Skip to main content

Carbon Nanotubes as Electrical Interfaces to Neurons

  • Chapter
  • First Online:

Part of the book series: Fundamental Biomedical Technologies ((FBMT))

Abstract

Translating basic neuroscience research into experimental neurology applications often requires functional interfacing of the central nervous system (CNS) with artificial devices designed to monitor and/or stimulate brain electrical activity. Ideally, such interfaces should provide a high temporal and spatial resolution over a large area of tissue during stimulation and/or recording of neuronal activity, with the ultimate goal to elicit/detect the electrical excitation at the single-cell level and to observe the emerging spatiotemporal correlations within a given functional area. Activity patterns generated by CNS neurons have been typically correlated with a sensory stimulus, a motor response, or a potentially cognitive process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CNS:

Central nervous system

C m :

Membrane capacitance

C cnt :

CNT equivalent capacitance

CNT:

Carbon nanotube

C sh :

Amplifier shunt capacitance

E K :

K+ Nerst equilibrium potential

E L :

Nerst equilibrium potential of leak membrane currents

E Na :

Na+ Nerst equilibrium potential

FET:

Field-effect transistor

g K :

K+ conductance

g L :

Leak conductance

g Na :

Na+ conductance

MWNT:

Multi-walled carbon nanotube

R a :

Axial cytoplasmic resistance

R cnt :

CNT equivalent resistance

R in :

Amplifier input resistance

R s :

Seal resistance

R sp :

Spread resistance

SWNT:

Single-walled carbon nanotube

V cnt :

CNT potential

V m :

Membrane potential

References

  • Avouris P, Radosavljevic M, Wind SJ (2005) Carbon Nanotube Electronics and Optoelectronics, in “Applied Physics of Carbon Nanotubes, Fundamentals of Theory, Optics and Transport Devices”, (Rotkin SV, Subramoney S, eds.), Springer Berlin, 227–49.

    Google Scholar 

  • Avouris P, Chen J (2006) Nanotube electronics and optoelectronics. Materials Today 9, 46–54.

    Article  CAS  Google Scholar 

  • Avouris P, Chen Z, Perebeinos V (2007) Carbon-based electronics. Nature Nanotech. 2, 605–615.

    Article  CAS  Google Scholar 

  • Bachtold A, Fuhrer MS, Plyasunov S, Forero M, Anderson EH, Zettl A, McEuen PL. (2000) Scanned probe microscopy of electronic transport in carbon nanotubes. Phys Rev Lett. 84(26 Pt 1):6082–5.

    Article  PubMed  CAS  Google Scholar 

  • Balavoine F, Schultz P, Richard C, Mallouh V, Ebbesen TW, Mioskowski C (1999) Helical Crystallization of Proteins on Carbon Nanotubes: A First Step towards the Development of New Biosensors. Angew. Chem. Int. Ed. 38:1912–1915.

    Article  CAS  Google Scholar 

  • Bollobás B (2001) Random graphs (2nd ed.), Cambridge University Press.

    Google Scholar 

  • Benabid AL, Wallace B, Mitrofanis J, Xia C, Piallat B, Fraix V, Batir A, Krack P, Pollak P, Berger, F (2005) Therapeutic electrical stimulation of the central nervous system. C R Biol 328(2):177–86.

    Article  PubMed  Google Scholar 

  • Bethune DS, Kiang CHM, de Vries S, Gorman G, Savoy R, Vazquez, J, Beyers R (1993) Cobalt-catalyzed Growth of Carbon Nanotubes with Single-atomic-layer Walls. Nature 363:605–7.

    Article  CAS  Google Scholar 

  • Bockris J, Reddy AKN, Gamoa-Aldeco M (2000) Modern Electrochemistry 2A: Fundamentals of Electrodics, 2nd ed., Kluwer Academic, New York (USA).

    Google Scholar 

  • Carnevale NT, Hines ML (2006) The NEURON book. Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  • Chen RJ, Bangsaruntip S, Drouvalakisdagger KA, Wong Shi Kam N, Shim M, Li Y, Kim W, Utzdagger PJ, Dai H (2003) Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. U S A 100(9):4984–9.

