Skip to main content

Transforming Growth Factor-βs in the Brain

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

Transforming growth factors‐β ( ) regulate numerous cell functions in the developmental and adult brain. are secreted dimeric proteins that signal via heteromeric transmembrane serine–threonine kinase receptors. Phosphorylation of R‐Smads leads to the formation of complexes with the common Smad4, which translocates to the nucleus to regulate, as a larger transcriptional complex, immediate early gene and target gene expression. In the nervous system, have roles in neurons and glia and are involved in the regulation of , differentiation, and and death, as well as in orchestrating its response to lesion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Aβ:

amyloid β

AD:
Alk:

‐receptor‐like kinase

BMP:

bone morphogenetic protein

CNS:

central nervous system

DRG:

dorsal root ganglion

E:

embryonic day

ECM:

extracellular matrix

EGF:

epidermal growth factor

FGF:

fibroblast growth factor

GDF:

growth/differentiation factor

:

glial cell line‐derived neurotrophic factor

GFAP:

glial fibrillary acidic protein

IEG:

immediate early gene

IL:

interleukin

JNK:

c‐Jun NH(2)‐terminal kinase

ir:

immunoreactivity/immunoreactive

LAP:

latency‐associated protein

LLC:

large latent protein complex

LTBP:

latent‐ ‐binding protein

MAPK:

mitogen‐activated protein kinase

MEKK:

MAPK/ERK kinase kinase

MIS:

müllerian inhibiting substance

MMP:

matrix metalloprotease

NGF:

nerve growth factor

PAI:

plasminogen activator inhibitor

PD:
PDGF:

platelet‐derived growth factor

PNS:

peripheral nervous system

Shh:
TAK:

‐activated kinase

:

transforming growth factor‐β

TβR:

receptor

t‐PA:

tissue plasminogen activator

References

  • Abe K, Chu PJ, Ishihara A, Saito H. 1996. Transforming growth factor‐beta 1 promotes re‐elongation of injured axons of cultured rat hippocampal neurons. Brain Res 723: 206–209.

    CAS  PubMed  Google Scholar 

  • Aderka D, Le JM, Vilcek J. 1989. IL‐6 inhibits lipopolysaccharide‐induced tumor necrosis factor production in cultured human monocytes, U937 cells, and in mice. J Immunol 143: 3517–3523.

    CAS  PubMed  Google Scholar 

  • Anchan RM, Reh TA. 1995. Transforming growth factor‐beta‐3 is mitogenic for rat retinal progenitor cells in vitro. J Neurobiol 28: 133–145.

    CAS  PubMed  Google Scholar 

  • Annes JP, Munger JS, Rifkin DB. 2003. Making sense of latent TGFbeta activation. J Cell Sci 116: 217–224.

    CAS  PubMed  Google Scholar 

  • Araria‐Goumidi L, Lambert JC, Mann DM, Lendon C, Frigard B, et al 2002. Association study of three polymorphisms of TGF‐beta1 gene with Alzheimer's disease. J Neurol Neurosurg Psychiatry 73: 62–64.

    PubMed  Google Scholar 

  • Assoian RK, Komoriya A, Meyers CA, Miller DM, Sporn MB. 1983. Transforming growth factor‐beta in human platelets. J Biol Chem 258: 7155–7160.

    CAS  PubMed  Google Scholar 

  • Atanasoski S, Notterpek L, Lee HY, Castagner F, Young P, et al 2004. The protooncogene Ski controls Schwann cell proliferation and myelination. Neuron 43: 499–511.

    CAS  PubMed  Google Scholar 

  • Awatramani R, Shumas S, Kamholz J, Scherer SS. 2002. TGFbeta1 modulates the phenotype of Schwann cells at the transcriptional level. Mol Cell Neurosci 19: 307–319.

    CAS  PubMed  Google Scholar 

  • Baghdassarian D, Toru‐Delbauffe D, Gavaret JM, Pierre M. 1993. Effects of transforming growth factor‐β1 on the extracellular matrix and cytoskeleton of cultured astrocytes. Glia 7: 193–202.

    CAS  PubMed  Google Scholar 

  • Barton DE, Foellmer BE, Du J, Tamm J, Derynck R, et al 1988. Chromosomal localisation of s 2 and 3 in man and mouse: dispersion of the family. Oncogene Res 3: 323–331.

    CAS  PubMed  Google Scholar 

  • Bartram U, Speer CP. 2004. The role of transforming growth factor beta in lung development and disease. Chest 125: 754–765.

    PubMed  Google Scholar 

  • Bataller R, Brenner DA. 2005. Liver fibrosis. J Clin Invest 115: 209–218.

    CAS  PubMed  Google Scholar 

  • Bender H, Wang Z, Schuster N, Krieglstein K. 2004. TIEG1 facilitates transforming growth factor‐beta‐mediated apoptosis in the oligodendroglial cell line OLI‐neu. J Neurosci Res 75: 344–352.

    CAS  PubMed  Google Scholar 

  • Björklund A, Lindvall O. 2000. Parkinson's disease gene therapy moves towards the clinic. Nat Med 6: 1207–1208.

    PubMed  Google Scholar 

  • Blessing M, Schirmacher P, Kaiser S. 1996. Overexpression of bone morphogenetic protein‐6 (BMP‐6) in the epidermis of transgenic mice: inhibition or stimulation of proliferation depending on the pattern of transgene expression and formation of psoriatic lesions. J Cell Biol 135: 227–239.

    CAS  PubMed  Google Scholar 

  • Blobe GC, Schiemann WP, Lodish HF. 2000. Role of transforming growth factor beta in human disease. N Engl J Med 342: 1350–1358.

    CAS  PubMed  Google Scholar 

  • Block ML, Hong JS. 2005. Microglia and inflammation‐mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76: 77–98.

    CAS  PubMed  Google Scholar 

  • Boche D, Cunningham C, Gauldie J, Perry VH. 2003. Transforming growth factor‐beta 1‐mediated neuroprotection against excitotoxic injury in vivo. J Cereb Blood Flow Metab 23: 1174–1182.

    CAS  PubMed  Google Scholar 

  • Bodmer S, Strommer K, Frei K, Siepl C, de Tribolet N, et al 1989. Immunosuppression and transforming growth factor‐beta in glioblastoma. Preferential production of transforming growth factor‐beta 2. J Immunol 143: 3222–3229.

    CAS  Google Scholar 

  • Böttinger EP, Bitzer M. 2002. TGF‐beta signaling in renal disease. J Am Soc Nephrol 13: 2600–2610.

    PubMed  Google Scholar 

  • Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K. 2004. Stages in the development of Parkinson's disease‐related pathology. Cell Tissue Res 318: 121–134.

