Skip to main content

Chemical Vapor Deposition of Organized Architectures of Carbon Nanotubes for Applications

  • Chapter
Molecular Building Blocks for Nanotechnology

Part of the book series: Topics in Applied Physics ((TAP,volume 109))

Abstract

Carbon nanotubes have been studied extensively since their discovery [1] in 1991, because of the extraordinary physical properties they exhibit in electronic, mechanical, and thermal processes. A single-walled nanotube may be considered as a specific, one-dimensional giant molecule composed purely of carbon, whereas properties of multiwalled nanotubes are closest to those of graphite’s in-plane properties, having sp2 hybridization of carbon bonds. To prepare closed-shell structures, one needs to insert topological defects into the hexagonal structure of graphene sheets. The extraordinary physical and chemical properties [2] and possible applications derived from these properties are attributed to the one-dimensionality and helicity of the nanotube structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Iijima, S. (1991). Nature 354: 56.

    Article  CAS  Google Scholar 

  2. Ajayan, P.M. (1999). Chem. Rev. 99: 1787.

    Article  CAS  Google Scholar 

  3. Ajiki, H. and Ando, T. (1993). J. Phys. Soc. Jpn. 62, 1255.

    Article  CAS  Google Scholar 

  4. Hamada, N., Sawada, S., and Oshiyama, A. (1992). Phys. Rev. Lett. 68: 1579.

    Article  CAS  Google Scholar 

  5. Mintmire, J.W., Dunlap, B.I., and White, C.T. (1992). Phys. Rev. Lett. 68: 631.

    Article  CAS  Google Scholar 

  6. Saito, R., Fujita, M., Dresselhaus, G., and Dresselhaus, M.S. (1992). Phys. Rev. B 46: 1804.

    Article  CAS  Google Scholar 

  7. Ebbesen, T.W. and Ajayan, P.M. (1992). Nature 358: 220.

    Article  CAS  Google Scholar 

  8. Iijima, S. and Ichihashi, T. (1993). Nature 363: 603.

    Article  CAS  Google Scholar 

  9. Bethune, D.S., Klang, C.H., de Vries, M.S., Gorman, G., Savoy, R., Vazquez, J., and Beyers, R. (1993). Nature 363: 605.

    Article  CAS  Google Scholar 

  10. Terrones, M. (2004). Int. Mater. Rev. 49: 325.

    Article  CAS  Google Scholar 

  11. Baker, R.T.K. (1989). Carbon 27: 315.

    Article  CAS  Google Scholar 

  12. See, e.g., http://www.apsci.com/ppi-about.html.

    Google Scholar 

  13. Endo, M., Takeuchi, K., Igarashi, S., Kobori, K., Shiraishi, M., and Kroto, H.W. (1993). J. Phys. Chem. Solids. 54: 1841.

    Article  CAS  Google Scholar 

  14. Jose-Yacaman, M., Miki-Yoshida, M.M., Rendon, L., and Santiesteban, J.G. (1993). Appl. Phys. Lett. 62: 657.

    Article  CAS  Google Scholar 

  15. Ivanov, V., Nagy, J.B., Lambin, P., Lucas, A., Zhang, X.B., Zhang, X.F., Bernaerts, D., Van Tendeloo, G., Amelinckx, S., and Van Landuyt, J. (1994). Chem. Phys. Lett. 223: 329.

    Article  CAS  Google Scholar 

  16. Hafner, J.H., Bronikowski, M.J., Azamian, B.R., Nikolaev, P., Rinzler, A.G., Colbert, D.T., Smith, K.A., Smalley, R.E. (1998). Chem. Phys. Lett. 296: 195.

    Article  CAS  Google Scholar 

  17. Ball, P. (2001). Nature 414: 142.

    Article  CAS  Google Scholar 

  18. Helveg, S., Lopez-Cartes, C., Sehested, J., Hansen, P.L., Clausen, B.S., Rostrup-Nielsen, J.R., Abild-Pedersen, F., Norskov, J.K. (2004). Nature 427: 426.

    Article  CAS  Google Scholar 

  19. Sinnott, S.B., Andrews, R., Qian, D., Rao, A.M., Mao, Z., Dickey, E.C., and Derbyshire, F. (1999). Chem. Phys. Lett. 315: 25.

