Skip to main content

Experimental Autoimmune Encephalomyelitis in the Pathogenesis of Optic Neuritis: Is Calpain Involved?

  • Reference work entry
Handbook of Neurochemistry and Molecular Neurobiology
  • 784 Accesses

Abstract:

Multiple sclerosis (MS) is a debilitating, autoimmune disease of the central nervous system (CNS) that attacks 1 in every 1,000 Americans each year. Patients suffer clinical symptoms including fatigue, paralysis, and visual dysfunction as a result of demyelination and degeneration of axons and neurons. Since visual dysfunction results from pathophysiological changes in the optic nerve, the animal model of MS, experimental autoimmune encephalomyelitis (EAE), is also used as a tool to study optic neuritis (ON). Previous reports have indicated that the calcium (Ca2+)-activated neutral protease calpain may be involved in multiple pathways leading to the development of EAE and EAE-induced ON. These mechanisms include T cell activation and migration, demyelination, and apoptosis of neurons and glial cells. Upregulation of calpain in MS patients further supports this hypothesis. The purpose of this chapter is to discuss and summarize literature involving calpain in EAE and MS, with special emphasis on how calpain may be involved in the development of ON in EAE animals and MS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AIF:

apoptosis-inducing factor

Ca2+ :

calcium

CFA:

complete Freund’s adjuvant

CNS:

central nervous system

CSF:

cerebrospinal fluid

de-NFP:

dephosphorylation of NFP

EAE:

experimental autoimmune encephalomyelitis

ER:

endoplasmic reticulum

IFN-γ:

interferon-gamma

IL:

interleukin

IV:

intravenous

LFA:

leukocyte function-associated antigen

MAG:

myelin-associated glycoprotein

MBP:

myelin basic protein

MCP-1:

monocyte chemotactic protein-1

MHC II:

major histocompatibility complex II

MOG:

myelin oligodendrocyte glycoprotein

MS:

multiple sclerosis

NFκB:

nuclear factor kappa-B

NFP:

neurofilament protein

ON:

optic neuritis

PBMCs:

peripheral blood mononuclear cells

PKC:

protein kinase C

PLP:

proteolipid protein

R/R:

relapsing/remitting

RGCs:

retinal ganglion cells

RRMS:

relapsing remitting MS

SPMS:

secondary progressive MS

STAT:

signal transducer and activator of signaling

TBI:

traumatic brain injury

TCR:

T cell receptor

TNF-α:

tumor necrosis factor-alpha

References

  • Algarte M, Lecine P, Costello R, Plet A, Olive D, et al. 1995. In vivo regulation of interleukin-2 receptor alpha gene transcription by the coordinated binding of constitutive and inducible factors in human primary T cells. EMBO J 14: 5060–5072.

    CAS  PubMed  Google Scholar 

  • Antel J. 1999. Multiple sclerosis—emerging concepts of disease pathogenesis. J Neuroimmunol 98: 45–48.

    CAS  PubMed  Google Scholar 

  • Arnold AC. 2005. Evolving management of optic neuritis and multiple sclerosis. Am J Ophthalmol 139: 1101–1108.

    PubMed  Google Scholar 

  • Azarian SM, Williams DS. 1995. Calpain activity in the retinas of normal and RCS rats. Curr Eye Res 14: 731–735.

    CAS  PubMed  Google Scholar 

  • Balcer LJ. 2006. Clinical practice. Optic neuritis. N Engl J Med 354: 1273–1280.

    CAS  PubMed  Google Scholar 

  • Baldwin AS Jr. 1996. The NF-kappa B and I kappa B proteins: New discoveries and insights. Annu Rev Immunol 14: 649–683.

    CAS  PubMed  Google Scholar 

  • Banik NL, Shields DC. 1999. A putative role for calpain in demyelination associated with optic neuritis. Histol Histopathol 14: 649–656.

    CAS  PubMed  Google Scholar 

  • Beck RW, Cleary PA, Anderson MM Jr., Keltner JL, Shults WT, et al. 1992. A randomized, controlled trial of corticosteroids in the treatment of acute optic neuritis. The Optic Neuritis Study Group. N Engl J Med 326: 581–588.