    PubMed  Google Scholar 

  • Brionne TC, Tesseur I, Masliah E, Wyss‐Coray T. 2003. Loss of TGF‐beta 1 leads to increased neuronal cell death and microgliosis in mouse brain. Neuron 40: 1133–1145.

    CAS  PubMed  Google Scholar 

  • Buisson A, Lesne S, Docagne F, Ali C, Nicole O, et al 2003. Transforming growth factor‐beta and ischemic brain injury. Cell Mol Neurobiol 23: 539–550.

    CAS  PubMed  Google Scholar 

  • Burton T, Liang B, Dibrov A, Amara F. 2002. Transcriptional activation and increase in expression of Alzheimer's beta‐amyloid precursor protein gene is mediated by TGF‐beta in normal human astrocytes. Biochem Biophys Res Commun 295: 702–712.

    CAS  PubMed  Google Scholar 

  • Cameron JS, Dryer L, Dryer SE. 1999. Regulation of neuronal K(+) currents by target‐derived factors: opposing actions of two different isoforms of TGFbeta. Development 126: 4157–4164.

    CAS  PubMed  Google Scholar 

  • Chang H, Brown CW, Matzuk MM. 2002. Genetic analysis of the mammalian transforming growth factor‐beta superfamily. Endocr Rev 23: 787–823.

    CAS  PubMed  Google Scholar 

  • Cheifetz S, Weatherbee JA, Tsang MLS, Anderson JK, Mole JE, et al 1987. The transforming growth factor‐beta system, a complex pattern of cross‐reactive ligands and receptors. Cell 48: 409–415.

    CAS  PubMed  Google Scholar 

  • Chin J, Angers A, Cleary LJ, Eskin A, Byrne JH. 2002. Transforming growth factor beta1 alters synapsin distribution and modulates synaptic depression in Aplysia. J Neurosci 22: RC220.

    PubMed  Google Scholar 

  • Cunningham JJ, Roussel MF. 2001. Cyclin‐dependent kinase inhibitors in the development of the central nervous system. Cell Growth Differ 12: 387–396.

    CAS  PubMed  Google Scholar 

  • DaCosta Byfield S, Major C, Laping NJ, Roberts AB. 2004. SB‐505124 is a selective inhibitor of transforming growth factor‐beta type I receptors ALK4, ALK5, and ALK7. Mol Pharmacol 65: 744–752.

    PubMed  Google Scholar 

  • DaCosta Byfield S, Roberts AB. 2004. Lateral signalling enhances response complexity. Trends Cell Biol 14: 107–111.

    CAS  Google Scholar 

  • Daopin S, Piez KA, Ogawa Y, Davies DR. 1992. Crystal structure of transforming growth factor‐beta 2: an unusual fold for the superfamily. Science 257: 369–373.

    CAS  PubMed  Google Scholar 

  • Day WA, Koishi K, McLennan IS. 2003. Transforming growth factor beta 1 may regulate the stability of mature myelin sheaths. Exp Neurol 184: 857–864.

    CAS  PubMed  Google Scholar 

  • de Caestecker M. 2004. The transforming growth factor‐β superfamily of receptors. Cytokine Growth Factor Rev 15: 1–11.

    CAS  PubMed  Google Scholar 

  • De Martin R, Haendler B, Hofer‐Warbinek R, Gaugitsch H, Wrann M, et al 1987. Complementary DNA for human glioblastoma‐derived T cell suppressor factor, a novel member of the member of the transforming growth factor‐β gene family. EMBO J 6: 3673–3677.

    CAS  PubMed  Google Scholar 

  • Derynck R, Jarrett JA, Chen EY, Eaton DH, Bell JR, et al 1985. Human transforming growth factor‐beta cDNA sequence and expression in tumor cell lines. Nature 316: 701–705.

    CAS  PubMed  Google Scholar 

  • Derynck R, Lindquist PR, Lee A, Wen D, Tamm J, et al 1988. A new type of transforming growth factor beta, 3. EMBO J 7: 3737–3743.

    CAS  PubMed  Google Scholar 

  • Derynck R, Zhang YE. 2003. Smad‐dependent and Smad‐independent pathways in family signalling. Nature 425: 577–584.

    CAS  PubMed  Google Scholar 

  • Derynck R, Zhang YE. 2003. Smad‐dependent and Smad‐independent pathways in TGF‐beta family signalling. Nature 425: 577–584.

    CAS  PubMed  Google Scholar 

  • Docagne F, Nicole O, Marti HH, Mac Kenzie ET, Buisson A, et al 1999. Transforming growth factor‐beta1 as a regulator of the serpins/t‐PA axis in cerebral ischemia. FASEB J 13: 1315–1324.

    CAS  PubMed  Google Scholar 

  • Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, et al 1996. Growth differentiation factor‐9 is required during early ovarian folliculogenesis. Nature 383: 531–535.

    CAS  PubMed  Google Scholar 

  • Dong Y, Tang L, Letterio JJ, Benveniste EN. 2001. The Smad3 protein is involved in TGF‐beta inhibition of class II transactivator and class II MHC expression. J Immunol 167: 311–319.

    CAS  PubMed  Google Scholar 

  • Dryer SE, Lhuillier L, Cameron JS, Martin‐Caraballo M. 2003. Expression of K(Ca) channels in identified populations of developing vertebrate neurons: role of neurotrophic factors and activity. J Physiol Paris 97: 49–58.

    CAS  PubMed  Google Scholar 

  • Dünker N, Krieglstein K. 2003. Reduced programmed cell death in the retina and defects in lens and cornea of Tgfbeta2(−/−) Tgfbeta3(−/−) double‐deficient mice. Cell Tissue Res 313: 1–10.

    PubMed  Google Scholar 

  • Dünker N, Schmitt K, Krieglstein K. 2002. TGF‐beta is required for programmed cell death in interdigital webs of the developing mouse limb. Mech Dev 113: 111–120.

    PubMed  Google Scholar 

  • Dünker N, Schuster N, Krieglstein K. 2001. TGF‐beta modulates programmed cell death in the retina of the developing chick embryo. Development 128: 1933–1942.

    PubMed  Google Scholar 

  • Eddleston M, Mucke L. 1993. Molecular profile of reactive astrocytes—implications for their role in neurologic disease. Neuroscience 54: 15–36.

    CAS  PubMed  Google Scholar 

  • Farkas LM, Dünker N, Roussa E, Unsicker K, Krieglstein K. 2003. Transforming growth factor‐beta(s) are essential for the development of midbrain dopaminergic neurons in vitro and in vivo. J Neurosci 23: 5178–5186.

