Scholar 

  • Heyderman, L. J., Schift, H., David, C., Gobrecht, J., and Schweizer, T. (2000). Flow behaviour of thin polymer films used for hot embossing lithography. Microelectronic Engineering 54: 229–245.

    Google Scholar 

  • Hirai, Y., Fujiwara, M., Okuno, T., and Tanaka, Y. (2001). Study of resist deformation in nanoimprint lithography. J. Vac. Sci. Technol. B 19(6): 2811–2815.

    Google Scholar 

  • Hoummady, M., Farnault, E., Fujita, H., Kawakatsu, H., and Masuzawa, T. (1997). New Technique for Nanoeantilever Fabrication Based on Local Electrochemical Etching: Applications to Scanning Force Microscopy. The fourth international conference on nanometer-scale science and technology, Beijing (China). 1556–1558.

    Google Scholar 

  • Howorka, S., Movileanu, L., Braha, O., and Bayley, H. (2001). Kinetics of duplex formation for individual DNA strands within a single protein nanopore. Proc. Natl. Acad. Sci. U. S. A. 98(23): 12996–13001. From http://www.technics.com.

    Google Scholar 

  • Kameoka, J., and Craighead, H. G. (2003). Fabrication of oriented polymeric nanofibers on planar surfaces by electrospinning. Appl. Phys. Utt. 83(2): 371–373.

    Google Scholar 

  • Kasianowicz, J. J., Brandin, E., Branton, D., and Deamer, D. W. (1996). Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. U. S. A. 93: 13770–13773.

    Google Scholar 

  • Keat Ghee, O., Kefeng, Z., and Grimes, C. A. (2002). A wireless, passive carbon nanotube-based gas sensor. Sensors Journal, IEEE 2(2): 82.

    Google Scholar 

  • Kim, B. M., and Bau, H. H. (2005). Hybrid Fabrication of Carbon Nanolube — Based Devices and the Measurement of Ionic Current Through Them. Micro Total Analysis Systems 2005: 9th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Boston, Massachusetts, USA, 1543–545.

    Google Scholar 

  • Kim, B. M., Sinha, S., and Bau, H. H. (2004). Optical microscope study of liquid transport in carton nanolubes. Nano Lett. 4(11): 2203–2208.

    Google Scholar 

  • Kovacs, G., Maluf, N. I., and Peterson, K. E. (1998). Bulk micromachining of silicon. Prac. IEEE, 86 (8): 1536–1551.

    Google Scholar 

  • Kumar, A., and Whitesides, G. M. (1993). Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an clastomeric stamp and an alkanethiol “ink” followed by chemical etching. Appl, Phys. Lett. 63(14): 2002–2004.

    Google Scholar 

  • Kuwala, M., Sakamoto, K., Murakami, Y., Morishima, K., Sudo, H., Kilaoka, M., and Kitamore, T. (2005). Sliding Quantitative Nanoliter Dispensing Device for Multiple Anaysis. Micro Total Analysis Systems 2005:9th International Conference on Miniaturized Systems for Chemistry and Life Sciences. Boston, Massachusetts, USA, 602–604.

    Google Scholar 

  • Le Gac, S., Cren-Olive, C., Rolando, C, and Arscott, S. (2004). A novel nib-like design for microfabricated nanospray tips. J. Am. Soc. Mass Spectrom. 15(3): 409.

    Google Scholar 

  • Learmer, F., Schilp, A., Funk, K., and Offenberg, M. (1999). Bosch deep silicon etching: improving uniformity and etch rae for advanced MEMS applications. Proc. MEMS, Orlando, FL, 211–216.

    Google Scholar 

  • Lee, C., Wang, J., Monbuquette, H. G., and Yun, M. (2005). Funclionalized Pt Nanowire Array by Immobilizing Glucose Oxidase (Gox) in Polypyrrole (Ppy). Micro Total Analysis Systems 2005: 9th International Conference on Miniaturized Systems for Chemistry and Life Sciences. Boston, Massachusetts, USA, 1237–1239.

    Google Scholar 

  • Lee, J. A., Yun, J. Y., Lee, K.-C., Park, S. I., and Lee, S. S. (2005). Fabrication of Microcantilever with Nano-interdigitated Electrodes (IDEs) for DNA Binding Protein Detection. Micro Total Analysis Systems 2005: 9th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Boston, Massachusetts, USA, 217–219.