    CAS  PubMed  Google Scholar 

  • Beck RW, Gal RL, Bhatti MT, Brodsky MC, Buckley EG, et al. 2004. Visual function more than 10 years after optic neuritis: Experience of the optic neuritis treatment trial. Am J Ophthalmol 137: 77–83.

    PubMed  Google Scholar 

  • Bettelli E, Pagany M, Weiner HL, Linington C, Sobel RA, et al. 2003. Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J Exp Med 197: 1073–1081.

    CAS  PubMed  Google Scholar 

  • Bilbool N, Kaitz M, Feinsod M, Soffer D, Abramsky O. 1983. Visual evoked potentials in experimental allergic encephalomyelitis. J Neurol Sci 60: 105–115.

    CAS  PubMed  Google Scholar 

  • Bitko V, Barik S. 2001. An endoplasmic reticulum-specific stress-activated caspase (caspase-12) is implicated in the apoptosis of A549 epithelial cells by respiratory syncytial virus. J Cell Biochem 80: 441–454.

    CAS  PubMed  Google Scholar 

  • Bitsch A, Schuchardt J, Bunkowski S, Kuhlmann T, Bruck W. 2000. Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain 123 (Pt 6): 1174–1183.

    PubMed  Google Scholar 

  • Bjartmar C, Kidd G, Mork S, Rudick R, Trapp BD. 2000. Neurological disability correlates with spinal cord axonal loss and reduced N-acetyl aspartate in chronic multiple sclerosis patients. Ann Neurol 48: 893–901.

    CAS  PubMed  Google Scholar 

  • Blomgren K, Zhu C, Wang X, Karlsson JO, Leverin AL, et al. 2001. Synergistic activation of caspase-3 by m-calpain after neonatal hypoxia-ischemia: A mechanism of “pathological apoptosis”? J Biol Chem 276: 10191–10198.

    CAS  PubMed  Google Scholar 

  • Bozzali M, Cercignani M, Sormani MP, Comi G, Filippi M. 2002. Quantification of brain gray matter damage in different MS phenotypes by use of diffusion tensor MR imaging. AJNR Am J Neuroradiol 23: 985–988.

    PubMed  Google Scholar 

  • Bruck W. 2007. New insights into the pathology of multiple sclerosis: Towards a unified concept? J Neurol 254 (Suppl. 1): I3–I9.

    Google Scholar 

  • Bullington SJ, Waksman BH. 1958. Uveitis in rabbits with experimental allergic encephalomyelitis; results produced by injection of nervous tissue and adjuvants. AMA Arch Ophthalmol 59: 435–445.

    CAS  PubMed  Google Scholar 

  • Calabresi PA. 2002. Considerations in the treatment of relapsing-remitting multiple sclerosis. Neurology 58: S10–S22.

    CAS  PubMed  Google Scholar 

  • Castellino F, Huang AY, Altan-Bonnet G, Stoll S, Scheinecker C, et al. 2006. Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction. Nature 440: 890–895.

    CAS  PubMed  Google Scholar 

  • Chakrabarti AK, Dasgupta S, Banik NL, Hogan EL. 1990. Regulation of the calcium-activated neutral proteinase (CANP) of bovine brain by myelin lipids. Biochim Biophys Acta 1038: 195–198.

    CAS  PubMed  Google Scholar 

  • CHAMPS Study Group. 2001. Interferon beta-1a for optic neuritis patients at high risk for multiple sclerosis. Am J Ophthalmol 132: 463–471.

    Google Scholar 

  • Chitnis T, Khoury SJ. 2003. Cytokine shifts and tolerance in experimental autoimmune encephalomyelitis. Immunol Res 28: 223–239.

    CAS  PubMed  Google Scholar 

  • Cohen BA, Mikol DD. 2004. Mitoxantrone treatment of multiple sclerosis: Safety considerations. Neurology 63: S28–S32.

    CAS  PubMed  Google Scholar 

  • Cole SR, Beck RW, Moke PS, Gal RL, Long DT. 2000. The National Eye Institute Visual Function Questionnaire: Experience of the ONTT. Optic Neuritis Treatment Trial. Invest Ophthalmol Vis Sci 41: 1017–1021.

    CAS  PubMed  Google Scholar 

  • Comi G, Filippi M, Barkhof F, Durelli L, Edan G, et al. 2001. Effect of early interferon treatment on conversion to definite multiple sclerosis: A randomised study. Lancet 357: 1576–1582.