    CAS  PubMed  Google Scholar 

  • Feng XH, Derynck R. 2005. Specificity and versatility in TGF‐signaling through Smads. Annu Rev Cell Dev Biol. 21: 659‐693.

    Google Scholar 

  • Fernandez‐Espejo E, Armengol JA, Flores JA, Galan‐Rodriguez B, Ramiro S. 2005. Cells of the sympathoadrenal lineage: biological properties as donor tissue for cell‐replacement therapies for Parkinson's disease. Brain Res Rev 49: 343–354.

    PubMed  Google Scholar 

  • Flanders KC, Lippa CF, Smith TW, Pollen DA, Sporn MB. 1995. Altered expression of transforming growth factor‐beta in Alzheimer's disease. Neurology 45: 1561–1569.

    CAS  PubMed  Google Scholar 

  • Flanders KC, Lüdecke G, Engels S, Cissel DS, Roberts AB, et al 1991. Localization and actions of transforming growth factor‐betas in the embryonic nervous system. Development 113: 183–191.

    CAS  PubMed  Google Scholar 

  • Flanders KC, Lüdecke G, Renzig J, Hamm C, Cissel DS, Unsicker K. 1993a. Effect of s and bFGF on astroglial cell growth and gene expression in vitro. Mol Cell Neurosci 4: 406–417.

    CAS  Google Scholar 

  • Flanders KC, Ren RF, Lippa CF. 1998. Transforming growth factor‐betas in neurodegenerative disease. Prog Neurobiol 54: 71–85.

    CAS  PubMed  Google Scholar 

  • Flanders KC, Winokur TS, Holder MG, Sporn MB. 1993b. Hyperthermia induces expression of transforming growth factor‐beta s in rat cardiac cells in vitro and in vivo. J Clin Invest 92: 404–410.

    CAS  Google Scholar 

  • Fogarty MP, Kessler JD, Wechsler‐Reya RJ. 2005. Morphing into cancer: the role of developmental signaling pathways in brain tumor formation. J Neurobiol 64: 458–475.

    CAS  PubMed  Google Scholar 

  • Fujii D, Brissenden JE, Derynck R, Franke U. 1986. Transforming growth factor‐β gene maps to human chromosomes 19 long arm and to mouse chromosome 7. Somat Cell Mol Genet 12: 281–288.

    CAS  PubMed  Google Scholar 

  • Gaertner RF, Wyss‐Coray T, Von Euw D, Lesne S, Vivien D, et al 2005. Reduced brain tissue perfusion in TGF‐beta 1 transgenic mice showing Alzheimer's disease‐like cerebrovascular abnormalities. Neurobiol Dis 19: 38–46.

    CAS  PubMed  Google Scholar 

  • Galloway SM, McNatty KP, Cambridge LM, Laitinen MP, Juengel JL, et al 2000. Mutations in an oocyte‐derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage‐sensitive manner. Nat Genet 25: 279–283.

    CAS  PubMed  Google Scholar 

  • Gorelik L, Flavell RA. 2001. Immune‐mediated eradication of tumors through the blockade of transforming growth factor‐beta signaling in T cells. Nat Med 7: 1118–1122.

    CAS  PubMed  Google Scholar 

  • Grainger DJ. 2004. Transforming growth factor beta and atherosclerosis: so far, so good for the protective cytokine hypothesis. Arterioscler Thromb Vasc Biol 24: 399–404.

    CAS  PubMed  Google Scholar 

  • Griffith DL, Keck PC, Sampath TK, Rueger DC, Carlson WD. 1996. Three‐dimensional structure of recombinant human osteogenic protein 1: structural paradigm for the transforming growth factor beta superfamily. Proc Natl Acad Sci USA 93: 878–883.

    CAS  PubMed  Google Scholar 

  • Gross CE, Bednar MM, Howard DB, Sporn MB. 1993. Transforming growth factor‐beta 1 reduces infarct size after experimental cerebral ischemia in a rabbit model. Stroke 24: 558–562.

    CAS  PubMed  Google Scholar 

  • Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, et al 1996. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271: 350–353.

    CAS  PubMed  Google Scholar 

  • Hanashima C, Shen L, Li SC, Lai E. 2002. Brain factor‐1 controls the proliferation and differentiation of neocortical progenitor cells through independent mechanisms. J Neurosci 22: 6526–6536.

    CAS  PubMed  Google Scholar 

  • He S, Jin ML, Worpel V, Hinton DR. 2003. A role for connective tissue growth factor in the pathogenesis of choroidal neovascularization. Arch Ophthalmol 121: 1283–1288.

    CAS  PubMed  Google Scholar 

  • Heinrich‐Noack P, Prehn JH, Krieglstein J. 1996. TGF‐beta 1 protects hippocampal neurons against degeneration caused by transient global ischemia. Dose‐response relationship and potential neuroprotective mechanisms. Stoke 27: 1609–1614.

    Google Scholar 

  • Herrera‐Molina R, von Bernhardi R. 2005. Transforming growth factor‐beta 1 produced by hippocampal cells modulates microglial reactivity in culture. Neurobiol Dis 19: 229–236.

    PubMed  Google Scholar 

  • Hogan BL. 1996. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev 10: 1580–1594.

    CAS  PubMed  Google Scholar 

  • Howard MJ, Gershon MD. 1993. Role of growth factors in catecholaminergic expression by neural crest cells: in vitro effects of transforming growth factor beta 1. Dev Dyn 196: 1–10.

    CAS  PubMed  Google Scholar 

  • Hunter KE, Sporn MB, Davies AM. 1993. Transforming growth factor‐betas inhibit mitogen‐stimulated proliferation of astrocytes. Glia 7: 203–211.

    CAS  PubMed  Google Scholar 

  • Hyytiäinen M, Penttinen C, Keski‐Oja J. 2004. Latent TGF‐beta binding proteins: extracellular matrix association and roles in TGF‐beta activation. Crit Rev Clin Lab Sci 41, 233–264.

    PubMed  Google Scholar 

  • Ishihara A, Saito H, Abe K. 1994. Transforming growth factor‐beta 1 and ‐beta 2 promote neurite sprouting and elongation of cultured rat hippocampal neurons. Brain Res 639: 21–25.

    CAS  PubMed  Google Scholar 

  • Itoh S, Itoh F, Goumans MJ, ten Dijke P. 2000. Signaling of transforming growth factor‐beta family members through Smad proteins. Eur J Biochem 267: 6954–6967.

    CAS  PubMed  Google Scholar 

  • Jachimczak P, Bogdahn U, Schneider J, Behl C, Meixensberger J, et al 1993. The effect of transforming growth factor‐beta 2‐specific phosphorothioate‐anti‐sense oligodeoxynucleotides in reversing cellular immunosuppression in malignant glioma. J Neurosurg 78: 944–951.