    Article  PubMed  CAS  Google Scholar 

  • Chua LO (1980) Device modeling via basic nonlinear circuit elements. IEEE Trans. Circuits Syst. 27:1014–44.

    Article  Google Scholar 

  • Chen, RJ, Zhang, Y, Wang, D, Dai, HJ. (2001) Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes for Protein Immobilization. Am. Chem. Soc. 123:3838–9.

    Article  CAS  Google Scholar 

  • Cellot, G, Cilia, E, Cipollone, S, Rancic, V, Sucapane, A, Giordani, S, Gambazzi, L, Markram, H, Grandolfo, M, Scaini, D, Gelain, F, Casalis, L, Prato, M, Giugliano, M and Ballerini, L. (2009) Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts. Nat Nanotechnol 4:126–133.

    Article  CAS  Google Scholar 

  • Correa-Duarte M, Wagner N, Rojas-Chapana J, Morsczeck C, Thie M, Giersig M (2004) Fabrication and Biocompatibility of Carbon Nanotube-Based 3D Networks as Scaffolds for Cell Seeding and Growth. Nano Letters 4 (11):2233–6.

    Article  CAS  Google Scholar 

  • Crespo GA, Macho S, Rius FX (2008) Ion-Selective Electrodes Using Carbon Nanotubes as Ion-to-Electron Transducers. Analytical Chem. 80(4):1316–22.

    Article  CAS  Google Scholar 

  • Czerw R, Edell D, Farrell B, Fooksa R, Phely-Bobin T, Robblee L, Tiano T (2006) Carbon Nanotube Based Electrodes for Neuroprosthetic Applications. Material Res. Soc. Symposium Proc. 926:19–24, Warrendale, Pa. USA.

    Google Scholar 

  • Dayan P, Abbott LF (2001) Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. The MIT Press, Cambridge.

    Google Scholar 

  • Dieckmann, GR, Dalton, AB, Johnson, PA, Razal, J, Chen, J, Giordano, GM, Munoz, E, Musselman, I H, Baughman, RH, Draper, RK. (2003) Controlled Assembly of Carbon Nanotubes by Designed Amphiphilic Peptide Helices. J. Am. Chem. Soc. 125:1770.

    Article  PubMed  CAS  Google Scholar 

  • Dumortier H, Lacotte S, Pastorin G, Marega R, Wu W, Bonifazi D, Briand JP, Prato M, Muller S, Bianco A (2006) Functionalized Carbon Nanotubes Are Non-Cytotoxic and Preserve the Functionality of Primary Immune Cells. Nano Lett. 6:152–8.

    Google Scholar 

  • Freitag M (2006) Carbon nanotube electronics and devices. In “Carbon Nanotubes: Properties and Applicatons”, O’Connell MJ ed., CRC Press, pp. 83–117.

    Google Scholar 

  • Fromherz P (2002) Electrical Interfacing of Nerve Cells and Semiconductor Chips. Chem. Phys. Chem. 3(3):276–84.

    Article  PubMed  CAS  Google Scholar 

  • Fuhrer MS, Forero M, Zettl A, McEuen PL (2001) Ballistic transport in semiconducting carbon nanotubes. AIP Conf. Proc. 591:401–404.

    Article  CAS  Google Scholar 

  • Gabay T, Ben-David M, Kalifa I, Sorkin R, Abrams ZR, Ben-Jacob E, Hanein Y (2007) Electro-chemical biological properties of carbon nanotube based multi-electrode arrays. Nanotech 1:035201, doi:101088/0957-4484/18/3/035201.

    Article  Google Scholar 

  • Geddes LA (1972) Electrodes the Measurement of Bioelectric Events. New York: Wiley-Interscience.

    Google Scholar 

  • Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A (2002) Organic Functionalization of Carbon Nanotubes, J. Am. Chem. Soc. 124(5): 760–1.

    Article  PubMed  CAS  Google Scholar 

  • Gheith MK, Pappas TC, Liopo AV, Sinani V, Shim BS, Motamedi M, Wicksted JP, Kotov NA (2006) Stimulation of neural cells by lateral currents in conductive layer-by-layer films of single-walled carbon nanotubes. Adv Mater 18:2975–9.