    CAS  PubMed  Google Scholar 

  • Compston A, Sadovnick AD. 1992. Epidemiology and genetics of multiple sclerosis. Curr Opin Neurol Neurosurg 5: 175–181.

    CAS  PubMed  Google Scholar 

  • Croall DE, DeMartino GN. 1991. Calcium-activated neutral protease (calpain) system: Structure, function, and regulation. Physiol Rev 71: 813–847.

    CAS  PubMed  Google Scholar 

  • Crofford LJ, Tan B, McCarthy CJ, Hla T. 1997. Involvement of nuclear factor kappa B in the regulation of cyclooxygenase-2 expression by interleukin-1 in rheumatoid synoviocytes. Arthritis Rheum 40: 226–236.

    CAS  PubMed  Google Scholar 

  • Crowe MJ, Bresnahan JC, Shuman SL, Masters JN, Beattie MS. 1997. Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat Med 3: 73–76.

    CAS  PubMed  Google Scholar 

  • Cuzzocrea S, McDonald MC, Mazzon E, Siriwardena D, Serraino I, et al. 2000. Calpain inhibitor I reduces the development of acute and chronic inflammation. Am J Pathol 157: 2065–2079.

    CAS  PubMed  Google Scholar 

  • Das A, Garner DP, Del Re AM, Woodward JJ, Kumar DM, et al. 2006. Calpeptin provides functional neuroprotection to rat retinal ganglion cells following Ca2+ influx. Brain Res 1084: 146–157.

    CAS  PubMed  Google Scholar 

  • Das A, Sribnick EA, Wingrave JM, Del Re AM, Woodward JJ, et al. 2005. Calpain activation in apoptosis of ventral spinal cord 4.1 (VSC4.1) motoneurons exposed to glutamate: Calpain inhibition provides functional neuroprotection. J Neurosci Res 81: 551–562.

    CAS  PubMed  Google Scholar 

  • Dasgupta S, Zhou Y, Jana M, Banik NL, Pahan K. 2003. Sodium phenylacetate inhibits adoptive transfer of experimental allergic encephalomyelitis in SJL/J mice at multiple steps. J Immunol 170: 3874–3882.

    CAS  PubMed  Google Scholar 

  • de Rosbo NK, Ben-Nun A. 1998. T-cell responses to myelin antigens in multiple sclerosis; relevance of the predominant autoimmune reactivity to myelin oligodendrocyte glycoprotein. J Autoimmun 11: 287–299.

    CAS  PubMed  Google Scholar 

  • De Stefano N, Matthews PM, Filippi M, Agosta F, De Luca M, et al. 2003. Evidence of early cortical atrophy in MS: Relevance to white matter changes and disability. Neurology 60: 1157–1162.

    CAS  PubMed  Google Scholar 

  • De Stefano N, Narayanan S, Matthews PM, Francis GS, Antel JP, et al. 1999. In vivo evidence for axonal dysfunction remote from focal cerebral demyelination of the type seen in multiple sclerosis. Brain 122 (Pt 10): 1933–1939.

    PubMed  Google Scholar 

  • Deshpande RV, Goust JM, Chakrabarti AK, Barbosa E, Hogan EL, et al. 1995b. Calpain expression in lymphoid cells. Increased mRNA and protein levels after cell activation. J Biol Chem 270: 2497–2505.

    CAS  Google Scholar 

  • Deshpande RV, Goust JM, Hogan EL, Banik NL. 1995a. Calpain secreted by activated human lymphoid cells degrades myelin. J Neurosci Res 42: 259–265.

    CAS  Google Scholar 

  • Diaz-Sanchez M, Williams K, DeLuca GC, Esiri MM. 2006. Protein co-expression with axonal injury in multiple sclerosis plaques. Acta Neuropathol 111: 289–299.

    CAS  PubMed  Google Scholar 

  • Diem R, Hobom M, Maier K, Weissert R, Storch MK, et al. 2003. Methylprednisolone increases neuronal apoptosis during autoimmune CNS inflammation by inhibition of an endogenous neuroprotective pathway. J Neurosci 23: 6993–7000.

    CAS  PubMed  Google Scholar 

  • Dourdin N, Bhatt AK, Dutt P, Greer PA, Arthur JS, et al. 2001. Reduced cell migration and disruption of the actin cytoskeleton in calpain-deficient embryonic fibroblasts. J Biol Chem 276: 48382–48388.