    CAS  PubMed  Google Scholar 

  • Jakowlew SB, Dillard PJ, Kondaiah P, Sporn MB, Roberts AB. 1988a. Complementary DNA cloning of a novel transforming growth factor‐β mRNA from chick embryo chondrocytes. Mol Endocrinol 2: 747–755.

    CAS  Google Scholar 

  • Jakowlew SB, Dillard PJ, Sporn MB, Roberts AB. 1988b. Complementary DNA cloning of an mRNA encoding transforming growth factor‐beta 4 from chick embryo chondrocytes. Mol Endocrinol 2: 1186–1195.

    CAS  Google Scholar 

  • Johns LD, Babcock G, Green D, Freedman M, Sriram S, et al 1992. Transforming growth factor‐beta 1 differentially regulates proliferation and MHC class‐II antigen expression in forebrain and brainstem astrocyte primary cultures. Brain Res 585: 229–236.

    CAS  PubMed  Google Scholar 

  • Jones LL, Kreutzberg GW, Raivich G. 1998. Transforming growth factor beta's 1, 2 and 3 inhibit proliferation of ramified microglia on an astrocyte monolayer. Brain Res 795: 301–306.

    CAS  PubMed  Google Scholar 

  • Jonk LJ, Itoh S, Heldin CH, ten Dijke P, Kruijer W. 1998. Identification and functional characterization of a Smad binding element (SBE) in the JunB promoter that acts as a transforming growth factor‐beta, , and bone morphogenetic protein‐inducible enhancer. J Biol Chem 273: 21145–21152.

    CAS  PubMed  Google Scholar 

  • Jung B, Kim MO, Yun SJ, Lee EH. 2003. Down‐regulation of the expression of rat inhibitor‐of‐apoptosis protein‐1 and ‐3 during transforming growth factor‐beta1‐mediated apoptosis in rat brain microglia. Neuroreport 14: 857–860.

    CAS  PubMed  Google Scholar 

  • Kang Y, Chen C‐R, Massague J. 2003. A self‐enabling response coupled to stress signalling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol Cell 11: 915–926.

    CAS  PubMed  Google Scholar 

  • Kingsley DM. 1994. The superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 8: 133–146.

    CAS  PubMed  Google Scholar 

  • Klempt ND, Sirimanne E, Gunn AJ, Klempt M, Singh K, et al 1992. Hypoxia–ischemia induces transforming growth factor beta 1 mRNA in the infant rat brain. Mol Brain Res 13: 93–101.

    CAS  PubMed  Google Scholar 

  • Knuckey NW, Finch P, Palm DE, Primiano MJ, Johanson CE, et al 1996. Differential neuronal and astrocytic expression of transforming growth factor beta isoforms in rat hippocampus following transient forebrain ischemia. Mol Brain Res 40: 1–14.

    CAS  PubMed  Google Scholar 

  • Kondaiah P, Sands MJ, Smith JM, Fields A, Roberts AB, et al 1990. Identification of a novel transforming growth factor‐β mRNA in Xenopus laevis. J Biol Chem 265: 1089–1093.

    CAS  PubMed  Google Scholar 

  • Konig HG, Kogel D, Rami A, Prehn JH. 2005. 1 activates two distinct type I receptors in neurons: implications for neuronal NF‐κB signaling. J Cell Biol 168: 1077–1086.

    PubMed  Google Scholar 

  • Krieglstein K, Farkas L, Unsicker K. 1998a. TGF‐beta regulates the survival of ciliary ganglionic neurons synergistically with ciliary neurotrophic factor and neurotrophins. J Neurobiol 37: 563–572.

    CAS  Google Scholar 

  • Krieglstein K, Henheik P, Farkas L, Jaszai J, Galter D, et al 1998b. Glial cell line‐derived neurotrophic factor requires transforming growth factor‐beta for exerting its full neurotrophic potential on peripheral and CNS neurons. J Neurosci 18: 9822–9834.

    CAS  Google Scholar 

  • Krieglstein K, Reuss B, Maysinger D, Unsicker K. 1998c. Short communication: transforming growth factor‐beta mediates the neurotrophic effect of fibroblast growth factor‐2 on midbrain dopaminergic neurons. Eur J Neurosci 10: 2746–2750.

    CAS  Google Scholar 

  • Krieglstein K, Richter S, Farkas L, Schuster N, Dünker N, et al 2000. Reduction of endogenous transforming growth factors beta prevents ontogenetic neuron death. Nat Neurosci 3: 1085–1090.

    CAS  PubMed  Google Scholar 

  • Krieglstein K, Suter‐Crazzolara C, Fischer WH, Unsicker K. 1995. TGF‐beta superfamily members promote survival of midbrain dopaminergic neurons and protect them against MPP+ toxicity. EMBO J 14: 736–742.

    CAS  PubMed  Google Scholar 

  • Krieglstein K, Unsicker K. 1994. Transforming growth factor‐beta promotes survival of midbrain dopaminergic neurons and protects them against N‐methyl‐4‐phenylpyridinium ion toxicity. Neuroscience 63: 1189–1196.

    CAS  PubMed  Google Scholar 

  • Krieglstein K, Unsicker K. 1996. Distinct modulatory actions of TGF‐beta and LIF on neurotrophin‐mediated survival of developing sensory neurons. Neurochem Res 21: 843–850.

    CAS  PubMed  Google Scholar 

  • Labourdette G, Janet T, Laeng P, Perraud F, Lawrence D, et al 1990. Transforming growth factor type beta 1 modulates the effects of basic fibroblast growth factor on growth and phenotypic expression of rat astroblasts in vitro. J Cell Physiol 144: 473–484.

    CAS  PubMed  Google Scholar 

  • Lahn M, Kloeker S, Berry BS. 2005. TGF‐beta inhibitors for the treatment of cancer. Expert Opin Investig Drugs 14: 629–643.

    CAS  PubMed  Google Scholar 

  • Lebrin F, Deckers M, Bertolino P, ten Dijke P. 2005. TGF‐beta receptor function in the endothelium. Cardiovasc Res 65: 599–608.

    CAS  PubMed  Google Scholar 

  • Lee SJ, McPherron AC. 2001. Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci USA 98: 9306–9311.

    CAS  PubMed  Google Scholar 

  • Le Roy C, Wrana JL. 2005. Signaling and endocytosis: a team effort for cell migration. Dev Cell 9: 167–168.