    Google Scholar 

  • Lee, S., Park, S., and Cho, D. (1999). The surfaceJbulk micromachining (SBM) process: a new method for fabricating released MEMS in single crystal silicon. J. Microelectromech. Syst. 8(4): 409–416.

    Google Scholar 

  • Li, C., Lei, B., Zhang, D., Liu, X., Han, S., Tang, T., Rouhanizadeh, M., Hsiai, T., and Zhou, C. (2003a). Chemical gating of In2O3 nanowires by organic and biomolecules. Appl. Phys. Lett. 83 (19), 4014–4016.

    Google Scholar 

  • Li, C. Z., He, H. X., Bogozi, A., Bunch, J. S., and Tao, N. J. (2000). Molecular detection based on conductance quantization of nanowires. Appl. Phys. Lett. 76(10): 1333–1335.

    Google Scholar 

  • Li, H., and Huck, W. T. S. (2002), Polymers in nanotechnology. Current Opinion in Solid Slate and Materials Science 6: 3–8.

    Google Scholar 

  • Li, J., Gershow, M., Stein, D., Brandin, E., and Golovchenko, J. A. (2003b). DNA molecules and configurations in a solid-state nanopore microscope. Nature Materials 2: 611–615.

    Google Scholar 

  • Li, J., Ng, H. T., Cassell A., Fan, W., Chen, H., Ye, Q., Koehne, J., Han, J., and Meyyappan, M. (2003c). Carbon nanotube nanoelectrode array for ultrasensitive DNA detection. Nano Lett.. 3(5): 597–602.

    Google Scholar 

  • Li, J., Stein, D., McMullan, C., Branton, D., Aziz, M. J., and Golovchenko, J.A. (2001). Ion-beam sculpting at nanometre length scales. Nature, 412: 166–169.

    Google Scholar 

  • Liddle, J. A., Harriott, L. R., Novembre, A. E., and Waskiewicz, W. K. SCALPEL: A Projection Electron-Beam Approach to Sub-Optical Lithography.

    Google Scholar 

  • Liu, J.-F., Zhang, L.-G., Gu, N., Ren, J.-Y., Wu, Y.-P., Lu, Z.-H., Mao, P.-S., and Chen, D.-Y. (1998). Fabrication of colloidal gold micro-patterns using photolithographed self-assembled monolayers as templates. Thin Solid Films 327–329: 176–179.

    Google Scholar 

  • Love, J. C., Gates, B. D., Wolfe, D. B., Paul, K. E., and Whitesides, G. M. (2002). Fabrication and wetting properties of metallic half-shells with submicron diameters. Nano Lett. 2(8): 891–894.

    Google Scholar 

  • Lowenheim, F. A. (1974). Modem Electroplating, Wiley.

    Google Scholar 

  • Lu, Y., Liu, G. L., Kim, J., Mejia, Y. X., and Lee, L. P. Nanophotonic Crescent Structures with Sharp Edge for Ultrasensitive Biomolecule Detections by Local Electromagnetic Field Enhancement. Effect. Micro Total Analysis Systems 2005:9th International Conference on Miniaturized Systems for Chemistry and Life Sciences. Boston, Massachusetts, USA, 1230–1233.

    Google Scholar 

  • Lutwyche, M. I., Despont, M., Drechsler, U., Durig, U., Haberle, W., Rothuizen, H., Stutz, R., Widmer, R., Binnig, G. K., and Vettiger, P. (2000). Highly parallel data storage system based on scanning probe array. Appl. Phys. Lett. 77(20): 3299–3301.

    Google Scholar 

  • Madou, M. J. (2002). Fundamentals of Microfabrication, CRC Press LLC.

    Google Scholar 

  • Maldonado, J. R., Coyle, S. T., Shamoun, B., M, Yu, Thomas, T., Holmgren, D., Chen, X., DeVore, B., Scheinfein, M. R., and Gesley, M. (2003). A raster multibeam lithography tool for sub 100nm mask fabrication utilizing a novel pholocathode. Proc. SPIE 5220: 46–51.