    CAS  PubMed  Google Scholar 

  • Dowling P, Husar W, Menonna J, Donnenfeld H, Cook S, et al. 1997. Cell death and birth in multiple sclerosis brain. J Neurol Sci 149: 1–11.

    CAS  PubMed  Google Scholar 

  • Foroozan R, Buono LM, Savino PJ, Sergott RC. 2002. Acute demyelinating optic neuritis. Curr Opin Ophthalmol 13: 375–380.

    PubMed  Google Scholar 

  • Fox DA, Poblenz AT, He L. 1999. Calcium overload triggers rod photoreceptor apoptotic cell death in chemical-induced and inherited retinal degenerations. Ann N Y Acad Sci 893: 282–285.

    CAS  PubMed  Google Scholar 

  • Frohman EM, Frohman TC, Zee DS, McColl R, Galetta S. 2005. The neuro-ophthalmology of multiple sclerosis. Lancet Neurol 4: 111–121.

    PubMed  Google Scholar 

  • Gao G, Dou QP. 2000. N-terminal cleavage of bax by calpain generates a potent proapoptotic 18-kDa fragment that promotes bcl-2-independent cytochrome C release and apoptotic cell death. J Cell Biochemi 80: 53–72.

    CAS  Google Scholar 

  • Gardner P. 1989. Calcium and T lymphocyte activation. Cell 59: 15–20.

    CAS  PubMed  Google Scholar 

  • Gehrmann J, Banati RB, Cuzner ML, Kreutzberg GW, Newcombe J. 1995. Amyloid precursor protein (APP) expression in multiple sclerosis lesions. Glia 15: 141–151.

    CAS  PubMed  Google Scholar 

  • Gerondakis S, Grumont R, Rourke I, Grossmann M. 1998. The regulation and roles of Rel/NF-kappa B transcription factors during lymphocyte activation. Curr Opin Immunol 10: 353–359.

    CAS  PubMed  Google Scholar 

  • Glading A, Lauffenburger DA, Wells A. 2002. Cutting to the chase: Calpain proteases in cell motility. Trends Cell Biol 12: 46–54.

    CAS  PubMed  Google Scholar 

  • Goodin DS, Arnason BG, Coyle PK, Frohman EM, Paty DW. 2003. The use of mitoxantrone (Novantrone) for the treatment of multiple sclerosis: Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 61: 1332–1338.

    CAS  PubMed  Google Scholar 

  • Griscavage JM, Wilk S, Ignarro LJ. 1996. Inhibitors of the proteasome pathway interfere with induction of nitric oxide synthase in macrophages by blocking activation of transcription factor NF-kappa B. Proc Natl Acad Sci USA 93: 3308–3312.

    CAS  PubMed  Google Scholar 

  • Guan Y, Shindler KS, Tabuena P, Rostami AM. 2006. Retinal ganglion cell damage induced by spontaneous autoimmune optic neuritis in MOG-specific TCR transgenic mice. J Neuroimmunol 178: 40–48.

    CAS  PubMed  Google Scholar 

  • Guyton MK, Das A, Matzelle DD, Samantaray S, Azuma M, et al. 2006. SJA6017 attenuates immune cell infiltration and neurodegeneration in EAE. Eighth International Congress of Neuroimmunology, Medimond, Nagoya, Japan.

    Google Scholar 

  • Guyton MK, Sribnick EA, Ray SK, Banik NL. 2005a. A role for calpain in optic neuritis. Ann N Y Acad Sci 1053: 48–54.

    CAS  Google Scholar 

  • Guyton MK, Wingrave JM, Yallapragada AV, Wilford GG, SribnickEA, et al. 2005b. Upregulation of calpain correlates with increased neurodegeneration in acute experimental auto-immune encephalomyelitis. J Neurosci Res 81: 53–61.

    CAS  Google Scholar 

  • Hartung HP, Gonsette R, Konig N, Kwiecinski H, Guseo A, et al. 2002. Mitoxantrone in progressive multiple sclerosis: A placebo-controlled, double-blind, randomised, multicentre trial. Lancet 360: 2018–2025.