    CAS  PubMed  Google Scholar 

  • Leof EB, Proper JA, Goustin AS, Shipley GD, Di Corleto PE, et al 1986. Induction of c‐sis mRNA and activity similar to platelet‐derived growth factor by transforming growth factor beta: a proposed model for indirect mitogenesis involving autocrine activity. Proc Natl Acad Sci USA 83: 2453–2457.

    CAS  PubMed  Google Scholar 

  • Lindholm D, Castren D, Kiefer R, Zafra F, Thoenen H. 1992. Transforming growth factor‐β1 in the rat brain: increase after injury and inhibition of astrocyte proliferation. J Cell Biol 117: 395–400.

    CAS  PubMed  Google Scholar 

  • Logan A, Green J, Hunter A, Jackson R, Berry M. 1999. Inhibition of glial scarring in the injured rat brain by a recombinant human monoclonal antibody to transforming growth factor‐beta2. Eur J Neurosci 11: 2367–2374.

    CAS  PubMed  Google Scholar 

  • Lou E. 2004. Oncolytic viral therapy and immunotherapy of malignant brain tumors: two potential new approaches of translational research. Ann Med 36: 2–8.

    CAS  PubMed  Google Scholar 

  • Lyons RM, Gentry LE, Purchio AF, Moses HL. 1990. Mechanism of activation of latent recombinant transforming growth factor beta 1 by plasmin. J Cell Biol 110: 1361–1367.

    CAS  PubMed  Google Scholar 

  • Madison L, Webb NR, Rose TM, Marquardt H, Ikeda T, et al 1988. Transforming growth factor‐β2: cDNA cloning and sequence analysis. DNA 7: 1–8.

    Google Scholar 

  • Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, et al 1995. Inactivation of the type II TGF‐beta receptor in colon cancer cells with microsatellite instability. Science 268: 1336–1338.

    CAS  PubMed  Google Scholar 

  • Martinou JC, Le Van Thai A, Valette A, Weber MJ. 1990. Transforming growth factor beta 1 is a potent survival factor for rat embryo in culture. Dev Brain Res 52: 175–181.

    CAS  Google Scholar 

  • Massague J. 2000. How cells read TGF‐beta signals. Nat Rev Mol Cell Biol 1: 169–178.

    CAS  PubMed  Google Scholar 

  • McDonald NQ, Hendrickson WA. 1993. A structural superfamily of growth factors containing a cystine knot motif. Cell 73: 421–424.

    CAS  PubMed  Google Scholar 

  • McKinnon RD, Piras G, Ida JA Jr, Dubois‐Dalcq M. 1993. A role for TGF‐beta in oligodendrocyte differentiation. J Cell Biol 121: 1397–1407.

    CAS  PubMed  Google Scholar 

  • McLennan IS, Koishi K. 2002. The transforming growth factor‐betas: multifaceted regulators of the development and maintenance of skeletal muscles, and Schwann cells. Int J Dev Biol 46: 559–567.

    CAS  PubMed  Google Scholar 

  • Mittl PR, Priestle JP, Cox DA, McMaster G, Cerletti N, et al 1996. The crystal structure of TGF‐beta 3 and comparison to TGF‐beta 2: implications for receptor binding. Protein Sci 5: 1261–1271.

    CAS  PubMed  Google Scholar 

  • Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K. 2002. Two major Smad pathways in TGF‐beta superfamily signalling. Genes Cells 7: 1191–1204.

    CAS  PubMed  Google Scholar 

  • Miyazono K, Suzuki H, Imamura T. 2003. Regulation of TGF‐beta signaling and its roles in progression of tumors. Cancer Sci 94: 230–234.

    CAS  PubMed  Google Scholar 

  • Miyazono K, ten Dijke P, Heldin CH. 2000. TGF‐beta signaling by Smad proteins. Adv Immunol 75: 115–157.

    CAS  PubMed  Google Scholar 

  • Morganti‐Kossmann MC, Hans VH, Lenzlinger PM, Dubs R, Ludwig E, et al 1999. TGF‐beta is elevated in the CSF of patients with severe traumatic brain injuries and parallels blood–brain barrier function. J Neurotrauma 16: 617–628.

    PubMed  Google Scholar 

  • Moustakas A, Heldin CH. 2005. Non‐Smad signals. J Cell Sci 118: 3573–3584.

    CAS  PubMed  Google Scholar 

  • Moustakas A, Souchelnytskyi S, Heldin CH. 2001. Smad regulation in TGF‐beta signal transduction. J Cell Sci 114: 4359–4369.

    CAS  PubMed  Google Scholar 

  • Mulder KM. 2000. Role of Ras and Mapks in TGFbeta signaling. Cytokine Growth Factor Rev 11: 23–35.

    CAS  PubMed  Google Scholar 

  • Mummery CL, van den Eijnden‐van Raaij AJ. 1999. Developmental tumours, early differentiation and the transforming growth factor beta superfamily. Int J Dev Biol 43: 693–709.

    CAS  PubMed  Google Scholar 

  • Nagatsu T, Mogi M, Ichinose H, Togari A. 2000. Changes in cytokines and neurotrophins in Parkinson's disease. J Neural Transm Suppl 60: 277–290.

    PubMed  Google Scholar 

  • Newfeld SJ, Wisotzkey RG, Kumar S. 1999. Molecular evolution of a developmental pathway: phylogenetic analyses of transforming growth factor‐beta family ligands, receptors and Smad signal transducers. Genetics 152: 783–795.

    CAS  PubMed  Google Scholar 

  • Nieder C, Schlegel J, Andratschke N, Thamm R, Grosu AL, et al 2003. The role of growth factors in central nervous system tumours. Anticancer Res 23: 1681–1686.

    CAS  PubMed  Google Scholar 

  • Ota T, Fujii M, Sugizaki T, Ishii M, Miyazawa K, et al 2002. Targets of transcriptional regulation by two distinct type I receptors for transforming growth factor‐β in human umbilical vein endothelial cells. J Cell Physiol 193: 299–318.

    CAS  PubMed  Google Scholar 

  • Packard M, Mathew D, Budnik V. 2003. Wnts and TGF beta in synaptogenesis: old friends signalling at new places. Nat Rev Neurosci 4: 113–120.

    CAS  PubMed  Google Scholar 

  • Paques M, Massin P, Gaudric A. 1997. Growth factors and diabetic retinopathy. Diabetes Metab 23: 125–130.

    CAS  PubMed  Google Scholar 

  • Parkinson DB, Dong Z, Bunting H, Whitfield J, Meier C, et al 2001. Transforming growth factor beta (TGFbeta) mediates Schwann cell death in vitro and in vivo: examination of c‐Jun activation, interactions with survival signals, and the relationship of TGFbeta‐mediated death to Schwann cell differentiation. J Neurosci 21: 8572–8585.