    Article  CAS  Google Scholar 

  20. Cheung, C.L., Kurtz, A., Park, H., and Lieber, C.M., (2002). J. Phys. Chem. B. 106: 2429.

    Article  CAS  Google Scholar 

  21. Endo, M., Muramatsu, H., Hayashi, T.Y.A., Kim, M., Terrones, M., Dresselhaus, S. (2005). Nature 433: 476.

    Article  CAS  Google Scholar 

  22. Rodriguez, N.M., Chambers, A., and Baker, R.T.K. (1995). Langmuir 11: 3862.

    Article  CAS  Google Scholar 

  23. Shibuta, Y. and Maruyama, S. (2003). Chem. Phys. Lett. 382: 381.

    Article  CAS  Google Scholar 

  24. Moisala, A., Nasibulin, A.G., and Kauppinen, E.I. (2003). J. Phys. Condens. Matter 15: S3011.

    Article  CAS  Google Scholar 

  25. Juang Z.Y., Lai, J.F., Weng, C.H., Lee, J.H., Lai, H.J., Lai, T.S., and Tsai, C.H. (2004). Diamond Related Mater. 13: 2140.

    Article  CAS  Google Scholar 

  26. Kobayashi, Y., Nakashima, H., Takagi, D., and Homma, Y. (2004). Thin Solid Films 464–465: 286.

    Article  Google Scholar 

  27. Lastella, S., Jung, Y.J., Yang, H.C., Vajtai, R., Ajayan, P.M., Ryu, C., Rider, D.A., and Manners, I. (2004). J. Mater. Chem. 14(12): 1791.

    Article  CAS  Google Scholar 

  28. Ng, H.T., Chen, B., Koehne, J.E., Cassell, A.M., Li, J., Han, J., Meyyappan, M. (2003). J. Phys. Chem. B, 107: 8484.

    Article  CAS  Google Scholar 

  29. Li, W.Z., Xie, S.S., Qian, L.X., Chang, B.H., Zou, B.S., Zhou, W.Y., Zhao, R.A., and Wang, G. (1996). Science 274: 1701.

    Article  CAS  Google Scholar 

  30. Terrones, M. et al. (1997). Nature 388: 52.

    Article  CAS  Google Scholar 

  31. Grobert, N. et al. (2000). Appl. Phys. A 70, 175.

    Article  CAS  Google Scholar 

  32. Fan, S.S., Chapline, M.G., Franklin, N.R., Tombler, T.W., Cassell, A.M., and Dai, H.J. (1999). Science 283: 512.

    Article  CAS  Google Scholar 

  33. Pan, Z.W., Zhu, H.G., Zhang, Z.T., Im, H., Dai, S., Beach, D.B., and Lowndes, D.H. (2003). J. Phys. Chem. B, 107: 1338.

    Article  CAS  Google Scholar 

  34. Kind H., Bonard, J.M., Emmenegger, C., Nilsson, L.O., Hernadi, K., Maillard-Schaller, E., Schlapbach, L., Forro, L., and Kern, K. (1999). Adv. Mater. 11: 1285.

    Article  CAS  Google Scholar 

  35. Duesberg, G.S., Graham, A.P., Liebau, M., Seidel, R., Unger, E., Kreupl, F., and Hoenlein, W. (2003). NanoLetters 3: 257.

    CAS  Google Scholar 

  36. Duesberg, G.S, Graham, A.P., Kreupl, F., Liebau, M., Seidel, R., Unger, E., and Hoenlein, W. (2004). Diamond Related Mater. 13: 354.

    Article  CAS  Google Scholar 

  37. Wei, B.Q., Vajtai, R., Jung, Y., Ward, J., Zhang, R., Ramanath, G., and Ajayan, P.M. (2003). Chem. Mater. 15(8): 1598.

    Article  CAS  Google Scholar 

  38. Andrews, R., Jacques, D., Rao, A.M., Derbyshire, F., Qian, D., Fan, X., and Dickey, E.C., and Chen, J. (1999). Chem. Phys. Lett. 303, 467.

    Article  CAS  Google Scholar 

  39. Rao, C.N.R., Sen, R., Satishkumar, B.C., and Govindaraj, A. (1998). Chem. Commun. 15: 1525.

    Article  Google Scholar 

  40. Cao, A.Y., Ci, L.J., Wu, G.W., Wei, B.Q., Xu, C.L., Liang, J., and Wu, D.H. (2001). Carbon 39: 152.

    Article  CAS  Google Scholar 

  41. Zhang, Z.J., Wei, B.Q., Ramanath, G., and Ajayan, P.M. (2000). Appl. Phys. Lett. 77: 3764.

    Article  CAS  Google Scholar 

  42. Jung, Y.J., Wei, B.Q., Vajtai, R., Ajayan, P.M., Homma Y., Prabhakaran, K., and Ogino, T. (2003). Nanoletters 3: 561.