    PubMed  Google Scholar 

  • Hassen GW, Feliberti J, Kesner L, Stracher A, Mokhtarian F. 2006. A novel calpain inhibitor for the treatment of acute experimental autoimmune encephalomyelitis. J Neuroimmunol 180: 135–146.

    CAS  PubMed  Google Scholar 

  • Hendry L, John S. 2004. Regulation of STAT signalling by proteolytic processing. Eur J Biochem 271: 4613–4620.

    CAS  PubMed  Google Scholar 

  • Hickey WF. 1999. The pathology of multiple sclerosis: A historical perspective. J Neuroimmunol 98: 37–44.

    CAS  PubMed  Google Scholar 

  • Hightower KR, David LL, Shearer TR. 1987. Regional distribution of free calcium in selenite cataract: Relation to calpain II. Invest Ophthalmol Vis Sci 28: 1702–1706.

    CAS  PubMed  Google Scholar 

  • Hirai S, Kawasaki H, Yaniv M, Suzuki K. 1991. Degradation of transcription factors, c-Jun and c-Fos, by calpain. FEBS Lett 287: 57–61.

    CAS  PubMed  Google Scholar 

  • Hobom M, Storch MK, Weissert R, Maier K, Radhakrishnan A, et al. 2004. Mechanisms and time course of neuronal degeneration in experimental autoimmune encephalomyelitis. Brain Pathol 14: 148–157.

    PubMed  Google Scholar 

  • Hogan EL, Banik NL, Goust JM, Lobo D. 1987. Enzymes in cerebrospinal fluid: Evidence for a calcium activated neutral proteinase in CSF. Cellular and Humoral Components of Cerebrospinal Fluid in Multiple Sclerosis, Lowenthal AN, Raus J, editors. Vol. 129.Plenum Press; New York: pp. 479–487.

    Google Scholar 

  • Horikawa Y, Oda N, Cox NJ, Li X, Orho-Melander M, et al. 2000. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet 26: 163–175.

    CAS  PubMed  Google Scholar 

  • Huang Y, Wang KK. 2001. The calpain family and human disease. Trends Mol Med 7: 355–362.

    CAS  PubMed  Google Scholar 

  • Huttenlocher A, Palecek SP, Lu Q, Zhang W, Mellgren RL, et al. 1997. Regulation of cell migration by the calcium-dependent protease calpain. J Biol Chem 272: 32719–32722.

    CAS  PubMed  Google Scholar 

  • Imam SA, Guyton MK, Haque A, Vandenbark A, Tyor WR, et al. 2007. Increased calpain correlates with Th1 cytokine profile in PBMCs from MS patients. J Neuroimmunol. 190: 139-145

    Google Scholar 

  • Inglese M. 2006. Multiple sclerosis: New insights and trends. AJNR Am J Neuroradiol 27: 954–957.

    CAS  PubMed  Google Scholar 

  • Inuzuka TSS, Baba H, Miyatake T. 1987. Degradation of myelin basic protein in myelin by cerebrospinal fluid and effect of protease inhibitors. Cellular and Humoral Components of Cerebrospinal Fluid in Multiple Sclerosis, Lowenthal AN, Raus. J, editors. Vol. 129. Plenum Press; New York: pp. 489–523.

    Google Scholar 

  • Jacobs LD, Beck RW, Simon JH, Kinkel RP, Brownscheidle CM, et al. (CHAMPS Study Group.) 2000. Intramuscular interferon beta-1a therapy initiated during a first demyelinating event in multiple sclerosis. N Engl J Med 343: 898–904.

    CAS  PubMed  Google Scholar 

  • Jacobs LD, Cookfair DL, Rudick RA, Herndon RM, Richert JR, et al. (The Multiple Sclerosis Collaborative Research Group (MSCRG)). 1996. Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. Ann Neurol 39: 285–294.

    CAS  PubMed  Google Scholar 

  • Johnson KP, Brooks BR, Cohen JA, Ford CC, Goldstein J, et al. (The Copolymer 1 Multiple Sclerosis Study Group.) 1995. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: Results of a phase III multicenter, double-blind placebo-controlled trial. Neurology 45: 1268–1276.

    CAS  PubMed  Google Scholar 

  • Kang P. 2006. Optic neuritis. http://www.emedicine.com/radio/topic488.htm.