    Article  CAS  Google Scholar 

  • Girault HH (2004) Analytical and Chemical Electrochemistry. Marcel Dekker, Inc., New York, 2004.

    Book  Google Scholar 

  • Giugliano M, Prato M, Ballerini L (2008) Nanomaterial/neuronal hybrid system for functional recovery of the CNS. Drug Discov. Today: Disease Model, doi:10.1016/j.ddmod.2008.07.004.

  • Gold C, Henze DA, Koch C, Buzsaki G (2006) On the origin of the extracellular action potential waveform: A modeling study. J Neurophysiol 95:3113–28.

    Article  PubMed  CAS  Google Scholar 

  • Graham AP, Duesberg GS, Seidel RV, Liebau M, Unger E, Pamler W, Kreupl F, Hoenlein W. (2005) Carbon nanotubes for microelectronics? Small 1(4):382–90.

    Article  PubMed  CAS  Google Scholar 

  • Grattarola M, Martinoia S (1993) Modeling the neuron-microtransducer junction: from extracellular to patch recording. IEEE Trans Biomed Eng 40(1):35–41.

    Article  PubMed  CAS  Google Scholar 

  • Gruner G. (2006) Carbon nanotube transistors for biosensing applications. Anal. Bioanal. Chem. 2006 Jan;384(2):322–35.

    Article  PubMed  CAS  Google Scholar 

  • Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM (2004) ModelDB: A Database to Support Computational Neuroscience. J. Comput. Neurosci. 17(1):7–11.

    Article  PubMed  Google Scholar 

  • Hodgkin AL, Huxley, AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 117(4):500–44.

    PubMed  CAS  Google Scholar 

  • Hu, H, Ni, Y, Montana, V, Haddon, RC, Parpura, V. (2004) Chemically Functionalized Carbon Nanotubes as Substrates for Neuronal Growth. Nano Lett. 4:507–11.

    Article  PubMed  CAS  Google Scholar 

  • Hu H, Ni Y, Mandal SK, Montana V, Zhao B, Haddon RC, Parpura V (2005) Polyethyleneimine functionalized single-walled carbon nanotubes as a substrate for neuronal growth. J. Phys. Chem. B 109:4285–9.

    Article  PubMed  CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354, 56–58.

    Article  CAS  Google Scholar 

  • Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–5.

    Article  CAS  Google Scholar 

  • Kagan VE, Tyurina YY, Tyurin VA, Konduru NV, Potapovich AI, Osipov AN, Kisin ER, Schwegler-Berry D, Mercer R, Castranova V, A.A. Shvedova (2006) Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: Role of iron. Toxicol. Lett. 165:88–100.

    Article  PubMed  CAS  Google Scholar 

  • Katz E, Willner I (2004) Biomolecule-Functionalized Carbon Nanotubes: Applications in Nanobioelectronics Chem. Phys. Chem. 5:1084.

    Article  CAS  Google Scholar 

  • Keefer KW, Botterman BR, Romero MI, Rossi AF, Gross GW (2008) Carbon nanotube coating improves neuronal recordings. Nature Nanotech. 3:434–9.

    Article  CAS  Google Scholar 

  • Kim WY, Kim KW (2007) Carbon nanotube, graphene, nanowire, and molecule-based electron and spin transport phenomena using the nonequilibrium Green’s function method at the level of first principles theory. J. Comp. Chem. 10.1002/jcc.20865.

  • Kirckpatrick S (1972) Percolation and Conduction. Rev. Mod. Phys. 45(4):574–88.

    Article  Google Scholar 

  • Lam, CW, James, JT, McCluskey, R, Hunter, RL. (2004) Pulmonary Toxicity of Single-Wall Carbon Nanotubes in Mice 7 and 90 Days After Intratracheal Instillation. Toxicol. Sci., 77, 126.

    Article  PubMed  CAS  Google Scholar 

  • Léonard F, Talin AA. (2006) Size-dependent effects on electrical contacts to nanotubes and nanowires. Phys Rev Lett. 97(2):026804.