    CAS  Google Scholar 

  43. Wei, B.Q., Vajtai, R., Jung, Y., Ward, J., Zhang, R., Ramanath, G., and Ajayan, P.M. (2002). Nature 416(6880): 495.

    Article  CAS  Google Scholar 

  44. Wei, B.Q., Vajtai, R., Zhang, Z., Ramanath G., and Ajayan, P.M. (2001). J. Nanosci. Nanotechnol. 1: 35.

    Article  CAS  Google Scholar 

  45. Wei, B.Q., Zhang, Z., Ramanath, G., and Ajayan, P.M. (2000). Appl. Phys. Lett. 77: 2985.

    Article  CAS  Google Scholar 

  46. Cao, A., Baskaran, R., Frederick, M.J., Turner, K., Ajayan, P.M., and Ramanath, G. (2003). Adv. Mater. 15: 1105.

    Article  CAS  Google Scholar 

  47. Vajtai, R., Kordás, K., Wei, B.Q., Békési, J., Leppävuori, S., George, T.F., and Ajayan, P.M. (2002). Mater. Sci. Eng. C 19: 271.

    Article  Google Scholar 

  48. Srivastava, A., Srivastava, O.N., Talapatra, S., Vajtai, R., and Ajayan, P.M. (2004). Nature Mater. 3: 610.

    Article  CAS  Google Scholar 

  49. Cao, A., Veedu, V.P., Li, X., Yao, Z., Ghasemi-Nejhad, M.N., and Ajayan, P.M. (2005). Nature Mater. 4: 540.

    Article  CAS  Google Scholar 

  50. Meng, G.W., Jung, Y.J., Cao, A., Vajtai, R., and Ajayan, P.M. (2005). PNAS 102(20): 7074.

    Article  CAS  Google Scholar 

  51. Li, J., Papadopoulos, C., and Xu, J. (1999). Nature 402: 253.

    CAS  Google Scholar 

  52. Davydov, D.N., Sattari, P.A., AlMawlawi, D., Osika, A., Haslett, T.L., Moskovits, M. (1999). J. Appl. Phys. 86: 3983.

    Article  CAS  Google Scholar 

  53. Sui, Y.C., Cui, B.Z., Martinez, L., Perez, R., and Sellmyer, D.J. (2002). Thin Solid Films, 406: 64.

    Article  CAS  Google Scholar 

  54. Dresselhaus, M.S., Dresselhaus, G., and Avouris, P. (2001). Carbon Nanotubes: Synthesis, Structure, Properties, and Applications. Berlin/New York: Springer.

    Google Scholar 

  55. Choi, W.B., Jin, Y.W., Kim, H.Y., Lee, S.J., Yun, M.J., Kang, J.H., Choi, Y.S., Park, N.S., Lee, N.S., and Kim, J.M. (2001). Appl. Phys. Lett. 78: 1547.

    Article  CAS  Google Scholar 

  56. Modi, A., Koratkar, N., Lass, E., Wei, B.Q., and Ajayan, P.M. (2003). Nature 424: 171.

    Article  CAS  Google Scholar 

  57. Matsumoto, T., Komatsu, T., Nakano, H., Arai, K., Nagashima, Y., Yoo, E., Yamazaki, T., Kijima, M., Shimizu, H., Takasawa, Y., and Nakamura, J. (2004). Catalysis Today 90: 277

    Article  CAS  Google Scholar 

  58. Ma, R.Z., Liang, J., Wei, B.Q., Zhang, B., Xu, C.L., and Wu, D.H. (1999). J. Power Sources 84: 126

    Article  CAS  Google Scholar 

  59. Kreupl, F., Graham, A.P., Duesberg, G.S., Steinhogl, W., Liebau, M., Unger, E., and Honlein, W. (2002). Microelectron. Eng. 64: 399.