  • Kengatharan M, De Kimpe SJ, Thiemermann C. 1996. Analysis of the signal transduction in the induction of nitric oxide synthase by lipoteichoic acid in macrophages. Br J Pharmacol 117: 1163–1170.

    CAS  PubMed  Google Scholar 

  • Kim J, Sanders SP, Siekierski ES, Casolaro V, Proud D. 2000. Role of NF-kappa B in cytokine production induced from human airway epithelial cells by rhinovirus infection. J Immunol 165: 3384–3392.

    CAS  PubMed  Google Scholar 

  • Kim JM, Oh YK, Kim YJ, Cho SJ, Ahn MH, et al. 2001. Nuclear factor-kappa B plays a major role in the regulation of chemokine expression of HeLa cells in response to Toxoplasma gondii infection. Parasitol Res 87: 758–763.

    CAS  PubMed  Google Scholar 

  • Kim MJ, Jo DG, Hong GS, Kim BJ, Lai M, et al. 2002. Calpain-dependent cleavage of cain/cabin1 activates calcineurin to mediate calcium-triggered cell death. Proc Natl Acad Sci USA 99: 9870–9875.

    CAS  PubMed  Google Scholar 

  • Kishimoto A. 1990. Limited proteolysis of protein kinase C by calpain, its possible implication. Adv Second Messenger Phosphoprotein Res 24: 472–477.

    CAS  PubMed  Google Scholar 

  • Kitamura Y, Miyamura A, Takata K, Inden M, Tsuchiya D, et al. 2003. Possible involvement of both endoplasmic reticulum-and mitochondria-dependent pathways in thapsigargin-induced apoptosis in human neuroblastoma SH-SY5Y cells. J Pharmacol Sci 92: 228–236.

    CAS  PubMed  Google Scholar 

  • Kornek B, Storch MK, Weissert R, Wallstroem E, Stefferl A, et al. 2000. Multiple sclerosis and chronic autoimmune encephalomyelitis: A comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol 157: 267–276.

    CAS  PubMed  Google Scholar 

  • Kubbutat MH, Vousden KH. 1997. Proteolytic cleavage of human p53 by calpain: A potential regulator of protein stability. Mol Cell Biol 17: 460–468.

    CAS  PubMed  Google Scholar 

  • Kuhlmann T, Lingfeld G, Bitsch A, Schuchardt J, Bruck W. 2002. Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain 125: 2202–2212.

    PubMed  Google Scholar 

  • Kupina NC, Nath R, Bernath EE, Inoue J, Mitsuyoshi A, et al. 2001. The novel calpain inhibitor SJA6017 improves functional outcome after delayed administration in a mouse model of diffuse brain injury. J Neurotrauma 18: 1229–1240.

    CAS  PubMed  Google Scholar 

  • Land KJ, Moll JS, Kaplan MH, Seetharamaiah GS. 2004. Signal transducer and activator of transcription (Stat)-6-dependent, but not Stat4-dependent, immunity is required for the development of autoimmunity in Graves’ hyperthyroidism. Endocrinology 145: 3724–3730.

    CAS  PubMed  Google Scholar 

  • Li GL, Brodin G, Farooque M, Funa K, Holtz A, et al. 1996. Apoptosis and expression of Bcl-2 after compression trauma to rat spinal cord. J Neuropathol Exp Neurol 55: 280–289.

    CAS  PubMed  Google Scholar 

  • Liu F, Grundke-Iqbal I, Iqbal K, Oda Y, Tomizawa K, et al. 2005. Truncation and activation of calcineurin A by calpain I in Alzheimer disease brain. J Biol Chem 280: 37755–37762.

    CAS  PubMed  Google Scholar 

  • Lokuta MA, Nuzzi PA, Huttenlocher A. 2003. Calpain regulates neutrophil chemotaxis. Proc Natl Acad Sci USA 100: 4006–4011.

    CAS  PubMed  Google Scholar 

  • McCord JM. 1993. Oxygen-derived free radicals. New Horiz 1: 70–76.

    CAS  PubMed  Google Scholar 

  • McFarlin DE, McFarland HF. 1982. Multiple sclerosis (second of two parts). N Engl J Med 307: 1246–1251.

