Skip to main content

Advanced Acoustic Radiation Calculations

  • Chapter
Transducers and Arrays for Underwater Sound

Part of the book series: Monograph Series in Underwater Acoustics ((UA))

  • 2847 Accesses

Abstract

This chapter will extend the results from Chapter 10 by using more advanced analytical methods for calculating acoustical quantities such as mutual radiation impedance. Before fast computers were available some of the results obtained by analytical methods had limited usefulness when they were expressed as slowly converging infinite series or integrals that required numerical evaluation. Now such series and integrals can be evaluated more easily. In some cases the analytical methods give more physical insight, or can be reduced to a simpler form, than the strictly numerical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.M. Morse, Vibration and Sound, McGraw-Hill, New York, 1948

    Google Scholar 

  2. L.E. Kinsler, A.R. Frey, A.B. Coppens, and J.V. Sanders, Fundamentals of Acoustics, Fourth Edition, John Wiley & Sons, New York, 2000

    Google Scholar 

  3. P.M. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York, 1953

    MATH  Google Scholar 

  4. P.M. Morse and K.U. Ingard, Theoretical Acoustics, McGraw-Hill, New York, 1968

    Google Scholar 

  5. M.C. Junger and D. Feit, Sound, Structures and Their Interaction, Second Edition, The MIT Press, Cambridge, 1986

    Google Scholar 

  6. T.W. Wu, Editor, Boundary Element Acoustics, WIT Press, Southampton, 2000

    MATH  Google Scholar 

  7. C.A. Brebbia and J. Dominguez, Boundary Elements: An Introductory Course, Computational Mechanics Publications, Southampton, and McGraw-Hill, New York, 1989

    Google Scholar 

  8. G.W. Benthein and S.L. Hobbs, “Modeling of Sonar Transducers and Arrays,” Technical Document 3181, April 2004, SPAWAR Systems Center, San Diego, CA (Available on CD)

    Google Scholar 

  9. M.C. Junger, “Surface pressures generated by pistons on large spherical and cylindrical baffles,” J. Acoust. Soc. Am., 41, 1336–1346 (1967)

    Article  ADS  Google Scholar 

  10. C.H. Sherman, “Mutual Radiation Impedance of Sources on a Sphere,” J. Acoust. Soc. Am., 31, 947–952 (1959)

    Article  ADS  Google Scholar 

  11. A. Silbiger, “Radiation from circular pistons of elliptical profile,” J. Acoust. Soc. Am., 33, 1515–1522 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  12. T. Nimura and Y. Watanabe, “Vibrating circular disk with a finite baffle board,” Jour. IEEE Japan, 68, p. 263,1948 (in Japanese). Results available in “Ultrasonic Transducers” Ed. by Y. Kikuchi, Corona Pub. Co., Tokyo, 1969, p. 348

    Google Scholar 

  13. J.E. Boisvert and A.L. Van Buren, “Acoustic radiation impedance of rectangular pistons on prolate spheroids,” J. Acoust. Soc. Am., 111, 867–874 (2002)

    Article  ADS  Google Scholar 

  14. J.E. Boisvert and A.L. Van Buren, “Acoustic directivity of rectangular pistons on prolate spheroids,” J. Acoust. Soc. Am. 116, 1932–1937 (2004)

    Article  ADS  Google Scholar 

  15. N.W. McLachlan, Theory and Application of Mathieu Functions, Dover Pub., New York, 1964

    MATH  Google Scholar 

  16. J.E. Boisvert and A.L. Van Buren, “Acoustic radiation impedance and directional response of rectangular pistons on elliptic cylinders,” J. Acoust. Soc. Am., 118, 104–112, 2005

    Article  ADS  Google Scholar 

  17. V.H. Weston, Quart. Appl. Math., 15, 420–425 (1957)

    MathSciNet  Google Scholar 

  18. V.H. Weston, Quart. Appl. Math., 16, 237–257 (1958)

    MathSciNet  MATH  Google Scholar 

  19. V.H. Weston, J. Math. Phys., 39, 64–71 (1960)

    MATH  Google Scholar 

  20. C.H. Sherman and N.G. Parke, “Acoustic radiation from a thin torus, with application to the free-flooding ring transducer,” J. Acoust. Soc. Am., 38, 715–722 (1965)