    Google Scholar 

  • Matsuzaka, T. and Soda, Y. (1999). Electron beam lithography system for nanometer fabrication. Hitachi Review 48(6): 340–343.

    Google Scholar 

  • McEuen, P. L., Fuhrer, M. S., and Park, H. (2002). Single-walled carbon nanotube electronics. IEEE Trans. Nanotech. 1(1): 78–85.

    Google Scholar 

  • Meller, A., Nivon, L., Brandin, E., Golovchenko, J., and Branton, D. (2000). Rapid nanopore discrimination between single polynucleotide molecules. Proc. Natl. Acad. Sci. U. S. A. 97(3): 1079–1084.

    Google Scholar 

  • Meller, A., Nivon, L., and Branton, D. (2001). Voltage-driven DNA translocations through a nanopore. Phys. Rev. Lett. 86(15): 3435–3438.

    Google Scholar 

  • Michel, B., Bernard, A., Bietsch, A., Delamarche, E., Geissler, M., Juncker, D., Kind, H., Renault, J.-P., Rothuizen, H., Schmid, H., Schmidt-Winkel, P., Stutz, R., and Wolf, H. (2001a). Printing meets lithography: Soft approaches to high-resolution. IBM J. Res. Develop. 45(5): 697–719.

    Google Scholar 

  • Michel, B., Bernard, A., Bietsch, A., Delamarche, E., Geissler, M., Juncker, D., Kind, H., Renault, J.-P, Rothuizen, H., Schmid, H., Schmidt-Winkel, P., Stutz, R., and Wolf, H, (2001b). Printing meets lithography: Soft approaches to high-resolution patterning. IBM. J. Res. Dev. 45(5): 697–719.

    Google Scholar 

  • Minne, S. C., Yaralioglu, G., Manalis, S. R., Adams, J. D., Zesch, J., Atalar, A., and Quatec, C. F. (1998). Automated parallel high-speed atomic force microscopy. 72 (18): 2340–2342.

    Google Scholar 

  • Muller, U., Kentsch, J., Nisch, W., Neugebauer, S., Schuhmann, W., Linke, S., Kaczor, M., Lohmuller. T., Spatz, J., and Stelzle, M. (2005). Sub-um SpacedNano-Porous Electrode Systems: Fabrication. Properties and Application to Sensitive Electtvchamical Detection. Micro Total Analysis Systems 2005: 9lh International Conference on Miniaturized Systems for Chemistry and Life Sciences. Boston, Massachusetts, USA, 473–475.

    Google Scholar 

  • Nagahara, L. A., Amlani, I., Lewenstein, J., and Tsui, R. K. (2002). Directed placement of suspended carbon nanotubes for nanometer-scale assembly. Appl. Phys. Lett. 80(20): 3826–3828.

    Google Scholar 

  • Nakayama, Y., Okazaki, S., and Saitou, N. (1990). Electron-beam cell projection lithography: A new high-throughput electron beam direct-writing technology using a specially tailored Si aperture. J. Vac. Sci. Technol. B 8(6): 1836–1840.

    Google Scholar 

  • Nathanson, H. C., Newell, W. E., Wickstrom, R. A., and J. R. Davis, J. (1967). The resonant gate sensor. IEEE Trans. Electron Devices 14: 117–133.

    Google Scholar 

  • Park, H., Lim, A. K. L., Alivisatos, A. P., Park, J., and McEuen, P. L. (1999). Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 75(2): 301.

    Google Scholar 

  • Patolsky, F., Zheng, G., Hayden, O., Lakadamyali, M., Zhuang, X., and Lieber, C. M. (2004). Electrical detection of single viruses. Proc. Natl. Acad. Sci. U. S. Am. 101(39): 14017–14022.

    Google Scholar 

  • Peterson, K. (1982). Silicon as a mechanical material. Proc. IEEE 70(5): 420–457.

    Google Scholar 

  • Pfeiffer, H. C., Dhaliwal, R. S., Golladay, S. D., Doran, S. K., Gordon, M. S., Groves, T. R., Kendall, R. A., Lieberman, J. E., Pétrie, P. F., Pinckney, D. J., Quickie, R. J., Robinson, C. F., Rockrohr, J.D., Senesi, J. J., Stickel, W., Tressler, E. V., Tanimoto, A., Yamaguchi, T., Okamoto, K., Suzuki. K., Okino, T., Kawat, S., K. Morita, Suziki, S. C., Shimizu, H., Kojima, S., Varnell, G., Novak, W. T., Stumbo, D. P., and Sogard, M. (1999). Projection reduction exposure with variable axis immersion lenses: Next generation lithography. J. Vac. Sci. Technol. B 17(6): 2840–2846.