    CAS  PubMed  Google Scholar 

  • Mendel I, Kerlero de Rosbo N, Ben-Nun A. 1995. A myelin oligodendrocyte glycoprotein peptide induces typical chronic experimental autoimmune encephalomyelitis in H-2b mice: Fine specificity and T cell receptor V beta expression of encephalitogenic T cells. Eur J Immunol 25: 1951–1959.

    CAS  PubMed  Google Scholar 

  • Meyer R, Weissert R, Diem R, Storch MK, de Graaf KL, et al. 2001. Acute neuronal apoptosis in a rat model of multiple sclerosis. J Neurosci 21: 6214–6220.

    CAS  PubMed  Google Scholar 

  • Mikhak Z, Fleming CM, Medoff BD, Thomas SY, Tager AM, et al. 2006. STAT1 in peripheral tissue differentially regulates homing of antigen-specific Th1 and Th2 cells. J Immunol 176: 4959–4967.

    CAS  PubMed  Google Scholar 

  • Milligan SA, Owens MW, Grisham MB. 1996. Inhibition of IkappaB-alpha and IkappaB-beta proteolysis by calpain inhibitor I blocks nitric oxide synthesis. Arch Biochem Biophys 335: 388–395.

    CAS  PubMed  Google Scholar 

  • Moncada S, Palmer RM, Higgs EA. 1991. Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol Rev 43: 109–142.

    CAS  PubMed  Google Scholar 

  • Montalban X. 2005. Primary progressive multiple sclerosis. Curr Opin Neurol 18: 261–266.

    PubMed  Google Scholar 

  • Murachi T. 1984. Calcium-dependent proteinases and specific inhibitors: Calpain and calpastatin. Biochem Soc Symp 49: 149–167.

    CAS  PubMed  Google Scholar 

  • Nakagawa T, Yuan J. 2000. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150: 887–894.

    CAS  PubMed  Google Scholar 

  • Nathan C. 1992. Nitric oxide as a secretory product of mammalian cells. FASEB J 6: 3051–3064.

    CAS  PubMed  Google Scholar 

  • Newcombe J, Glynn P, Cuzner ML. 1982. The immunological identification of brain proteins on cellulose nitrate in human demyelinating disease. J Neurochem 38: 267–274.

    CAS  PubMed  Google Scholar 

  • Nguyen KB, McCombe PA, Pender MP. 1994. Macrophage apoptosis in the central nervous system in experimental autoimmune encephalomyelitis. J Autoimmun 7: 145–152.

    CAS  PubMed  Google Scholar 

  • Nihard P. 1982. Effect of calcium-entry-blockers on arterioles, capillaries, and venules of the retina. Angiology 33: 37–45.

    CAS  PubMed  Google Scholar 

  • Nixon RA. 1986. Fodrin degradation by calcium-activated neutral proteinase (CANP) in retinal ganglion cell neurons and optic glia: Preferential localization of CANP activities in neurons. J Neurosci 6: 1264–1271.

    CAS  PubMed  Google Scholar 

  • Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG. 2000. Multiple sclerosis. N Engl J Med 343: 938–952.

    CAS  PubMed  Google Scholar 

  • O’Neill JK, Baker D, Morris MM, Gschmeissner SE, Jenkins HG, et al. 1998. Optic neuritis in chronic relapsing experimental allergic encephalomyelitis in Biozzi ABH mice: Demyelination and fast axonal transport changes in disease. J Neuroimmunol 82: 210–218.

    PubMed  Google Scholar 

  • Oda A, Wakao H, Fujita H. 2002. Calpain is a signal transducer and activator of transcription (STAT) 3 and STAT5 protease. Blood 99: 1850–1852.

    CAS  PubMed  Google Scholar 

  • Paquet-Durand F, Johnson L, Ekstrom P. 2007. Calpain activity in retinal degeneration. J Neurosci Res 85: 693–702.

    CAS  PubMed  Google Scholar 

  • Peterson JW, Bo L, Mork S, Chang A, Trapp BD. 2001. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol 50: 389–400.

    CAS  PubMed  Google Scholar 

  • Pitt D, Werner P, Raine CS. 2000. Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med 6: 67–70.

    CAS  PubMed  Google Scholar 

  • Polster BM, Basanez G, Etxebarria A, Hardwick JM, Nicholls DG. 2005. Calpain I induces cleavage and release of apoptosis-inducing factor from isolated mitochondria. J Biol Chem 280: 6447–6454.

