Skip to main content
  • 543 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ascendancy:

The tendency, in the absence of disturbances, for an ecosystem to increase in size or total throughput and to have more constrained pathways for within system flows.

Bioinformatics:

The storage, processing, and analysis of very large arrays of biological data.

Dispersal limitation:

Limitation of the number of species within an ecological community due to decreased probabilities of some species entering a local ecological. community by dispersal.

Ecological community:

The collection of individual organisms of different species that are found within the boundaries of an ecosystem.

Ecological drift:

Random changes in the relative abundances of species within a community due to stochastic population processes.

Ecosystem:

an arbitrary ensemble of macroscopic matter that captures, stores, and uses energy to circulate and rearrange matter within the system.

Emobodied energy (emergy):

Potential energy stored in chemicals bonds within an ecological entity (organism, population, community, etc.).

Food web:

A network describing the flows of energy and matter within an ecosystem.

General metabolic equation:

Phenomenological description of how mass, temperature, and resource concentration affect the metabolic rate of an organism or an ensemble of organisms.

Metabolic scaling:

The exponential relationship of average body mass with the rates of many metabolic processes.

Metacommunity:

A collection of many local communities aggregated are larger spatial scales.

Tranformity:

The total amount of solar energy required to form a unit of biological material.

Bibliography

Primary Literature

  1. Jaynes ET, Rosenkrantz RD (1983) E.T. Jaynes: Papers on probability, statistics, and statistical physics. Kluwer, Boston, Dordrecht, Holland; Boston Hingham

    Google Scholar 

  2. Lotka AJ (1925) Elements of physical biology. Williams and Wilkins, Baltimore

    MATH  Google Scholar 

  3. Pielou EC (1977) Mathematical ecology. Wiley, New York

    Google Scholar 

  4. Puccia CJ, Levins R (1985) Qualitative modeling of complex systems: An introduction to loop analysis and time averaging. Harvard University Press, Cambridge

    Google Scholar 

  5. Maurer BA (1999) Untangling ecological complexity: The macroscopic perspective. University of Chicago Press, Chicago

    Google Scholar 

  6. Schaffer WM (1981) Ecological abstraction – the consequences of reduced dimensionality in ecological models. Ecol Monogr 51:383–401

    Google Scholar 

  7. von Bertalanffy L (1969) General systems theory. George Braziller, New York

    Google Scholar 

  8. Gurney WSC, Nisbet RM (1998) Ecological dynamics. Oxford University Press, New York

    Google Scholar 

  9. Holt RD, Lawton JH (1994) The ecological consequences of shared natural enemies. Annu Rev Ecol Syst 25:495–520

    Google Scholar 

  10. Pimm SL (1991) The balance of nature? Ecological issues in the conservation of species and communities. University of Chicago Press, Chicago

    Google Scholar 

  11. Cohen JE, Briand F, Newman CM (1990) Community food webs: Data and theory. Springer, Berlin

    MATH  Google Scholar 

  12. Jonsson T, Cohen JE, Carpenter SR (2005) Food webs, body size, and species abundance in ecological community description. Adv Ecol Res 36:1–84

    Google Scholar 

  13. Odum HT (1994) Ecological and general systems: An introduction to systems ecology. University Press of Colorado, Niwot

    Google Scholar 

  14. Odum HT (1988) Self organization, transformity, and information. Science 242:1132–1139

    ADS  Google Scholar 

  15. Odum HT (1995) Self organization and maximum empower. In: Hall CAS (ed) Maximum power. University Press of Colorado, Niwot, pp 311–330

    Google Scholar 

  16. May RM (1975) Biological populations obeying difference equations: Stable points, stable cycles, and chaos. J Theor Biol 51:511–524

    Google Scholar 

  17. May RM (1976) Simple mathematical models with very complicated dynamics. Nature 261:459–467

    ADS  Google Scholar 

  18. Turchin P (2003) Complex population dynamics: A theoretical/empirical synthesis. Princeton University Press, Princeton

    Google Scholar 

  19. Parker TS, Chua LO (1989) Practical numerical algorithms for chaotic systems. Springer, Berlin

    MATH  Google Scholar 

  20. Barahona M, Poon CS (1996) Detection of nonlinear dynamics in short, noisy time series. Nature 381:215–217

    ADS  Google Scholar 

  21. Dennis B, Ponciano JM, Lele SR, Taper ML, Staples DF (2006) Estimating density dependence, process noise, and observation error. Ecol Monogr 76:323–341