    CAS  PubMed  Google Scholar 

  • Patterson GI, Padgett RW. 2000. TGF beta‐related pathways. Roles in Caenorhabditis elegans development. Trends Genet 16: 27–33.

    CAS  PubMed  Google Scholar 

  • Pelton RW, Johnson MD, Perkett EA, Gold LI, Moses HL. 1991. Expression of transforming growth factor‐beta 1, ‐beta 2, and ‐beta 3 mRNA and protein in the murine lung. Am J Respir Cell Mol Biol 5: 522–530.

    CAS  PubMed  Google Scholar 

  • Pelton RW, Saxena B, Jones M, Moses HL, Gold LI. 1991. Immunohistochemical localization of TGF beta 1, TGF beta 2, and TGF beta 3 in the mouse embryo: expression patterns suggest multiple roles during embryonic development. J Cell Biol 115: 1091–1105.

    CAS  PubMed  Google Scholar 

  • Peterziel H, Unsicker K, Krieglstein K. 2002. TGFbeta induces responsiveness in neurons by recruitment of GFRalpha1 to the plasma membrane. J Cell Biol 159: 157–167.

    CAS  PubMed  Google Scholar 

  • Platten M, Wick W, Weller M. 2001. Malignant glioma biology: role for TGF‐beta in growth, motility, angiogenesis, and immune escape. Microsc Res Tech 52: 401–410.

    CAS  PubMed  Google Scholar 

  • Poulsen KT, Armanini MP, Klein RD, Hynes MA, Phillips HS, et al 1994. TGF beta 2 and TGF beta 3 are potent survival factors for midbrain dopaminergic neurons. Neuron 13: 1245–1252.

    CAS  PubMed  Google Scholar 

  • Prehn JH, Backhauss C, Krieglstein J. 1993. Transforming growth factor‐beta 1 prevents glutamate neurotoxicity in rat neocortical cultures and protects mouse neocortex from ischemic injury in vivo. J Cereb Blood Flow Metab 13: 521–525.

    CAS  PubMed  Google Scholar 

  • Prehn JH, Bindokas VP, Marcuccilli CJ, Krajewski S, Reed JC, et al 1994. Regulation of neuronal Bcl2 protein expression and calcium homeostasis by transforming growth factor type beta confers wide‐ranging protection on rat hippocampal neurons. Proc Natl Acad Sci USA 91: 12599–12603.

    CAS  PubMed  Google Scholar 

  • Rahhal B, Dünker N, Combs S, Krieglstein K. 2004. Isoform‐specific role of transforming growth factor‐beta2 in the regulation of proliferation and differentiation of murine adrenal chromaffin cells in vivo. J Neurosci Res 78: 493–498.

    CAS  PubMed  Google Scholar 

  • Ramirez F, Pereira L. 1999. The fibrillins. Int J Biochem Cell Biol 31: 255–259.

    CAS  PubMed  Google Scholar 

  • Reddi AH. 2005. BMPs: from bone morphogenetic proteins to bone morphogenetic proteins. Cytokine Growth Factor Rev 16: 249–250.

    CAS  PubMed  Google Scholar 

  • Rich JN. 2003. The role of transforming growth factor‐beta in primary brain tumors. Front Biosci 8: e245–e260.

    CAS  PubMed  Google Scholar 

  • Rich JN, Zhang M, Datto MB, Bigner DD, Wang XF. 1999. Transforming growth factor‐beta‐mediated p15(INK4B) induction and growth inhibition in astrocytes is SMAD3‐dependent and a pathway prominently altered in human glioma cell lines. J Biol Chem 274: 35053–35058.

    CAS  PubMed  Google Scholar 

  • Rifkin DB. 2005. Latent transforming growth factor‐beta (TGF‐beta) binding proteins: orchestrators of TGF‐beta availability. J Biol Chem 280: 7409–7412.

    CAS  PubMed  Google Scholar 

  • Roberts AB, Anzano MA, Lamb LC, Smith JM, Sporn MB. 1981. New class of transforming growth factors potentiated by epidermal growth factor: isolation from non‐neoplastic tissues. Proc Natl Acad Sci USA 78: 5339–5343.

    CAS  PubMed  Google Scholar 

  • Roberts AB, Sporn MB. 1990. Sporn MB, Roberts AB, editors. The transforming growth factor‐βs. Handbook of Experimental Pharmacology, Vol. 95. Heidelberg: Springer‐Verlag; pp. 419–472.

    Google Scholar 

  • Roberts AB, Wakefield LM. 2003. The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci USA 100: 8621–8623.

    CAS  PubMed  Google Scholar 

  • Rooprai HK, Rucklidge GJ, Panou C, Pilkington GJ. 2000. The effects of exogenous growth factors on matrix metalloproteinase secretion by human brain tumour cells. Br J Cancer 82: 52–55.

    CAS  PubMed  Google Scholar 

  • Roussa E, Farkas LM, Krieglstein K. 2004. TGF‐beta promotes survival on mesencephalic dopaminergic neurons in cooperation with Shh and FGF‐8. Neurobiol Dis 16: 300–310.

    CAS  PubMed  Google Scholar 

  • Roussa E, Wiehle M, Dünker N, Becker‐Katins S, Oehlke O, Krieglstein K. 2006. TGF‐β isoforms (TGF‐β2, TGF‐β3) are required for differentiation of mouse mesencephalic progenitors into dopaminergic neurons in vitro and in vivo. Stem cells (in revision).

    Google Scholar 

  • Salinas PC. 2005. Signaling at the vertebrate synapse: new roles for embryonic morphogens? J Neurobiol 64: 435–445.

    CAS  PubMed  Google Scholar 

  • Sanchez‐Capelo A. 2005. Dual role for TGF‐beta1 in apoptosis. Cytokine Growth Factor Rev 16: 15–34.

    PubMed  Google Scholar 

  • Schena FP, Gesualdo L. 2005. Pathogenetic mechanisms of diabetic nephropathy. J Am Soc Nephrol 16: S30–S33.

    CAS  PubMed  Google Scholar 

  • Scheufler C, Sebald W, Hulsmeyer M. 1999. Crystal structure of human bone morphogenetic protein‐2 at 2.7 å resolution. J Mol Biol 287: 103–115.

    CAS  PubMed  Google Scholar 

  • Schlingensiepen R, Goldbrunner M, Szyrach MN, Stauder G, Jachimczak P, et al 2005. Intracerebral and intrathecal infusion of the TGF‐beta2‐specific antisense phosphorothioate oligonucleotide AP 12009 in rabbits and primates: toxicology and safety. Oligonucleotides 15: 94–104.