    Article  CAS  Google Scholar 

  60. Koratkar, N., Wei, B.Q., and Ajayan, P.M. (2002). Adv. Mater. 14: 997.

    CAS  Google Scholar 

  61. Tang, J., Yang, G., Zhang, Q., Parhat, A., Maynor, B., Liu, J., Qin, L.-C., and Zhou, O. (2005). Nano Lett. 5: 11.

    Article  CAS  Google Scholar 

  62. Dalton, A.B., Collins, S., Munoz, E., Razal, J.M., Ebron, V.H., Ferraris, J.P., Coleman, J.N., Kim, B.G., and Baughman, R.H. (2003). Nature 423: 703.

    Article  CAS  Google Scholar 

  63. Davis, V.A., Ericson, L.M., Parra-Vasquez, A.N.G., Fan, H., Wang, Y.H., Prieto, V., Longoria, J.A., Ramesh, S., Saini, R.K., Kittrell, C., Billups, W.E., Adams, W.W., Hauge, R.H., Smalley, R.E., and Pasquali, M. (2004). Macromolecules 37: 154.

    Article  CAS  Google Scholar 

  64. Ericson, L.M., Fan, H., Peng, H.Q., Davis, V.A., Zhou, W., Sulpizio, J., Wang, Y.H., Booker, R., Vavro, J., Guthy, C., Parra-Vasquez, A.N.G., Kim, M.J., Ramesh, S., Saini, R.K., Kittrell, C., Lavin, G., Schmidt, H., Adams, W.W., Billups, W. E., Pasquali, M., Hwang, W.F., Hauge, R.H., Fischer, J.E., and Smalley, R.E. (2004). Science 305: 1447.

    Article  CAS  Google Scholar 

  65. Zhu, H.W., Xu, C.L., Wu, D.H., Wei, B.Q., Vajtai, R., and Ajayan, P.M. (2002). Science 296: 884.

    Article  CAS  Google Scholar 

  66. Zhang, M., Atkinson, K.R., and Baughman, R.H. (2004). Science 306: 1358.

    Article  CAS  Google Scholar 

  67. Rinzler, A.G., Hafner, J.H., Nikolaev, P., Lou, L., Kim, S.G., Tomanek, D., Colbert, D., and Smalley, R.E. (1995). Science 269: 1550.

    Article  CAS  Google Scholar 

  68. de Heer, W., Chatelain, A., and Ugarte, D. (1995). Science 270: 1179.

    Article  Google Scholar 

  69. Saito, Y., Hamaguchi, K., Nishino, T., Hata, K., Tohji, K., Kasuya, A., and Nishina, Y. (1997). Jpn. J. Appl. Phys. 36: L13440.

    Google Scholar 

  70. Collins, P. and Zettl, A. (1996). Appl. Phys. Lett. 69: 1969.

    Article  Google Scholar 

  71. Wang, Q.H., Corrigan, T.D., Dai, J.Y., Chang, R.H., and Krauss, A.R. (1997). Appl. Phys. Lett. 70: 3308.

    Article  CAS  Google Scholar 

  72. Kuttel, O.M., Groning, P., Emmenegger, C., and Schlapbach, L. (1998). Appl. Phys. Lett. 73: 2113.

    Article  CAS  Google Scholar 

  73. Bonnard, J.M., Salvetat, J.P., Stockli, T., de Heer, W.A., Forro, L., and Chatelain, A. (1998). Appl. Phys. Lett. 73: 918.

    Article  Google Scholar 

  74. Zhu, W., Bower, C., Zhou, O., Kochanski, G.P., and Jin, S. (1999). Appl. Phys. Lett. 75: 873.

    Article  CAS  Google Scholar 

  75. Dean, K.A. and Chalamala, B.R. (1999). Appl. Phys. Lett. 75: 3017.

    Article  CAS  Google Scholar 

  76. Dean, K.A. and Chalamala, B.R. (2000). Appl. Phys. Lett. 76: 375.

    Article  CAS  Google Scholar 

  77. Bower, C., Zhou, O., Zhu, W., Ramirez, A.G., Kochanski, G.P., and Jin, S. (2000). Mat. Res. Soc. Symp. Proc.

    Google Scholar 

  78. Suzuki, S., Watanabe, T., Kiyokura, T., Nath, K.N., Ogino, T., Heun, S., Zhu, W., Bower, C., and Zhou, O. (2001). Phys. Rev. B 63: 2454181.