    Google Scholar 

  • Pfeiffer, H. C. and Stickel, W. (1995). PREVAIL—An E-beam stepper with variable axis immersion lenses. Microelectronic Engineering, 27: 143–146.

    Google Scholar 

  • Piner, R. D., Zhu, J., Xu, F., Hong, S., and Mirkin, C. A. (1999). Dip-pen nanolithography. Science 283 (29): 661–663.

    Google Scholar 

  • Plachetka, U., Bender, M., Fuchs, A., Vratzov, B., Glinsner, T., Lindner, F., and Kurz, H. (2004). Wafer scale patterning by soft UV-nanoimprint lithography. Microelectronic Engineering. 73–74: 167–171.

    Google Scholar 

  • Quake, S. R. and Scherer, A. (2000). From micro-to nanofabrication with soft materials. Science 290: 1536–1540.

    Google Scholar 

  • Rajnikant, A., Shukla, S., Ludwig, L., Anjum, M., Cho, H. J., and Seal, S. A nanoparticle-based microsensor for room temperature hydrogen detection. Proc. IEEE Sensors 395–398.

    Google Scholar 

  • Rao, S. G., Huang, L., Setyawan, W., and Hong, S. (2003). Large-scale assembly of carbon nanotubes. Nature: 425: 36–37.

    Google Scholar 

  • Renaudin, A., Chuda, K., Zhang, V., Coqueret, X., Camart, J.-C., Tabourier, P., and Druon, C. SAW Lab-on-Chip in View of Protein Affinity Purification Implemented From Nanodroplet Transport. Micro Total Analysis Systems 2005: 9th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Boston, Massachusetts. USA, 599–601.

    Google Scholar 

  • Renaudin, A., Tabourier, P., Zhang, V., Camart, J. C, and Druon, C. (2006). SAW nanopump for handling droplets in view of biological applications. Sens. Actuators B: Chem. 113(1): 389.

    Google Scholar 

  • Roschier, L., Pentlila, J., Martin, M., Hakonen, P., Paalanen, M., Tapper, U., Kauppinen, E.I., Journet, C. and Bernier, P. (1999). Single-electron transistor made of multiwalled carbon nanotube using scanning probe manipulation. 75 (5): 728–730.

    Google Scholar 

  • Sakilani, Y., Yoda, H., Todokoro, H., Shibata, Y., Yamazaki, T., Ohbitu, K., Sailou, N., Moriyama, S., Okazaki, S., Matuoka, G., Murai, F., and Okumura, M. (1992). Electron-beam cell-projection lithography system. J. Vac. Sci. Technol. B 10(6): 2759–2763.

    Google Scholar 

  • Sanchez, J. C. ( 1963). Semiconductor strain-gauge pressure sensors. Instruments and Control Systems: 117–120.

    Google Scholar 

  • Scheer, H. and Schulz, H. ( 1998). Problems of the nanoimprinting technique for nanometer scale pattern definition. J. Vac. Sci. Technol. B 16(6): 3917–3921.

    Google Scholar 

  • Scheer, H., and Schulz, H. (2001). A contribution to the flow behaviour of thin polymer films during hot embossing lithography. Microelectronic Engineering 56: 311–332.

    Google Scholar 

  • Schellenberg, F. (2003). A little light magic. IEEE Spectrum: 34–39.

    Google Scholar 

  • Shim, M., Kam, N. S. S., Chen, R. J., Li, Y. and Dai, H. (2002). Functionalization of carbon nanotubes for biocompatibilily and biomolecular recognition. Nano Lett.. 2(4): 285–288.

    Google Scholar 

  • Shipway, A. N., Katz, E., and Willner, I. (2000). Nanoparticle arrays on surfaces for electronic, optical. and sensor applications. Chemphyschem 1: 18–52.

