Skip to main content

Part of the book series: Monograph Series in Underwater Acoustics ((UA))

  • 2799 Accesses

Abstract

Most natural mechanisms and man-made devices are nonlinear, although linearity is often a good approximation and has been the basis for most engineering developments. In many devices the effects of nonlinearity become apparent only under high drive conditions, while other devices are inherently nonlinear and exhibit nonlinear effects, such as frequency doubling, for the smallest of drives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.A. Berlincourt, D.R. Curran, and H. Jaffe, “Piezoelectric and Piezomagnetic Materials and Their Function in Transducers.” Physical Acoustics, Vol. 1, Part A, Edited by W.P. Mason, Academic Press, New York, 1964

    Google Scholar 

  2. C.H. Sherman and J.L. Butler, “Harmonic distortion in magnetostrictive and electrostrictive transducers with application to the flextensional computer program FLEXT,” Image Acoustics, Inc. Report on Contract No. N66609-C –0985, 30 Sept. 1994

    Google Scholar 

  3. C.H. Sherman and J.L. Butler, “Analysis of harmonic distortion in electroacoustic transducers,” J. Acoust. Soc. Am., 98, 1596–1611(1995)

    Article  ADS  Google Scholar 

  4. V.E. Ljamov, “Nonlinear acoustical parameters in piezoelectric crystals,” 52, 199–202 (1972)

    Google Scholar 

  5. W.P. Mason, Piezoelectric Crystals and Their Application to Ultrasonics, Van Nostrand, New York, 1950

    Google Scholar 

  6. C.H. Sherman and J.L. Butler, “Perturbation analysis of nonlinear effects in moving coil transducers”, J. Acoust. Soc. Am., 94, 2485–2496 (1993)

    Article  ADS  Google Scholar 

  7. C.H. Sherman and J.L. Butler, “Analysis of harmonic distortion in electroacoustic transducers under indirect drive conditions,” J. Acoust. Soc. Am., 101, 297–314 (1997)

    Article  ADS  Google Scholar 

  8. J.L. Butler, FLEXT, (Flextensional Transducer Program), Contract N66604-87-MB328 to NUWC, Newport, RI, Image Acoustics, Inc., Cohasset, MA 02025.

    Google Scholar 

  9. J.C. Piquette and S.E. Forsythe, “A nonlinear material model of lead magnesium niobate (PMN).” J. Acoust. Soc. Am., 101, 289–296 (1997)

    Article  ADS  Google Scholar 

  10. J.C. Piquette and S.E. Forsythe, “Generalized material model for lead magnesium niobate (PMN) and an associated electromechanical equivalent circuit.” J. Acoust. Soc. Am., 104, 2763–2772 (1998)

    Article  ADS  Google Scholar 

  11. W.Y. Pan, W.Y. Gu, D.J. Taylor, and L.E. Cross,“Large piezoelectric effect induced by direct current bias in PMN-PT relaxor ferroelectric ceramics,” Jpn. J. Appl. Phys., 28, 653–661 (1989)

    Article  ADS  Google Scholar 

  12. M.B. Moffett, A.E.Clark, M.Wun-Fogle, J.F. Lindberg, J.P. Teter, and E.A. McLaughlin, “Characterization of Terfenol-D for magnetostrictive transducers.” J. Acoust. Soc. Am., 89, 1448–1455 (1991)

    Article  ADS  Google Scholar 

  13. C.H. Sherman and J.L. Butler, “Harmonic distortion in moving coil transducers caused by generalized Coulomb damping.” J. Acoust. Soc. Am., 96, 937–943 (1994)

    Article  ADS  Google Scholar 

  14. W.J. Cunningham, “Nonlinear distortion in dynamic loudspeakers due to magnetic effects.” J. Acoust. Soc. Am., 21, 202–207 (1949)

    Article  ADS  Google Scholar 

  15. E. Geddes, Audio Transducers, copyright 2002, Chapter 10

    Google Scholar 

  16. J.J. Stoker, Nonlinear Vibrations, Interscience Publishers, Inc., New York, NY, 1950

    MATH  Google Scholar 

  17. J.A. Murdock, Perturbations—Theory and Methods, John Wiley & Sons, New York, 1991

    MATH  Google Scholar 

  18. P.G.L. Mills and M.O.J. Hawksford, “Distortion reduction in moving coil loudspeaker systems using current-drive technology.” J. Audio Eng. Soc., 37, 129–147 (1989)

    Google Scholar 

  19. Janszen, R.L. Pritchard, and F.V. Hunt, “Electrostatic Loudspeakers.” Harvard University Acoustics Research Laboratory, Tech. Memo. No. 17, April 1, 1950

    Google Scholar 

  20. F.V. Hunt, Electroacoustics: The Analysis of Transduction and Its Historical Background, JohnWiley & Sons, New York, NY, 1954

    Google Scholar 

  21. C.H. Sherman, “Dynamic mechanical stability in the variable reluctance and electrostatic transducers.” J. Acoust. Soc. Am., 30, 48–55 (1958). See also C.H. Sherman, “Dynamic Mechanical Stability in the Variable Reluctance Transducer.” thesis submitted to the University of Connecticut, 1957

    Google Scholar 

  22. J.C. Piquette, “Quasistatic coupling coefficients for electrostrictive ceramics.” J. Acoust. Soc. Am., 110, 197–207 (2001)

    Article  ADS  Google Scholar 

  23. C.L. Hom, S.M. Pilgrim, N. Shankar, K. Bridger, M. Massuda, and R. Winzer, “Calculation of quasi-static electromechanical coupling coefficients for electrostrictive ceramic materials.” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 41, 542–551 (1994)

    Article  Google Scholar 

  24. H.C. Robinson, “A comparison of nonlinear models for electrostrictive materials,” Presentation to the 1999 IEEE Ultrasonics Symposium, 17–20 Oct. 1999, Lake Tahoe, NV

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sherman, C.H., Butler, J.L. (2007). Nonlinear Mechanisms and Their Effects. In: Transducers and Arrays for Underwater Sound. Monograph Series in Underwater Acoustics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-33139-3_9

Download citation

Publish with us

Policies and ethics