Skip to main content

Inverse Problems in Underwater Acoustics

  • Chapter
Handbook of Signal Processing in Acoustics

Inversion is the process of inferring information about a physical system from measurements of physical quantities that are obtained from an interaction with the system. In underwater acoustics, the physical system is generally some aspect of the ocean environment, including the ocean bottom, and/or the experimental system of sources and receivers. This general definition for the inversion process, although appealing simple, implies that we can infer properties of the real ocean environment. Unfortunately, this is not the case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. W. Menke, Geophysical Data Analysis: Discrete Inverse Theory, Academic Press, Orlando, 1987.

    Google Scholar 

  2. W. Munk, P. Worcester and C. Wunsch, Ocean Acoustic Tomography, Cambridge University Press, 1995.

    Google Scholar 

  3. S.E. Dosso, M.R. Fallat, B.J. Sotorin and J.L. Newton, Array element localization for horizontal arrays via Occam’s inversion, J. Acoust. Soc. Am., 104, 846–859, 1998.

    Article  ADS  Google Scholar 

  4. S.D. Rajan, J.F. Lynch and G.V. Frisk, Perturbative inversion methods for obtaining bottom geoacoustic parameters in shallow water, J. Acoust. Soc. Am., 82, 998–1017, 1987.

    Article  ADS  Google Scholar 

  5. G.V. Frisk, J.F. Lynch and S.D. Rajan, Determination of compressional wave speed profiles using modal inversion techniques in a range-dependent environment in Nantucket Sound, J. Acoust. Soc. Am., 86, 1928–1938, 1989.

    Article  ADS  Google Scholar 

  6. S.E. Dosso and N.E. Collison, Acoustic tracking of a freely drifting field of sonobuoys, J. Acoust. Soc. Am., 111, 2166–2177, 2002.

    Article  ADS  Google Scholar 

  7. P.F. Worcester and the ATOC (Acoustic thermometry for Ocean Climate) team, A test of basin-scale acoustic thermometry using a large aperture vertical array at 3250-km range in the eastern North Pacific, J. Acoust. Soc. Am., 105, 3185–3201, 1999.

    Article  ADS  Google Scholar 

  8. P.N. Mikhalevsky, A.N. Gravrilov and A.B. Baggeroer, The transarctic acoustic propagation experiment and climate monitoring in the Arctic, IEEE J. Oceanic Eng., 24, 183–201, 1999.

    Article  Google Scholar 

  9. B.D. Dushaw, Inversion of multimegameter-range acoustic data for ocean temperature, IEEE J. Oceanic Eng., 24, 215–223, 1999.

    Article  Google Scholar 

  10. E.K. Skarsoulis, G.A. Athanasoulis and U. Send, Ocean acoustic tomography based on peak arrivals, J. Acoust. Soc. Am., 100,797–813, 1996.

    Article  ADS  Google Scholar 

  11. E.K. Skarsoulis, U.Send, G. Piperakis and P. Testor, Acoustic thermometry of the western Mediterranean, J. Acoust. Soc. Am., 116, 790–798, 2004.

    Article  ADS  Google Scholar 

  12. A. Parvelescu, Signal detection in a multipath medium by M.E.S.S. processing, J.Acoust. Soc. Am., 33, 1674, 1965.

    Article  ADS  Google Scholar 

  13. H. Bucker, Use of calculated sound fields and matched field processing to locate sound sources in shallow water, J. Acoust. Soc. Am., 59, 368–373, 1976.

    Article  ADS  Google Scholar 

  14. A. Tarantola, Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation, Elsevier, Amsterdam, 1987.

    MATH  Google Scholar 

  15. M.K. Sen and P.L. Stoffa, Global Optimization Methods in Geophysical Inversion, Elsevier, Amsterdam, 1995.

    MATH  Google Scholar 

  16. M.K. Sen and P.L. Stoffa, Bayesian inference, Gibbs sampler and uncertainty estimation in geophysical inversion, Geophys. Prosp., 44, 313–350, 1996.