    Google Scholar 

  • Shukla, S., Agrawal, R., Cho, H. J., Seal, S., Ludwig, L., and Parish, C. (2005a). Effect of ultraviolet radiation exposure on room-temperature hydrogen sensitivity of nanocrystalline doped tin oxide sensor incorporated into microelectromechanical systems device. J. Appl. Phys. 97(5): 054307–054319.

    Google Scholar 

  • Shukla, S., Zhang, P., Cho, H. J., Rahman, Z., Drake, C., Seal, S., Craciun, V., and Ludwig, L. (2005b). Hydrogen-discriminating nanocrystalline doped-tin-oxide room-temperature microsensor. J. Appl. Phys. 98(10): 104306–104315.

    Google Scholar 

  • Sinha, P. M., Valco, G., Sharma, S., Liu, X., and Ferrari, M. (2004). Nanoengineered device for drug delivery application. Nanotechnology 15: S585–S589.

    Google Scholar 

  • Smith, C. S. (1954). Piezoresistance effect in germanium and silicon. Phys. Rev. 94(1): 42–49.

    Google Scholar 

  • Sohda, Y., Ohta, H., Murai, F., Yamamoto, L., Kawanob, H., Satohb, H., and Itohb, H. (2003). Recent progress in cell-projection electron-beam lithography. 67–68: 78–86.

    Google Scholar 

  • Staii, C. and Johnson, J. A. T. (2005). DNA-decorated carbon nanotubes for chemical sensing. Nano Lett. 5(9); 1774–1778.

    Google Scholar 

  • Stampfer, C., Jungen, A., and Hierold, C. (2005). Nano Electromechanical Transducer Based on Single Walled Carbon Nanotubes. Transducers’05, Seoul, Korea, 2103–2106.

    Google Scholar 

  • Star, A., Gabriel, J. P., Bradley, K., and Gruner, G. (2003). Electronic detection of specific protein binding using nanotube FET devices. Nano Lett. 3(4): 459–463.

    Google Scholar 

  • Storm, A. J., Chen, J. H., Ling, X. S., Zandbergen, H. W., and Dekker, C. (2003). Fabrication of solid-state nanopores with single-nanometre precision. Nature Materials 2: 537–540.

    Google Scholar 

  • Storm, A. J., Storm, C., Chen, J., Zandbergen, H., Joanny, J., and Dekker, C. (2005). Fast DNA translocation through a solid-state nanopore. Nano Lett. 5(7): 1193–1197.

    Google Scholar 

  • Suehiro, J., Zhou, G., and Hara, M. (2003). Fabrication of a carbon nanotube-based gas sensor using dielectrophoresis and its application for ammonia detection by impedance spectroscopy. J. Phys. D: Appl. Phys. 36: L109–L114.

    Google Scholar 

  • Takekawa, T., Nakagawa, K., and Hashiguchi, G. The AFM Twezeers: Integration of a Twezeers Function With an AFM Probe. Transducers’05, Seoul, Korea. 621–624.

    Google Scholar 

  • Tegenfeldt, J. O., Prinz, C., Cao, H., Chou, S., Reisner, W. W., Riehn, R., Wang, Y. M., Cox, E. C, Sturm, J. C., Silberzan, P., and Austin, R. H. (2004). The dynamics of genomic-length DNA molecules in 100-nm channels. Proc. Natl. Acad. Sci. U. S. A. 101(30): 10979–10983.

    Google Scholar 

  • Torres, C. M. S., Zankovych, S., Seekamp, J., Kam, A. P., Cedeno, G.C., Hoffman, T., Ahopello, J., Reuther, F., Pfeiffer, K., Blediessel, G., Gruetzner, G., Maximov, M.V., and Heidari, B. (2003). Nanoimprint lithography: an alternative nanofabrication approach. Maler. Sci. Eng. C 23: 23–31.

    Google Scholar 

  • Tseng, A. A., Notargiacomo, A., and Chen, T. P. (2005). Nanofabrication by scanning probe microscope lithography: A review. J. Vac. Sci. Technol. B 23(3): 877–894.

    Google Scholar 

  • Turner, S. W. P., Cabodi, M., and Craighead, H. G. (2002). Confinement-induced entropie recoil of single DNA molecules in a nanofluidic structure. Phys. Rev. Lett. 88(12): 1281031–1281034.