    CAS  PubMed  Google Scholar 

  • Schlunegger MP, Grutter MG. 1992. An unusual feature revealed by the crystal structure at 2.2 å resolution of human transforming growth factor‐beta 2. Nature 358: 430–434.

    CAS  PubMed  Google Scholar 

  • Schmidt‐Weber CB, Blaser K. 2004. Regulation and role of transforming growth factor‐beta in immune tolerance induction and inflammation. Curr Opin Immunol 16: 709–716.

    PubMed  Google Scholar 

  • Schober A, Hertel R, Arumae U, Farkas L, Jaszai J, et al 1999. Glial cell line‐derived neurotrophic factor rescues target‐deprived sympathetic spinal cord neurons but requires transforming growth factor‐beta as cofactor in vivo. J Neurosci 19: 2008–2015.

    CAS  PubMed  Google Scholar 

  • Schuster N, Bender H, Philippi A, Subramaniam S, Strelau J, et al 2002. TGF‐beta induces cell death in the oligodendroglial cell line OLI‐neu. Glia 40: 95–108.

    PubMed  Google Scholar 

  • Schuster N, Bender H, Rossler OG, Philippi A, Dünker N, et al 2003. Transforming growth factor‐beta and tumor necrosis factor‐alpha cooperate to induce apoptosis in the oligodendroglial cell line OLI‐neu. J Neurosci Res 73: 324–333.

    CAS  PubMed  Google Scholar 

  • Schuster N, Krieglstein K. 2002. Mechanisms of TGF‐beta‐mediated apoptosis. Cell Tissue Res 307: 1–14.

    CAS  PubMed  Google Scholar 

  • Sebald W, Nickel J, Zhang JL, Mueller TD. 2004. Molecular recognition in bone morphogenetic protein (BMP)/receptor interaction. Biol Chem 385: 697–710.

    CAS  PubMed  Google Scholar 

  • Seoane J, Le HV, Shen L, Anderson SA, Massague J. 2004. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117: 211–223.

    CAS  PubMed  Google Scholar 

  • Seyedin PR, Segarini PR, Rosen DM, Thompson AY, Bentz H, et al 1987. Cartilage‐inducing factor‐B is a unique protein structurally and functionally related to transforming growth factor‐beta. J Biol Chem 262: 1946–1949.

    CAS  PubMed  Google Scholar 

  • Seyedin PR, Thomas TC, Thompson AY, Rosen DM, Piez KA. 1985. Purification and characterization of two cartilage‐inducing factors from bovine demineralised bone. Proc Natl Acad Sci USA 82: 2267–2271.

    CAS  PubMed  Google Scholar 

  • Shi Y, Massague J. 2003. Mechanisms of TGF‐beta signaling from cell membrane to the nucleus. Cell 113: 685–700.

    CAS  PubMed  Google Scholar 

  • Shrikant P, Lee SJ, Kalvakolanu I, Ransohoff RM, Benveniste EN. 1996. Stimulus‐specific inhibition of intracellular adhesion molecule‐1 gene expression by TGF‐beta. J Immunol 157: 892–900.

    CAS  PubMed  Google Scholar 

  • Siegel PM, Massague J. 2003. Cytostatic and apoptotic actions of TGF‐beta in homeostasis and cancer. Nat Rev Cancer 3: 807–821.

    CAS  PubMed  Google Scholar 

  • Specht H, Peterziel H, Bajohrs M, Gerdes HH, Krieglstein K, et al 2003. Transforming growth factor beta2 is released from PC12 cells via the regulated pathway of secretion. Mol Cell Neurosci 22: 75–86.

    CAS  PubMed  Google Scholar 

  • Stelzer C, Winterpacht A, Spranger J, Zabel B. 2003. Grebe dysplasia and the spectrum of CDMP1 mutations. Pediatr Pathol Mol Med 22: 77–85.

    CAS  PubMed  Google Scholar 

  • Swindells MB. 1992. Structural similarity between transforming growth factor‐beta 2 and nerve growth factor. Science 258: 1160–1161.

    CAS  PubMed  Google Scholar 

  • ten Dijke P, Geurts van Kessel AHM, Foulkes JG, Le Beau MM. 1988b. Transforming growth factor‐beta type 3 maps to human chromosome 14, region q23–q24. Oncogene 3: 721–724.

    CAS  Google Scholar 

  • ten Dijke P, Hanson P, Iwata KK, Pieler C, Foulkes JC. 1988a. Identification of a new member of the transforming growth factor‐β gene family. Proc Natl Acad Sci USA 85: 4715–4719.

    CAS  Google Scholar 

  • ten Dijke P, Hill CS. 2004. New insights into TGF‐beta‐Smad signalling. Trends Biochem Sci 29: 265–273.

    CAS  PubMed  Google Scholar 

  • Thomas JT, Kilpatrick MW, Lin K, Erlacher L, Lembessis P, et al 1997. Disruption of human limb morphogenesis by a dominant negative mutation in CDMP1. Nat Genet 17: 58–64.

    CAS  PubMed  Google Scholar 

  • Toepfer M, Fischer P, Abicht A, Lochmuller H, Pongratz D, et al 1999. Localization of transforming growth factor beta in association with neuromuscular junctions in adult human muscle. Cell Mol Neurobiol 19: 297–300.

    CAS  PubMed  Google Scholar 

  • Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL. 1998. SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell 95: 779–791.

    CAS  PubMed  Google Scholar 

  • Turgeman G, Zilberman Y, Zhou S, Kelly P, Moutsatsos IK, et al 2002. Systemically administered rhBMP‐2 promotes MSC activity and reverses bone and cartilage loss in osteopenic mice. J Cell Biochem 86: 461–474.

    CAS  PubMed  Google Scholar 

  • Uhm JH, Gladson CL, Rao JS. 1999. The role of integrins in the malignant phenotype of gliomas. Front Biosci 4: D188–D199.

    CAS  PubMed  Google Scholar 

  • Unsicker K, Flanders KC, Cissel DS, Lafyatis R, Sporn MB. 1991. Transforming growth factor beta isoforms in the adult rat central and peripheral nervous system. Neuroscience 44: 613–625.

    CAS  PubMed  Google Scholar 

  • Unsicker K, Meier C, Krieglstein K, Sartor BM, Flanders KC. 1996. Expression, localization, and function of transforming growth factor‐beta s in embryonic chick spinal cord, hindbrain, and dorsal root ganglia. J Neurobiol 29: 262–276.

    CAS  PubMed  Google Scholar 

  • van der Wal EA, Gomez‐Pinilla F, Cotman CW. 1993. Transforming growth factor‐beta 1 is in plaques in Alzheimer and Down pathologies. Neuroreport 4: 69–72.

