Skip to main content

Non-linear Internal Waves

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

The objective of the present work is to study the generation and propagation of nonlinear internal waves in the frame of the shallow watertheory. These waves are generated inside a stratified fluid occupying a semi infinite channel of finite and constant depth by a wave makersituated in motion at the finite extremity of the channel. A distortion process is carried out to the variables and the nonlinear equations of theproblem using a certain small parameter characterizing the motion of the wave maker and double series representations for the unknown functions isintroduced. This procedure leads to a solution of the problem including a secular term, vanishing at the position of the wave maker. Thisinconvenient result is remedied using a multiple scale transformation of variables and it is shown that the free surface and the interface elevationssatisfy the well known KdV equation. The initial conditions necessary for the solution of the KdV equations are obtained...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Nonlinear waves :

Nonlinear waves are such waves which arise as solutions of the nonlinear mathematical models simulating physical phenomena in fluids.

Shallow water :

Shallow water means water waves for which the ratio between the amplitude and the wave length is relatively small. The linear theory of motion is inadequate for the description of shallow water waves.

Internal waves :

Internal waves are gravity waves that oscillate within a fluid medium. They arise from perturbations to hydrostatic equilibrium, where balance is maintained between the force of gravity and the buoyant restoring force. A simple example is a wave propagating on the interface between two fluids of different densities, such as oil and water. Internal waves typically have much lower frequencies and higher amplitudes than surface gravity waves because the density differences (and therefore the restoring forces) within a fluid are usually much smaller than the density of the fluid itself.

Pycnocline :

Pycnocline is a rapid change in water density with depth. In freshwater environments, such as lakes, this density change is primarily caused by water temperature, while in seawater environments such as oceans the density change may be caused by changes in water temperature and/or salinity.

Solitary waves :

Solitary waves are localized traveling waves, which asymptotically tend to zero at large distances.

Solitons :

Solitons are waves which appear as a result of a balance between a weakly nonlinear convection and a linear dispersion. The solitons are localized highly stable waves that retain their identity (shape and speed) upon interaction, and resemble particle like behavior. In the case of a collision, solitons undergo a phase shift.

Baroclinic fluid :

Baroclinic fluid is such a fluid for which the density depends on both the temperature and the pressure.

In atmospheric terms, the baroclinic areas are generally found in the mid‐latitude/polar regions.

Barotropic fluid :

Barotropic fluid is such a fluid for which the density depends only on the pressure.

In atmospheric terms, the barotropic zones of the Earth are generally found in the central latitudes, or tropics.

Bibliography

Primary Literature

  1. Abou-Dina MS, Hassan FM (2006) Generation and propagation of nonlinear tsunamis in shallow water by a moving topography. Appl Math Comput 177:785–806

    MathSciNet  MATH  Google Scholar 

  2. Abou-Dina MS, Helal MA (1990) The influence of submerged obstacle on an incident wave in stratified shallow water. Eur J Mech B/Fluids 9(6):545–564

    MATH  Google Scholar 

  3. Abou-Dina MS, Helal MA (1992) The effect of a fixed barrier on an incident progressive wave in shallow water. Il Nuovo Cimento 107B(3):331–344

    ADS  Google Scholar 

  4. Abou-Dina MS, Helal MA (1995) The effect of a fixed submerged obstacle on an incident wave in stratified shallow water (Mathematical Aspects). Il Nuovo Cimento B 110(8):927–942

    ADS  Google Scholar 

  5. Barthelemy E, Kabbaj A, Germain JP (2000) Long surface wave scattered by a step in a two-layer fluid. Fluid Dyn Res 26:235–255

    MathSciNet  ADS  MATH  Google Scholar 

  6. Benjamin TB (1966) Internal waves of finite amplitude and permanent form. J Fluid Mech 25:241–270

    MathSciNet  ADS  MATH  Google Scholar 

  7. Benjamin TB (1967) Internal waves of permanent form of great depth. J Fluid Mech 29:559–592

    ADS  MATH  Google Scholar 

  8. Benney DJ, LIN CC (1960) On the secondary motion induced by oscillations in a shear flow. Phys Fluids 3:656–657

    Google Scholar 

  9. Boussinesq MJ (1871) Théorie de l'intumescence liquide appelée onde solitaire ou de translation, se propageant dans un canal rectangulaire. Acad Sci Paris, CR Acad Sci 72:755–759

    MATH  Google Scholar 

  10. Chen Y, Liu PL-F (1995) Modified Boussinesq equations and associated parabolic models for water wave propagation. J Fluid Mech 288:351–381

    MathSciNet  ADS  MATH  Google Scholar 

  11. Choi W, Camassa R (1996) Weakly nonlinear internal waves in a two-fluid system. J Fluid Mech 313:83–103

    MathSciNet  ADS  MATH  Google Scholar 

  12. Choi W, Camassa R (1999) Fully nonlinear internal waves in a two-fluid system. J Fluid Mech 396:1–36

    MathSciNet  ADS  MATH  Google Scholar 

  13. Craig W, Guyenne P, Kalisch H (2005) Hamiltonian long-wave expansions for free surfaces and interfaces. Commun Pure Appl Math 18:1587–1641