    Google Scholar 

  79. Saito, Y., Uemura, S., and Hamakuchi, K. (1998). Jpn. J. Appl. Phys. 37: L346.

    Article  CAS  Google Scholar 

  80. Rosen, R., Simendinger, W., Debbault, C., Shimoda, H., Fleming, L., Stoner, B., and Zhou, O. (2000). Appl. Phys. Lett. 76: 1668.

    Article  CAS  Google Scholar 

  81. Chwickshank, R., Duguid, N.P., Marmion, B.P., and Swain, R.H.A. (1975). Medical Microbiology. London: Churchill.

    Google Scholar 

  82. http://www.millipore.com/publications.nsf/docs/DS1180EN00.

    Google Scholar 

  83. Ajayan, P.M., Schadler, L.S., Giannaris, C., and Rubio, A. (2000). Adv. Mater. 12: 750.

    Article  CAS  Google Scholar 

  84. Raravikar, N.R., Schadler, L.S., Vijayaraghavan, A., Zhao, Y., Wei, B.Q., and Ajayan, P.M. (2005). Chem. Mater. 17: 974.

    Article  CAS  Google Scholar 

  85. Chen, Y.-C., Raravikar, N.R., Schadler L.S., Ajayan, P.M. Zao, Y.-P., Lu, T.-M., Wang, G.-C., and Zhang, X.-C. (2002). Appl. Phys. Lett. 81: 975.

    Article  CAS  Google Scholar 

  86. Kim, H.M., Kim, K., Lee, C.Y., Joo, J., Cho, S., Yoon, H.S., Pejakovic, D.A., Yoo, J.W., and Epstein, A.J. (2004). Appl. Phys. Lett. 84, 589.

    Article  CAS  Google Scholar 

  87. Ago, H., Petritsch, K., Shaffer, M.S.P. Windle, A.H., and Friend, R.H. (1999). Adv. Mater. 11: 1281.

    Article  CAS  Google Scholar 

  88. Kymakis, E. and Amartunga, G.A. (2002). Appl. Phys. Lett. 80: 112.

    Article  CAS  Google Scholar 

  89. Philip, B., Abraham J.K., Chandrasekhar, A., and Varadan, V.K., (2003). Smart Mater. Struct. 12: 935.

    Article  CAS  Google Scholar 

  90. Rege, K. Raravikar, N.R. Kim, D.-Y. Schadler, L.S. Ajayan, P.M. and Dordick, J.S. (2003). Nano Lett. 3: 829.

    Article  CAS  Google Scholar 

  91. Wagner, H.D. (2002). Chem. Phys. Lett. 361: 57.

    Article  Google Scholar 

  92. Lau, K.-T. (2003). Chem. Phys. Lett. 370: 399.

    Article  CAS  Google Scholar 

  93. Suhr, J., Koratkar, N., Keblinski, P., and Ajayan, P. M. (2005). Nature Mater. 4: 134.

    Article  CAS  Google Scholar 

  94. Koratkar N., Wei, B.Q., and Ajayan, P.M. (2003). Composites Sci. Technol. 63: 1525.

    Article  CAS  Google Scholar 

  95. Maly J.R. and Johnson, C.D. (1996). SPIE Proceedings on Smart Structures and Materials, p. 365.

    Google Scholar 

  96. Biggerstaff, J.M. and Kosmatka, J.B. (1998). J. Comp. Mater. 32: 21.

    Google Scholar 

  97. Hata, K., Futaba, D.N., Mizuno, K., Namai, T., Yumura, M., and Iijima, S. (2004). Science, 306: 1362.

    Article  CAS  Google Scholar 

  98. Ci, L.J., Rao, Z.L., Zhou, Z.P., Tang, D.S., Yan, X.Q., Liang Y.X., Liu, D. F., Yuan, H.J., Zhou, W.Y., Wang, G., Liu, W., and Xie, S.S. (2002). Chem. Phys. Lett. 359: 63.

    Article  CAS  Google Scholar 

  99. Ajayan, P.M. (2004). Nature, 427: 402.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Vajtai, R., Wei, B., George, T.F., Ajayan, P.M. (2007). Chemical Vapor Deposition of Organized Architectures of Carbon Nanotubes for Applications. In: Mansoori, G.A., George, T.F., Assoufid, L., Zhang, G. (eds) Molecular Building Blocks for Nanotechnology. Topics in Applied Physics, vol 109. Springer, New York, NY. https://doi.org/10.1007/978-0-387-39938-6_9

Download citation

Publish with us

Policies and ethics