    Article  PubMed  Google Scholar 

  • Li J, Andrews RJ (2007) Trimodal nanoelectrode array for precise deep brain stimulation: prospects of a new technology based on carbon nanofiber arrays. Acta Neurochir. Suppl. 97(Pt 2):537–45.

    Article  PubMed  CAS  Google Scholar 

  • Llinás RR, Walton KD, Nakao M, Hunter I, Anquetil PA (2005) Neuro-vascular central nervous recording/stimulating system: Using nanotechnology probes. J. Nanoparticle Res. 7:111–27.

    Article  Google Scholar 

  • Liopo AV, Stewart MP, Hudson J, Tour JM, Pappas TC (2006) Biocompatibility of native functionalized single-walled carbon nanotubes for neuronal interface. J. Nanosci. Nanotechnol. 6:1365–74.

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Davis C, Cai W, He L, Chen X, Dai H (2008) Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl. Acad. Sci. U S A 105:1410–1415.

    Article  PubMed  CAS  Google Scholar 

  • Lovat V, Pantarotto D, Lagostena L, Cacciari B, Grandolfo M, Righi M, Spalluto G, Prato M, Ballerini L (2005) Carbon nanotube substrates boost neuronal electrical signaling. Nano Lett. 5:1107–10.

    Article  PubMed  CAS  Google Scholar 

  • Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47–55.

    Article  PubMed  CAS  Google Scholar 

  • Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, Catsicas S, Schwaller B, Forro L. (2006) Cellular Toxicity of Carbon-Based Nanomaterials. Nano Lett. 6:1121–1125.

    Article  PubMed  CAS  Google Scholar 

  • Male KB, Hrapovic S, Luong JH (2007) Electrochemically-assisted deposition of oxidases on platinum nanoparticle/multi-walled carbon nanotube-modified electrodes. Analyst 132(12):1254–61.

    Article  PubMed  CAS  Google Scholar 

  • Markram H (2006) The blue brain project. Nature Rev. Neurosci. 7(2):153–60.

    Article  CAS  Google Scholar 

  • Marom S, Shahaf G (2002) Development, learning and memory in large random networks of cortical neurons: lessons beyond anatomy. Q. Rev. Biophys. 35(1):63–87.

    Article  PubMed  Google Scholar 

  • Martel R, Derycke V, Lavoie C, Appenzeller J, Chan KK, Tersoff J, Avouris P. (2001) Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys. Rev. Lett. 87(25):256805.

    Article  PubMed  CAS  Google Scholar 

  • Martinoia S, Massobrio P, Bove M, Massobrio G (2004) Cultured neurons coupled to microelectrode arrays: circuit models, simulations and experimental data. IEEE Trans. Biomed. Eng. 51(5):859–64.

    Article  PubMed  Google Scholar 

  • Matsumoto, K, Sato, C, Naka, Y, Kitazawa, A, Whitby, RLD, Shimizu, NJ. (2007) Neurite outgrowths of neurons with neurotrophin-coated carbon nanotubes Biosci. Bioeng. 103, 216–220.

    CAS  Google Scholar 

  • Mattson MP, Haddon RC, Rao AM (2000) Molecular functionalization of carbon nanotubes use as substrates for neuronal growth. J. Mol. Neurosci. 14:175–82.

    Article  PubMed  CAS  Google Scholar 

  • Mazzatenta A, Giugliano M, Campidelli S, Gambazzi L, Businaro L, Markram H, Prato M, Ballerini L (2007) Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits, J. Neurosci. 27(26):6931–6.

    Article  CAS  Google Scholar 

  • Migliore M, Cannia C, Lytton WW, Markram H, Hines ML (2006) Parallel network simulations with NEURON. J. Comput. Neurosci. 21(2):119–29.

    Article  PubMed  CAS  Google Scholar 

  • Monthioux M, Kuznetsov VL (2006) Who should be given the credit for the discovery of carbon nanotubes? Carbon 44(9):1621–3.

    Article  CAS  Google Scholar 

  • Muguruma H, Shibayama Y, Matsui Y (2008) An amperometric biosensor based on a composite of single-walled carbon nanotubes, plasma-polymerized thin film, and an enzyme. Biosens. Bioelectron. 23(6):827–32.