    MathSciNet  Google Scholar 

  14. Davis RE, Acrivos A (1967) Solitary internal waves in deep water. J Fluid Mech 29:593–607

    ADS  MATH  Google Scholar 

  15. Garett C, Munk W (1979) Internal waves in the ocean. Ann Rev Fluid Mech 11:339–369

    ADS  Google Scholar 

  16. Germain JP (1971) Sur le caractère limite de la théorie des mouvements des liquides parfaits en eau peu profonde. CR Acad Sci Paris Série A 273:1171–1174

    MathSciNet  Google Scholar 

  17. Germain JP (1972) Théorie générale d'un fluide parfait pesant en eau peu profonde de profondeur constante. CR Acad Sci Paris Série A 274:997–1000

    MathSciNet  MATH  Google Scholar 

  18. Gobbi MF, Kirby JT, Wei G (2000) A fully nonlinear Boussinesq model for surface waves-Part 2. Extension to O(kh)4. J Fluid Mech 405:181–210

    MathSciNet  ADS  MATH  Google Scholar 

  19. Helal MA, Moline JM (1981) Nonlinear internal waves in shallow water: A theoretical and experimental study. Tellus 33:488–504

    MathSciNet  ADS  Google Scholar 

  20. Kabbaj A (1985) Contribution a l'etude du passage des ondes des gravite sur le talus continental et a la generation des ondes internes. These de doctorat d'etat, IMG Université de Grenoble

    Google Scholar 

  21. Keulegan GH (1953) Hydrodynamical effects of gales on Lake Erie. J Res Natl Bur Std 50:99–109

    Google Scholar 

  22. Kubota T, Ko DRS, Dobbs LD (1978) Propagation of weakly nonlinear internal waves in a stratified fluid of finite depth. AIAA J Hydrodyn 12:157–165

    Google Scholar 

  23. LeBlond PH, Mysak LA (1978) Waves in Ocean. Elsevier, Amsterdam

    Google Scholar 

  24. Liu C-M, Lin M-C, Kong C-H (2008) Essential properties of Boussinesq equations for internal and surface waves in a two-fluid system. Ocean Eng 35:230–246

    Google Scholar 

  25. Long RR (1956) Solitary waves in one- and two-fluid systems. Tellus 8:460–471

    ADS  Google Scholar 

  26. Lynett PJ, Liu PL-F (2002) A two‐dimensional depth‐integrated model for internal wave propagation over variable bathymetry. Wave Motion 36:221–240

    MathSciNet  MATH  Google Scholar 

  27. Madsen PA, Schaffer HA (1998) Higher‐order Boussinesq‐type equations for surface gravity waves: derivation and analysis. Philos Trans R Soc Lond A 356:3123–3184

    MathSciNet  ADS  MATH  Google Scholar 

  28. Matsuno Y (1993) A unified theory of nonlinear wave propagation in two-layer fluid systems. J Phys Soc Jpn 62:1902–1916

    ADS  Google Scholar 

  29. Nwogu O (1993) Alternative form of Boussinesq equations for nearshore wave propagation. J Waterways Port Coast Ocean Eng ASCE 119:618–638

    Google Scholar 

  30. Ono H (1975) Algebraic solitary waves in stratified fluids. J Phys Soc Jpn 39:1082–1091

    ADS  Google Scholar 

  31. Peters AS, Stoker JJ (1960) Solitary waves in liquid having non‐constant density. Comm Pure Appl Math 13:115–164

    MathSciNet  MATH  Google Scholar 

  32. Robinson RM (1969) The effect of a vertical barrier on internal waves. Deep-Sea Res 16:421–429

    Google Scholar 

  33. Stoker JJ (1957) Water waves. Interscience, New York

    MATH  Google Scholar 

  34. Temperville A (1985) Contribution à la théorie des ondes de gravité en eau peu profonde. Thèse de doctorat d'état, IMG Université de Grenoble

    Google Scholar 

  35. Wehausen JV, Laitone EV (1960) Surface waves. In: Handbuch der Physik 9. Springer, Berlin

    Google Scholar 

  36. Wei G, Kirby JT, Grilli ST, Subramanya R (1995) A fully nonlinear Boussinesq model for surface waves, Part 1. Highly nonlinear, unsteady waves. J Fluid Mech 294:71–92

    MathSciNet  ADS  MATH  Google Scholar 

Books and Reviews

  1. Germain JP, Guli L (1977) Passage d'une onde sur une barrier mince immergée en eau peu profonde. Ann Hydrog 5(746):7–11

    Google Scholar 

  2. Pinettes M-J, Renouard D, Germain J-P (1995) Analytical and experimental study of the oblique passing of a solitary wave over a shelf in a two-layer fluid. Fluid Dyn Res 16:217–235

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Abou-Dina, M.S., Helal, M.A. (2009). Non-linear Internal Waves. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_363

Download citation

Publish with us

Policies and ethics