    Google Scholar 

  22. Fisher RA, Corbet AS, Williams CB (1943) The relation between the number of species and the number of individuals in a random sample of an animal population. J Anim Ecol 12:42–58

    Google Scholar 

  23. Kendall DG (1948) On some modes of population growth leading to R.A.Fisher's logarithmic series distribution. Biometrika 35:6–15

    MathSciNet  MATH  Google Scholar 

  24. Kerner EH (1957) A statistical mechanics of interacting biological species. Bull Math Biophys 19:121–146

    MathSciNet  Google Scholar 

  25. Kerner EH (1959) Further considerations on the statistical mechanics of biological associations. Bull Math Biophys 21:217–255

    Google Scholar 

  26. Preston FW (1948) The commonness and rarity of species. Ecology 29:254–283

    Google Scholar 

  27. Preston FW (1962) The canonical distribution of commonness and rarity. Ecology 43:185–215, 410–432

    Google Scholar 

  28. Hairston NG (1989) Ecological experiments: Purpose, design, and execution. Cambridge University Press, Cambridge

    Google Scholar 

  29. Resetarits WJ, Bernardo J (1998) Experimental ecology: Issues and perspectives. Oxford University Press, New York

    Google Scholar 

  30. Underwood AJ (1997) Experiments in ecology: Logical design and interpretation using analysis of variance. Cambridge University Press, New York

    Google Scholar 

  31. Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  32. Bell G (2001) Neutral macroecology. Science 293:2413–2418

    ADS  Google Scholar 

  33. Bell G (2000) The distribution of abundance in neutral communities. Am Nat 155:606–617

    Google Scholar 

  34. Etienne RS (2005) A new sampling formula for neutral biodiversity. Ecol Lett 8:253–260

    Google Scholar 

  35. Etienne RS (2007) A neutral sampling formula for multiple samples and an ‘exact’ test of neutrality. Ecol Lett 10:608–618

    Google Scholar 

  36. Etienne RS, Alonso D (2007) Neutral community theory: How stochasticity and dispersal‐limitation can explain species coexistence. J Stat Phys 128:485–510

    MathSciNet  ADS  MATH  Google Scholar 

  37. Etienne RS, Olff H (2005) Confronting different models of community structure to species‐abundance data: A bayesian model comparison. Ecol Lett 8:493–504

    Google Scholar 

  38. Alonso D, Etienne RS, McKane AJ (2006) The merits of neutral theory. Trends Ecol Evol 21:451–457

    Google Scholar 

  39. Alonso D, McKane AJ (2004) Sampling hubbell's neutral theory of biodiversity. Ecol Lett 7:901–910

    Google Scholar 

  40. Volkov I, Banavar JR, Hubbell SP, Maritan A (2003) Neutral theory and relative species abundance in ecology. Nature 424:1035–1037

    ADS  Google Scholar 

  41. Volkov I, Banavar JR, Hubbell SP, Maritan A (2007) Patterns of relative species abundance in rainforests and coral reefs. Nature 450:45–49

    ADS  Google Scholar 

  42. Maurer BA, McGill BJ (2004) Neutral and non‐neutral macroecology. Basic Appl Ecol 5:413–422

    Google Scholar 

  43. Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: A framework for multi-scale community ecology. Ecol Lett 7:601–613

    Google Scholar 

  44. MacArthur RH (1955) Fluctuations of animal populations and a measure of community stability. Ecology 36:533–536

    Google Scholar 

  45. Ulanowicz RE (1986) Growth and development: Ecosystems phenomenology. Springer, New York

    MATH  Google Scholar 

  46. Ulanowicz RE (1997) Ecology, the ascendent perspective. Columbia University Press, New York

    Google Scholar 

  47. Odum EP (1969) The strategy of ecosystem development. Science 164:262–270

    ADS  Google Scholar 

  48. Fisher RA (1958) The genetical theory of natural selection. Dover Publications, New York

    Google Scholar 

  49. Thompson DAW (1942) On growth and form. The Universtiy Press, Cambridge

    MATH  Google Scholar 

  50. Pennycuick CJ (1992) Newton rules biology: A physical approach to biological problems. Oxford University Press, Oxford