    Article  ADS  Google Scholar 

  21. D.T. Laird and H. Cohen, “Directionality patterns for acoustic radiation from a source on a rigid cylinder,” J. Acoust. Soc. Am., 24, 46–49 (1952)

    Article  ADS  Google Scholar 

  22. J.E. Greenspon and C.H. Sherman, “Mutual-radiation impedance and nearfield pressure for pistons on a cylinder,” J. Acoust. Soc. Am., 36, 149–153 (1964)

    Article  ADS  Google Scholar 

  23. D.H. Robey, “On the radiation impedance of an array of finite cylinders,” J. Acoust. Soc. Am., 27, 706–710 (1955)

    Article  MathSciNet  ADS  Google Scholar 

  24. J.L. Butler and A.L. Butler, “A Fourier series solution for the radiation impedance of a finite cylinder,” J. Acoust. Soc. Am., 104, 2773–2778 (1998)

    Article  ADS  Google Scholar 

  25. J.L. Butler, “Self and Mutual Impedance for a Square Piston in a Rigid Baffle,” Image Acoustics Rept. on Contract N66604-92-M-BW19, March 20, 1992

    Google Scholar 

  26. C.J. Tranter, Integral Transforms in Mathematical Physics, Third Edition, John Wiley, NewYork, 1966, pp. 47–48

    MATH  Google Scholar 

  27. Ibid, p. 48, Eq. (4.15)

    Google Scholar 

  28. V. Mangulis, “Kramers–Kronig or Dispersion Relations in Acoustics,” J. Acoust. Soc. Am., 36, 211–212 (1964)

    Article  ADS  Google Scholar 

  29. C.J. Bouwkamp, “A Contribution to the Theory of Acoustic Radiation,” Philips Research Reports, 1, 251–277 (1946)

    MathSciNet  Google Scholar 

  30. R.L. Pritchard, “Mutual acoustic impedance between radiators in an infinite rigid plane,” J. Acoust. Soc. Am., 32, 730–737 (1960)

    Article  MathSciNet  ADS  Google Scholar 

  31. D.T. Porter, “Self and mutual radiation impedance and beam patterns for flexural disks in a rigid plane,” J. Acoust. Soc. Am., 36, 1154–1161 (1964)

    Article  ADS  Google Scholar 

  32. W. Thompson, Jr., “The computation of self and mutual radiation impedances for annular and elliptical pistons using Bouwkamp’s integral,” J. Sound Vib. 17, 221– 233 (1971)

    Article  ADS  Google Scholar 

  33. G. Brigham and B. McTaggart, “Low frequency acoustic modeling of small monopole transducers,” UDT 1990 Conference Proceedings, pp. 747–755, Microwave Exhibitions and Publishers, Ltd., Tunbridge Wells, United Kingdom

    Google Scholar 

  34. L. Challis and F. Sheard, “The Green of Green’s functions,” Physics Today, 56, 41– 46 (2003)

    Article  ADS  Google Scholar 

  35. B.B. Baker and E.T. Copson, The Mathematical Theory of Huygens’ Principle, Third Edition, AMS Chelsea Publishing, Providence R.I., 1987

    MATH  Google Scholar 

  36. T. Mellow and L. Karkkainen, “On the sound field of an oscillating disk in a finite open and closed circular baffle,” J. Acoust. Soc. Am., 118, 1311–1325 (2005)

    Article  ADS  Google Scholar 

  37. A.L. Butler and J.L. Butler, “Near-field and far-field measurements of a ribbon tweeter/midrange,” J. Acoust. Soc. Am., 98(5), 2872 (1995) (A)

    Google Scholar 

  38. S.N. Reschevkin, A Course of Lectures on 8the Theory of Sound, Pergamon, Oxford, 1963, Chapter 11

    Google Scholar 

  39. E.M. Arase, “Mutual radiation impedance of square and rectangular pistons in a rigid infinite baffle,” J. Acoust Soc. Am., 36, 1521–1525 (1964)

    Article  ADS  Google Scholar 

  40. C.H. Sherman, “Special relationships between the farfield and the radiation impedance of cylinders,” J. Acoust. Soc. Am., 43, 1453–1454 (1968)

    Article  ADS  Google Scholar 

  41. V. Mangulis, “Relation between the radiation impedance, pressure in the far field and baffle impedance,” J. Acoust. Soc. Am., 36, 212–213 (1964)

    Article  ADS  Google Scholar 

  42. D.D. Baker, “Determination of far-field characteristics of large underwater sound transducers from near-field measurements,” J. Acoust. Soc. Am., 34, 1737–1744 (1962).