    Google Scholar 

  • Vercoulere, W., Winters-Hilt, S., Olsen, H., Deamer, D., Haussler, D., and Akeson, M. (2001). Rapid discrimination among individual DNA haitpin molecules at single-nucleotide resolution using an ion channel. Nature Biotechnology 19: 248–252.

    Google Scholar 

  • Wang, Y.-C., Tsau, C. H., Burg, T. P., Manalis, S., and Han, J. (2005a). Effiecient Biomolecule Pre-Concentration by Nanofilter-Triggered Electrokinetic Trapping. Micro Total Analysis Systems 2005: 9th International Conference on Miniaturized Systems for Chemistry and Life Sciences. Boston. Massachusetts, USA, 238–240.

    Google Scholar 

  • Wang, Y. C., Stevens, A. L., and Han, J. (2005b). Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal. Chem. 77(14): 4293–4299.

    Google Scholar 

  • Waskiewicz, W. K., Berger, S. D., Harriott, L. R., Mkrtchyan, M. M., Bowler, S. W., and Gibson, J. M. (1995). Electron-optical design for the SCALPEL proof-of-concept tool. Proc. SPIE: 13–22.

    Google Scholar 

  • Wilder, K., Quate, C.F., Singh, B., and Kyser, D. F. (1998). Electron beam and scanning probe lithography: A comparison. J Vac. Sci. Technol. B 16(6): 3864–3873.

    Google Scholar 

  • Wu, G., Datar, R. H., Hansen, K. M., Thundat, T., Cote, R. J., and Majumdar, A. (2001a). Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat Biotech 19(9): 856.

    Google Scholar 

  • Wu, G., Datar, R. H., Hansen, K. M., Thundat, T., Cote, R. J., and Majumdar, A. (2001b). Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nature Biotechnology 19: 856–860.

    Google Scholar 

  • Xia, Q., Keimel, C., Ge, H., Yu, Z., Wu, W., and Chou, S. Y. (2003). Ultrafast patterning of nanostructures in polymers using laser assited nanoimprint lithography. Appl. Phys. Lett. 83(21): 4417–4419.

    Google Scholar 

  • Xia, Y., and Whilesides, G. M. (1998a). Soft lithography. Annu. Rev. Mater. Sci. 28: 153–184.

    Google Scholar 

  • Xia, Y, and Whitesides, G. M. (1998b). Soft lithography. Angrew. Chem. Int. Ed. 375: 550–575.

    Google Scholar 

  • Yamamoto, K., Akita, S., and Nakayama, Y (1996). Orientation of carbon nanotubes using electrophoresis. Jpn. J. Appl. Phys. 35 (Part 2, No. 7B): L917–L918.

    Google Scholar 

  • Yamamoto, K., Akita, S., and Nakayama, Y (1998). Orientation and purification of carbon nanotubes using ac electrophoresis. J. Phys. D: Appl. Phys. 31: L34–L36.

    Google Scholar 

  • Yazdi, N., and Najafi, K. (2000). An all-silicon sigle-wafer micro-g accelerometer with a combined surface and bulk micromachining process. J. Microelectromech. Syst. 9(4): 544–550.

    Google Scholar 

  • Zankovych, S., Hoffman, T., Seekamp, J., Bruch, J.-U., and Torres, G. M. S. (2001). Nanoimprint lithography: challenges ad prospects. Nanotechnology 12: 91–95.

    Google Scholar 

  • Zheng, G., Patolsky, F., Cui, Y., Wang, W. U., and Lieber, C.M. (2005). Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnology 23(10): 1294–1301.

    Google Scholar 

  • Zurbel, I. (1998). Silicon anisotropic etching in alkaline solutions II On the influence of anisotropy on the smoothness of etched surfaces. Sens. Actuators A 70: 260–268.

    Google Scholar 

  • Zurbel, I. and Barycka, I. (1998). Silicn anisotropic etching in alkaline solutions I. The geometric description of figures developed under etching Si(100) in various solutions. Sens. Actuators A 70: 250–259.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoung J. Cho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Londe, G., Han, A., Cho, H.J. (2008). MEMS for Nanotechnology: Top-down Perspective. In: Seal, S. (eds) Functional Nanostructures. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48805-9_3

Download citation

Publish with us

Policies and ethics