    Google Scholar 

  51. Calder WA (1984) Size, function, and life history. Harvard University Press, Cambridge

    Google Scholar 

  52. Peters RH (1983) The ecological implications of body size. Press Syndicate of the University of Cambridge, Cambridge

    Google Scholar 

  53. Schmidt-Nielsen K (1984) Scaling, why is animal size so important? Cambridge University Press, Cambridge, New York

    Google Scholar 

  54. Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293:2248–2251

    ADS  Google Scholar 

  55. Real L (1977) The kinetics of functional response. Am Nat 111:239–300

    Google Scholar 

  56. Real L (1979) Ecological determinants of functional response. Ecology 60:481–485

    Google Scholar 

  57. Marquet PA, Labra FA, Maurer BA (2004) Metabolic ecology: Linking individuals to ecosystems. Ecology 85:1794–1796

    Google Scholar 

  58. West GB, Brown JH, Enquist BJ (1999) The fourth dimension of life: Fractal geometry and allometric scaling of organisms. Science 284:1677–1679

    MathSciNet  ADS  MATH  Google Scholar 

  59. Maurer BA (1990) Dipodomys populations as energy‐processing systems – regulation, competition, and hierarchical organization. Ecol Model 50:157–176

    Google Scholar 

  60. Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Google Scholar 

  61. Brown JH, Gillooly JF, West GB, Savage VM (2003) The next step in macroecology: From general empirical patterns to universal ecological laws. In: Blackburn TM, Gaston KJ (eds) Macroecology: Concepts and consequences. Blackwell, Oxford, pp 408–423

    Google Scholar 

  62. Ernest SKM, Enquist BJ, Brown JH, Charnov EL, Gillooly JF, Savage VM, White EP, Smith FA, Hadly EA, Haskell JP, Lyons SK, Maurer BA, Niklas KJ, Tiffney B (2003) Thermodynamic and metabolic effects on the scaling of production and population energy use. Ecol Lett 6:990–995

    Google Scholar 

  63. Allen AP, Gillooly JF (2006) Assessing latitudinal gradients in speciation rates and biodiversity at the global scale. Ecol Lett 9:947–954

    Google Scholar 

Books and Reviews

  1. Allen TFH, Starr TB (1982) Hierarchy: perspectives for ecological complexity. University of Chicago Press, Chicago

    Google Scholar 

  2. Botkin DB (1990) Discordant harmonies: a new ecology for the twenty‐first century. Oxford University Press, New York

    Google Scholar 

  3. Brown JH (1999) Macroecology: progress and prospect. Oikos 87:3–14

    Google Scholar 

  4. Brown JH, West GB (2000) Scaling in biology. Oxford University Press, Oxford, New York

    MATH  Google Scholar 

  5. Gaston KJ, Blackburn TM (2000) Pattern and process in macroecology. Blackwell Science, Oxford, Malden

    Google Scholar 

  6. Gotelli NJ, Graves GR (1996) Null models in ecology. Smithsonian Institution Press, Washington

    Google Scholar 

  7. Hastings A, Hom CL, Ellner S, Turchin P, Godfray HCJ (1993) Chaos in ecology – Is Mother‐Nature a strange attractor. Annu Rev Ecol Syst 24:1–33

    Google Scholar 

  8. Holling CS (1992) Cross-scale morphology, geometry, and dynamics of ecosystems. Ecol Monogr 62:447–502

    Google Scholar 

  9. Levin SA (1999) Fragile dominion: complexity and the commons. Perseus Books, Reading

    Google Scholar 

  10. Milne BT (1998) Motivation and benefits of complex systems approaches in ecology. Ecosystems 1:449–456

    Google Scholar 

  11. Peterson DL, Parker VT (1998) Ecological scale: theory and applications. Columbia University Press, New York

    Google Scholar 

  12. Roughgarden J (1979) Theory of population genetics and evolutionary ecology: An introduction. Macmillan, New York

    Google Scholar 

  13. Weber BH, Depew DJ, Smith JD (1988) Entropy, information, and evolution: New perspectives on physical and biological evolution. MIT Press, Cambridge

    Google Scholar 

  14. Yodzis P (1989) Introduction to theoretical ecology. Harper and Row, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Maurer, B.A. (2009). Ecological Complexity . In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_162

Download citation

Publish with us

Policies and ethics