    Article  ADS  Google Scholar 

  17. S.E. Dosso, Quantifying uncertainties in geoacoustic inversion I: A fast Gibbs sampler approach, J. Acoust. Soc. Am., 111, 128–142, 2002.

    ADS  Google Scholar 

  18. M.D. Collins, W.A. Kuperman and H. Schmidt, Nonlinear inversion for ocean bottom properties, J. Acoust. Soc. Am., 92, 2770–2783, 1992.

    Article  ADS  Google Scholar 

  19. C.E. Lindsay and N.R. Chapman, Matched field inversion for geoacoustic model parameters using adaptive simulated annealing, IEEE J. Oceanic Eng., 18, 224–231, 1993.

    Article  Google Scholar 

  20. P. Gerstoft and C.F. Mecklenbrauker, Ocean acoustic inversion with estimation of a posteriori probability distributions, J.Acoust. Soc. Am., 104, 808–819, 1998.

    Article  ADS  Google Scholar 

  21. Z.-H. Michaloupoulou, Robust multi-tonal matched field inversion: A coherent approach, J. Acoust. Soc. Am., 104, 163170, 1998.

    Google Scholar 

  22. D.P. Knobles, R.A. Koch, L.A. Thompson, K.C. Focke and P.E. Eisman, Broadband sound propagation in shallow water and geoacoustic inversion, J. Acoust. Soc. Am., 113, 205–222, 2003.

    Article  ADS  Google Scholar 

  23. L. Jaschke and N.R. Chapman, Matched field inversion of broadband data using the freeze bath method, J. Acoust. Soc. Am., 106, 1838–1851, 1999.

    Article  ADS  Google Scholar 

  24. N.R. Chapman, J. Desert, A. Agarwal, Y. Stephan and X. Demoulin, Estimation of seabed models by inversion of broadband acoustic data, Acta Acustica, 88, 756–759, 2002.

    Google Scholar 

  25. M.D. Collins and L. Fishman, Efficient navigation of parameter landscapes, J. Acoust. Soc. Am., 98, 1637–1644, 1995.

    Article  ADS  Google Scholar 

  26. L.T. Fialkowski, J.F. Lingevitch, J.S. Perkins and M.D. Collins, Geoacoustic inversion using a rotated coordinate system and simulated annealing, IEEE J. Oeanic Eng., 28, 370–379, 2003.

    Article  Google Scholar 

  27. P. Gerstoft, Inversion of seismo-acoustic data using genetic algorithms and a posteriori probability distributions, J. Acoust. Soc. Am., 95, 770–782, 1994.

    Article  ADS  Google Scholar 

  28. S.E. Dosso, M.J. Wilmut and A-L. Lapinski, An adaptive hybrid algorithm for geoacoustic inversion, IEEE J. Oceanic Eng., 26,324–336, 2001.

    Article  Google Scholar 

  29. N.R. Chapman, S. Chin-Bing, D. King and R.B. Evans, Benchmarking geoacoustic inversion methods for range-dependent waveguides, IEEE J. Oceanic Eng., 28, 320–330, 2003.

    Article  Google Scholar 

  30. G. Potty, J.H. Miller, J. Lynch and K. Smith, “Tomographic Inversion for sediment parameters in shallow water,” J. Acoust. Soc. Am., 108, 973–986, 2000.

    Article  ADS  Google Scholar 

  31. S.E. Dosso and C.W. Holland, Visco-elastic inversion of seabed reflection data. In Press: IEEE J. Oceanic Eng., 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chapman, N.R. (2008). Inverse Problems in Underwater Acoustics. In: Havelock, D., Kuwano, S., Vorländer, M. (eds) Handbook of Signal Processing in Acoustics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30441-0_95

Download citation

Publish with us

Policies and ethics