    Article  ADS  Google Scholar 

  43. W. Thompson, Jr., “Radiation from a spherical acoustic source near a scattering sphere,” J. Acoust. Soc. Am., 60, 781–787 (1976)

    Article  ADS  Google Scholar 

  44. W. Thompson, Jr., “Acoustic coupling between two finite-sized spherical sources,” J. Acoust. Soc. Am., 62, 8–11 (1977)

    Article  ADS  Google Scholar 

  45. T.A. Henriquez, “Diffraction constants of acoustic transducers,” J. Acoust. Soc. Am., 36, 267–269 (1964)

    Article  ADS  Google Scholar 

  46. J.L. Butler and D.T. Porter, “A Fourier transform solution for the acoustic radiation from a source near an elastic cylinder,” J. Acoust. Soc. Am., 89, 2774–2785 (1991)

    Article  ADS  Google Scholar 

  47. W Magnus and F. Oberhettinger, Formulas and Theorems for the Functions of Mathematical Physics, Chelsea, New York, 1962, pp. 139–143

    Google Scholar 

  48. H. Stenzel, “Leitfaden zur Berechnung von Schallvorgangen,” Springer, Berlin, 1939, pp. 75–79

    Book  Google Scholar 

  49. M.C. Junger, “Sound Radiation from a Radially Pulsating Cylinder of Finite Length,” Harvard Univ, Acoust. Res. Lab. (24 June 1955)

    Google Scholar 

  50. M.C. Junger, “A Variational Solution of Solid and Free-Flooding Cylindrical Sound Radiators of Finite Length,” Cambridge Acoustical Associates Tech. Rept. U-177-48, Contract Nonr-2739(00) (1 March 1964)

    Google Scholar 

  51. W. Williams, N.G. Parke, D.A. Moran and C.H. Sherman, “Acoustic radiation from a finite cylinder,” J. Acoust. Soc. Am., 36, 2316–2322 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  52. B.L. Sandman, “Fluid loading influence coefficients for a finite cylindrical shell,” J. Acoust. Soc. Am., 60, 1256–1264 (1976)

    Article  ADS  Google Scholar 

  53. J.L. Butler, “Solution of acoustical-radiation problems by boundary collocation,” J. Acoust. Soc. Am. 48, 325–336 (1970)

    Article  ADS  MATH  Google Scholar 

  54. C.C. Gerling and W. Thompson, Jr., “Axisymmetric spherical radiator with mixed boundary conditions,” J. Acoust. Soc. Am., 61, 313–317 (1977)

    Article  ADS  Google Scholar 

  55. V. Mangulis, “On the radiation of sound from a piston in a nonrigid baffle,” J. Acoust. Soc. Am., 35, 115–116 (1963)

    Article  ADS  Google Scholar 

  56. L.H. Chen and D.G. Schweikert, “Sound radiation from an arbitrary body,” J. Acoust. Soc. Am., 35, 1626–1632 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  57. G. Chertock, “Sound radiation from vibrating surfaces,” J. Acoust. Soc. Am., 36, 1305–1313 (1964)

    Article  ADS  Google Scholar 

  58. L.G. Copley, “Integral equation method for radiation from vibrating bodies,” J. Acoust. Soc. Am., 41, 807–816 (1967)

    Article  ADS  Google Scholar 

  59. H.A. Schenck, “Improved integral formulation for acoustic radiation problems,” J. Acoust. Soc. Am., 44, 41–58 (1968)

    Article  ADS  Google Scholar 

  60. J.L. Butler and R.T. Richards, “Micro-CHIEF, An Interactive Desktop Computer Program for Acoustic Radiation from Transducers and Arrays,” UDT conference Proceedings, 7–9 February 1990, London, England

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sherman, C.H., Butler, J.L. (2007). Advanced Acoustic Radiation Calculations. In: Transducers and Arrays for Underwater Sound. Monograph Series in Underwater Acoustics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-33139-3_11

Download citation

Publish with us

Policies and ethics