Skip to main content

Self-organized Criticality and Cellular Automata

  • Reference work entry
Encyclopedia of Complexity and Systems Science
  • 162 Accesses

Definition of the Subject

Self-organized criticality is a concept invoked to explain the frequent occurrence of fractal structures and multi-scale phenomenain nature. In contrast with the ideas of chaos, here simple common features appear in systems with many degrees of freedom. For modeling thisphenomenon, cellular automata provide an elegant class of dynamical systems which are easily simulated numerically.

Introduction

Cellular automata provide a fascinating class of dynamical systems based on very simple rules of evolution yet capable of displaying highlycomplex behavior. These include simplified models for many phenomena seen in nature. Among other things, they provide insight into self-organizedcriticality, wherein dissipative systems naturally drive themselves to a critical state with important phenomena occurring over a wide range oflength and time scales.

This article begins with an overview of self-organized criticality. This is followed by a discussion of a few examples of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Abelian group :

A mathematical group wherein all the elements commute.

Avalanche :

A possibly large disturbance induced in a system by a small perturbation.

Cellular automaton :

This refers to the dynamics of a collection of cells each of which can be in a finite set of states. The evolution is discrete, with the state of a cell at the next time step being dependent only on its previous state and that of its neighbors.

Chaos :

The tendency of a system of a few degrees of freedom to exhibit highly erratic behavior characterized by an infinite range of time scales.

Self-organized criticality:

The tendency of certain discrete and dissipative dynamical systems to evolve to a state where changes occur over all possible length scales.

Bibliography

Primary Literature

  1. Bak P, Tang C, Wiesenfeld K (1987) Phys Rev Lett 59:381; (1988) Phys Rev A 38:3645

    Google Scholar 

  2. Bak P, Creutz M (1994) Fractals and self-organized criticality. In: Bunde A, Havlin S (eds) Fractals in Science. Springer, Berlin, pp 26–47

    Google Scholar 

  3. Paczuski M, Maslov S, Bak P (1996) Phys Rev E 53:414

    ADS  Google Scholar 

  4. Nagel K, Paczuski M (1995) Phys Rev E 51:2909

    ADS  Google Scholar 

  5. Levy M, Solomon S, Ram G (1996) Int J Mod Phys C 7:65

    ADS  Google Scholar 

  6. The latest version of the xtoys package is available at http://thy.phy.bnl.gov/www/xtoys/xtoys.html

  7. Creutz M (1997) Cellular automata and self organized criticality. In: Bhanot G, Chen S, Seiden P (eds) Some new directions in science on computers. World Scientific, Singapore, pp 147–169

    Google Scholar 

  8. Christensen K (1992) Ph?D Thesis, University of Aarhus

    Google Scholar 

  9. Frette V et al (1996) Nature 379:49

    ADS  Google Scholar 

  10. Wolfram S (1986) Theory and Applications of Cellular Automata. World Scientific, Singapore

    Google Scholar 

  11. Toffoli T, Margolus N (1987) Cellular Automata Machines. MIT Press, Cambridge

    Google Scholar 

  12. Bogosian B (1993) Nucl Phys B, Proc Suppl 30:204

    ADS  Google Scholar 

  13. Berlekamp E, Conway J, Guy R (1982) Winning Ways for your Mathematical Plays, vol 2. Academic Press, New York

    Google Scholar 

  14. Wikipedia (2007) Conway's Game of Life. http://en.wikipedia.org/wiki/Conway's_life. Accessed 6 Apr 2007

  15. Bak P, Chen K, Creutz M (1989) Nature 342:780

    ADS  Google Scholar 

  16. Creutz M (1992) Nuclear Phys B, Proc Suppl 26:252

    ADS  Google Scholar 

  17. Bennett C, Bourzutschy M (1991) Nature 350:468

    ADS  Google Scholar 

  18. Gardner M (1983) Wheels, Life, and Other Mathematical Amusements. W.H. Freeman, New York

    Google Scholar 

  19. Wikipedia (2007) Garden of Eden pattern. http://en.wikipedia.org/wiki/Garden_of_Eden_pattern. Accessed 6 Apr 2007

  20. Press W, Teukolsky S, Vetterling W, Flannery B (1988) Numerical Recipes in C. Cambridge University Press, Cambridge

    Google Scholar 

  21. Clar S, Drossel B, Schwabl F (1996) Phys J Cond Mat 8:6803

    ADS  Google Scholar 

  22. Dhar D (1990) Phys Rev Lett 64:1613

    MathSciNet  ADS  Google Scholar 

  23. Dhar D, Ramaswamy R (1989) Phys Rev Lett 63:1659

    MathSciNet  ADS  Google Scholar 

  24. Dhar D, Majumdar SN (1990) Phys J A 23:4333

    MathSciNet  Google Scholar 

  25. Majumdar SN, Dhar D (1992) Physica A 185:129

    ADS  Google Scholar 

  26. Creutz M (1991) Comp Phys 5:198

    Google Scholar 

  27. Anderson R et al (1989) Amer Math Monthly 96:981; Björner A, Lovász L, Shor P (1991) Europ J Combinatorics 12:283; Eriksson K (1996) SIAM J Discret Math 9:118

    Google Scholar 

  28. Goles E, Margenstern M (1996) Int J Mod Phys C 7:113

    MathSciNet  ADS  Google Scholar 

Books and Reviews

  1. Bak P (1996) How Nature Works: The Science of Self-Organised Criticality. Springer, Berlin

    Google Scholar 

  2. Gore A (1992) Earth in the Balance: Ecology and the Human Spirit. Plume, Boston

    Google Scholar 

  3. Jensen HJ (1998) Self-Organized Criticality: Emergent Complex Behavior in Physical and Biological Systems. Cambridge, Cambridge

    Google Scholar 

  4. Toffoli T, Margolus N (1987) Cellular Automata Machines: A New Environment for Modeling. MIT Press, Cambridge

    Google Scholar 

  5. Wolfram S (1994) Cellular Automata and Complexity: Collected Papers. Westview Press, Boulder

    Google Scholar 

Download references

Acknowledgments

I am thankful for discussions with many people, but most particularly P. Bak, D. Dar, E. Fredkin, N. Margolis, M. Paczuski, T. Toffoli,F. Van Scoy, and G. Vichniac. This manuscript has been authored under contract number DE-AC02-76CH00016 with the US Department of Energy.Accordingly, the US Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of thiscontribution, or allow others to do so, for US Government purposes.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Creutz, M. (2009). Self-organized Criticality and Cellular Automata. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_474

Download citation

Publish with us

Policies and ethics