    Article  PubMed  CAS  Google Scholar 

  • Moxon KA, Kalkhoran NM, Markert M, Sambito MA, McKenzie JL, Webster JT (2004) Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface. IEEE Trans. Biomed. Eng. 51(6):881–9.

    Article  PubMed  Google Scholar 

  • Pappas TC, Wickramanyake WMS, Jan E, Motamedi M, Brodwick M, Kotov NA. (2007) Nanoscale Engineering of a Cellular Interface with Semiconductor Nanoparticle Films for Photoelectric Stimulation of Neurons. Nano Lett. 7:513–9.

    Article  PubMed  CAS  Google Scholar 

  • Patolsky F, Weizmann Y, Willner I (2004) Long-Range Electrical Contacting of Redox Enzymes by SWCNT Connectors. Angew. Chem. Int. Ed. 43:2113–7.

    Article  CAS  Google Scholar 

  • Patolsky F, Timko BP, Yu G, Fang Y, Greytak AB, Zheng G, Lieber CM (2006) Detection, stimulation, inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313:1100–4.

    Article  PubMed  CAS  Google Scholar 

  • Phely-Bobin TS, Tiano T, Farrell B, Fooksa R, Robblee L, Edell DJ, Czerw R (2006) Carbon Nanotube Based Electrodes for Neuroprosthetic Applications. Mat. Res. Soc. Proc., San Francisco Spring Meeting.

    Google Scholar 

  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, Stone V, Brown S, MacNee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotech. 3:423–8.

    Article  CAS  Google Scholar 

  • Radosavljevic M, Appenzeller, J, Avouris P (2001) Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown, Science 292:706.

    Article  Google Scholar 

  • Rall W (1962) Electrophysiology of a dendritic neuron model. Biophys. J. 2:145–67.

    Article  PubMed  CAS  Google Scholar 

  • Razal JM, Gilmore KJ, Wallace GG (2008) Carbon Nanotube Biofiber Formation in a Polymer-Free Coagulation Bath. Adv. Funct. Mater 18:61–6.

    Article  CAS  Google Scholar 

  • Robinson DA (1968) The Electrical Properties of Metal Microelectrodes, Proc. IEEE 56(6):1065–71.

    Article  CAS  Google Scholar 

  • Roy S, Vedala H, Roy AD, Kim DH, Doud M, Mathee K, Shin HK, Shimamoto N, Prasad V, Choi W (2008) Direct electrical measurements on single-molecule genomic DNA using single-walled carbon nanotubes. Nano Lett. 8(1):26–30.

    Article  PubMed  CAS  Google Scholar 

  • Rutten WL (2002) Selective electrical interfaces with the nervous system. Annu. Rev. Biomed. Eng. 4:407–52.

    Article  PubMed  CAS  Google Scholar 

  • Saito R, Fujita M, Dresselhaus G, Dresselhaus MS. (1992) Electronic structure of graphene tubules based on C60. Phys. Rev. B Condens. Matter 46(3):1804–11.

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Shibata KI, Kataoka H, Ogino SI, Bunshi F, Yokoyama A, Tamura K, Akasaka T, Uo M, Motomiya K, Jeyadevan B, Hatakeyama R, Watari F, Tohji K (2005) Strict preparation and evaluation of water-soluble hat-stacked carbon nanofibers for biomedical application and their high biocompatibility: influence of nanofiber-surface functional groups on cytotoxicity. Mol. BioSyst. 1:142–8.

    Article  PubMed  CAS  Google Scholar 

  • Sayes CM, Liang F, Hudson JL, Mendez J, Guo W, Beach JM, Moore VC, Doyle CD, West JL, Billups WE, Ausman KD, Vicki L. Colvin (2006) Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro, Toxicol. Lett. 161:135–42.

    Article  PubMed  CAS  Google Scholar 

  • Schaefer AT, Larkum ME, Sakmann B, Roth A (2003) Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. J Neurophysiol. 89(6):3143–54.

    Article  PubMed  Google Scholar 

  • Schoen I, Fromherz P (2007) The mechanism of extracellular stimulation of nerve cells on an electrolyte-oxide-semiconductor capacitor. Biophys J. 92(3):1096–111.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz AB, Cui XT, Weber DJ, Moran DW (2006) Brain-controlled interfaces: movement restoration with neural prosthetics. Neuron 52(1):205–20.