    CAS  PubMed  Google Scholar 

  • Verrecchia F, Chu M‐L, Mauviel A. 2001. Identification of novel /Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach. J Biol Chem 276: 17058–17062.

    CAS  PubMed  Google Scholar 

  • Wahl SM, Chen W. 2003. TGF‐beta: how tolerant can it be? Immunol Res 28: 167–179.

    CAS  PubMed  Google Scholar 

  • Waite KA, Eng C. 2003. From developmental disorder to heritable cancer: it's all in the BMP/TGF‐beta family. Nat Rev Genet 4: 763–773.

    CAS  PubMed  Google Scholar 

  • Wu XB, Li Y, Schneider A, Yu W, Rajendren G, Iqbal J, et al 2003. Impaired osteoblastic differentiation, reduced bone formation, and severe osteoporosis in noggin‐overexpressing mice. J Clin Invest 112: 924–934.

    CAS  PubMed  Google Scholar 

  • Wyss‐Coray T, Borrow P, Brooker MJ, Mucke L. 1997a. Astroglial overproduction of TGF‐beta 1 enhances inflammatory central nervous system disease in transgenic mice. J Neuroimmunol 77: 45–50.

    Google Scholar 

  • Wyss‐Coray T, Lin C, Yan F, Yu GQ, Rohde M, et al 2001. TGF‐beta1 promotes microglial amyloid‐beta clearance and reduces plaque burden in transgenic mice. Nat Med 7: 612–618.

    PubMed  Google Scholar 

  • Wyss‐Coray T, Masliah E, Mallory M, McConlogue L, Johnson‐Wood K, et al 1997b. Amyloidogenic role of cytokine TGF‐beta1 in transgenic mice and in Alzheimer's disease. Nature 389: 603–606.

    Google Scholar 

  • Xiao BG, Bai XF, Zhang GX, Link H. 1997. Transforming growth factor‐beta1 induces apoptosis of rat microglia without relation to bcl‐2 oncoprotein expression. Neurosci Lett 226: 71–74.

    CAS  PubMed  Google Scholar 

  • Xie L, Law BK, Aakre ME, Edgerton M, Shyr Y, et al 2003. Transforming growth factor beta‐regulated gene expression in a mouse mammary gland epithelial cell line. Breast Cancer Res 5: R187–R198.

    CAS  PubMed  Google Scholar 

  • Xuan S, Baptista CA, Balas G, Tao W, Soares VC, et al 1995. Winged helix transcription factor BF‐1 is essential for the development of the cerebral hemispheres. Neuron 14: 1141–1152.

    CAS  PubMed  Google Scholar 

  • Yamashita K, Gerken U, Vogel P, Hossmann K, Wiessner C. 1999. Biphasic expression of TGF‐beta1 mRNA in the rat brain following permanent occlusion of the middle cerebral artery. Brain Res 836: 139–145.

    CAS  PubMed  Google Scholar 

  • Yang Y‐C, Piek E, Zavadil J, Liang D, Xie D, et al 2003. Hierarchical model of gene regulation by transforming growth factor‐β. Proc Natl Acad Sci USA 100: 10269–10274.

    CAS  PubMed  Google Scholar 

  • Yingling JM, Blanchard KL, Sawyer JS. 2004. Development of TGF‐beta signalling inhibitors for cancer therapy. Nat Rev Drug Discov 3: 1011–1022.

    CAS  PubMed  Google Scholar 

  • Zavadil J, Bitzer M, Liang D, Yang Y‐C, Massimi A, et al 2001. Genetic programs of epithelial cell plasticity directed by transforming growth factor‐β. Proc Natl Acad Sci USA 98: 6686–6691.

    CAS  PubMed  Google Scholar 

  • Zhang F, Endo S, Cleary LJ, Eskin A, Byrne JH. 1997a. Role of transforming growth factor‐beta in long‐term synaptic facilitation in Aplysia. Science 275: 1318–1320.

    CAS  Google Scholar 

  • Zhang JM, Hoffmann R, Sieber‐Blum M. 1997b. Mitogenic and anti‐proliferative signals for neural crest cells and the neurogenic action of TGF‐beta1. Dev Dyn 208: 375–386.

    CAS  Google Scholar 

  • Zhao X, Ramsey KE, Stephan DA, Russell P. 2004. Gene and protein expression changes in human trabecular meshwork cells treated with transforming growth factor‐β. Invest Ophthalmol Vis Sci 45: 4023–4034.

    PubMed  Google Scholar 

  • Zhu Y, Ahlemeyer B, Bauerbach E, Krieglstein J. 2001. TGF‐beta1 inhibits caspase‐3 activation and neuronal apoptosis in rat hippocampal cultures. Neurochem Int 38: 227–235.

    PubMed  Google Scholar 

  • Zhu Y, Culmsee C, Klumpp S, Krieglstein J. 2004. Neuroprotection by transforming growth factor‐beta1 involves activation of nuclear factor‐kappaB through phosphatidylinositol‐3‐OH kinase/Akt and mitogen‐activated protein kinase‐extracellular‐signal regulated kinase1,2 signaling pathways. Neuroscience 123: 897–906.

    CAS  PubMed  Google Scholar 

  • Zhu Y, Roth‐Eichhorn S, Braun N, Culmsee C, Rami A, et al 2000. The expression of transforming growth factor‐beta1 (TGF‐beta1) in hippocampal neurons: a temporary upregulated protein level after transient forebrain ischemia in the rat. Brain Res 866: 286–298.

    CAS  PubMed  Google Scholar 

  • Zhu Y, Yang GY, Ahlemeyer B, Pang L, Che XM, et al 2002. Transforming growth factor‐beta 1 increases bad phosphorylation and protects neurons against damage. J Neurosci 22: 3898–3909.

    CAS  PubMed  Google Scholar 

  • Zimmers TA, Davies MV, Koniaris LG, Haynes P, Esquela AF, et al 2002. Induction of cachexia in mice by systemically administered myostatin. Science 296: 1486–1488.

    CAS  PubMed  Google Scholar 

  • Zindy F, Cunningham JJ, Sherr CJ, Jogal S, Smeyne RJ, et al 1999. Postnatal neuronal proliferation in mice lacking Ink4d and Kip1 inhibitors of cyclin‐dependent kinases. Proc Natl Acad Sci USA 96: 13462–13467.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author's laboratory work was supported by grants from the Deutsche Forschungsgemeinschaft (including SFB406; DFG Forschungszentrum CMPB).

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this entry

Cite this entry

Krieglstein, K. (2006). Transforming Growth Factor-βs in the Brain. In: Lajtha, A., Lim, R. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30381-9_6

Download citation

Publish with us

Policies and ethics