    Article  PubMed  CAS  Google Scholar 

  • Silva GA (2006) Neuroscience nanotechnology: progress, opportunities and challenges. Nature Rev. Neurosci. 7:65–74.

    Article  CAS  Google Scholar 

  • Sinha N, Ma J, Yeow JT (2006) Carbon nanotube-based sensors. J. Nanosci. Nanotechnol. 6(3):573–90.

    Article  PubMed  CAS  Google Scholar 

  • Sirivisoot S, Yao C, Xiao X, Sheldon BW, Webster TJ (2007) Greater osteoblast functions on multiwalled carbon nanotubes grown from anodized nanotubular titaniu for orthopedic applications. Nanotechnology 18:365102.

    Article  Google Scholar 

  • Snow ES, Novak JP, Campbell PM, Park D (2003) Random networks of carbon nanotubes as an electronic material, Appl. Phys. Lett. 82:2145.

    Article  CAS  Google Scholar 

  • Storace M, Bove M, Grattarola M, Parodi M (1997) Simulations of the behavior of synaptically driven neurons via time-invariant circuit models, IEEE Trans. Biomed. Eng. 44(12):1282–7.

    Article  PubMed  CAS  Google Scholar 

  • Sucapane A, Cellot G, Prato M, Giugliano M, Parpura V, Ballerini L (2008) Interactions between cultured neurons and carbon nanotubes: A nanoneuroscience vignette. J. Nanoneurosci. 1:1–7.

    Google Scholar 

  • Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single ­carbon nanotube Nature 393:49–52.

    CAS  Google Scholar 

  • Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem. Rev. 106:1105–36.

    Article  PubMed  CAS  Google Scholar 

  • Traub RD, Miles R (1991) Neuronal Networks of the Hippocampus, Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Tsang SC, Guo Z, Chen YK, Green MLH, Hill HAO, Hambley TW, Sadler PJ (1997) Immobilization of Platinated and Iodinated Oligonucleotides on Carbon Nanotubes. Angew Chem. Int. Ed. 36:2198–2200.

    Article  CAS  Google Scholar 

  • Yao Z, Kane CL, Dekker C. (2000) High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 84(13):2941–4.

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Fishman HA, Dai H, Harris JS (2006) Neural Stimulation with a Carbon Nanotube Microelectrode Array, Nano Lett. 6:2043–8.

    Article  PubMed  CAS  Google Scholar 

  • Wörle-Knirsch JM, Pulskamp K, Krug HF (2006) Oops They Did It Again! Carbon Nanotubes Hoax Scientists in Viability Assays, Nano Lett. 6(6):1261–8.

    Article  PubMed  Google Scholar 

  • Zhang M, Liu K, Xiang L, Lin Y, Su L, Mao L (2007) Carbon Nanotube-Modified Carbon Fiber Microelectrodes for In Vivo Voltammetric Measurement of Ascorbic Acid in Rat Brain. Anal. Chem. 79(17):6559–65.

    Article  PubMed  CAS  Google Scholar 

  • Zanello LP, Zhao B, Hu H, Haddon RC (2006) Bone Cell Proliferation on Carbon Nanotubes, Nano Lett. 6(3):562–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge financial support from the Italian Ministry of University and Research (Cofin and FIRB), from the École Polytechnique Fédérale de Lausanne EPFL, from the European Commission (NEURONANO-NMP4-CT-2006-031847), and from the “Stoicescu” grant. M.G. and L.G. are grateful to Prof. H. Markram, C. Petersen, and S. Martinoia for helpful discussions and to S. Garcia and K. Antoniello for assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Ballerini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Giugliano, M., Gambazzi, L., Ballerini, L., Prato, M., Campidelli, S. (2012). Carbon Nanotubes as Electrical Interfaces to Neurons. In: Silva, G., Parpura, V. (eds) Nanotechnology for Biology and Medicine. Fundamental Biomedical Technologies. Springer, New York, NY. https://doi.org/10.1007/978-0-387-31296-5_9

Download citation

Publish with us

Policies and ethics