    CAS  PubMed  Google Scholar 

  • Ponnappan S, Cullen SJ, Ponnappan U. 2005. Constitutive degradation of IkappaBalpha in human T lymphocytes is mediated by calpain. Immun Ageing 2: 15.

    PubMed  Google Scholar 

  • Posmantur R, Hayes RL, Dixon CE, Taft WC. 1994. Neurofilament 68 and neurofilament 200 protein levels decrease after traumatic brain injury. J Neurotrauma 11: 533–545.

    CAS  PubMed  Google Scholar 

  • PRISMS (Prevention of Relapses and Disability by Interferon beta-1a Subcutaneously in Multiple Sclerosis) Study Group. 1998. Randomised double-blind placebo-controlled study of interferon beta-1a in relapsing/remitting multiple sclerosis. Lancet 352: 1498–1504.

    Google Scholar 

  • Raine CS. 1982. Multiple sclerosis and chronic relapsing EAE: Comparative ultrastrucural neuropathology. Multiple Sclerosis: The Patient, the Disease, and the Treatment. Hallpike J, Adams C, Tourtellotte W, editors. London: Chapman and Hall; pp. 411–458.

    Google Scholar 

  • Raine CS, Barnett LB, Brown A, Behar T, McFarlin DE. 1980. Neuropathology of experimental allergic encephalomyelitis in inbred strains of mice. Lab Invest 43: 150–157.

    CAS  PubMed  Google Scholar 

  • Ransom BR, Waxman SG, Stys PK. 1993. Anoxic injury of central myelinated axons: Some mechanisms and pharmacology. Molecular and Cellular Approaches to the Treatment of Neurological Disease. Waxman SG, editor. New York: Raven Press; pp. 121–151.

    Google Scholar 

  • Rao NA. 1981. Chronic experimental allergic optic neuritis. Invest Ophthalmol Vis Sci 20: 159–172.

    CAS  PubMed  Google Scholar 

  • Ray SK. 2006. Currently evaluated calpain and caspase inhibitors for neuroprotection in experimental brain ischemia. Curr Med Chem 13: 3425–3440.

    CAS  PubMed  Google Scholar 

  • Ray SK, Banik NL. 2003. Calpain and its involvement in the pathophysiology of CNS injuries and diseases: Therapeutic potential of calpain inhibitors for prevention of neurodegeneration. Curr Drug Targets CNS Neurol Disord 2: 173–189.

    CAS  PubMed  Google Scholar 

  • Ray SK, Fidan M, Nowak MW, Wilford GG, Hogan EL, et al. 2000. Oxidative stress and Ca2+ influx upregulate calpain and induce apoptosis in PC12 cells. Brain Res 852: 326–334.

    CAS  PubMed  Google Scholar 

  • Ray SK, Wilford GG, Crosby CV, Hogan EL, Banik NL. 1999a. Diverse stimuli induce calpain overexpression and apoptosis in C6 glioma cells. Brain Res 829: 18–27.

    CAS  Google Scholar 

  • Ray SK, Wilford GG, Matzelle DC, Hogan EL, Banik NL. 1999b. Calpeptin and methylprednisolone inhibit apoptosis in rat spinal cord injury. Ann N Y Acad Sci 890: 261–269.

    CAS  Google Scholar 

  • Richard I, Broux O, Allamand V, Fougerousse F, Chiannilkulchai N, et al. 1995. Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell 81: 27–40.

    CAS  PubMed  Google Scholar 

  • Saido TC, Sorimachi H, Suzuki K. 1994. Calpain: New perspectives in molecular diversity and physiological-pathological involvement. FASEB J 8: 814–822.

    CAS  PubMed  Google Scholar 

  • Saito K, Elce JS, Hamos JE, Nixon RA. 1993. Widespread activation of calcium-activated neutral proteinase (calpain) in the brain in Alzheimer disease: A potential molecular basis for neuronal degeneration. Proc Natl Acad Sci USA 90: 2628–2632.

    CAS  PubMed  Google Scholar 

  • Sakuma H, Kohyama K, Park IK, Miyakoshi A, Tanuma N, et al. 2004. Clinicopathological study of a myelin oligodendrocyte glycoprotein-induced demyelinating disease in LEW.1AV1 rats. Brain 127: 2201–2213.

    PubMed  Google Scholar 

  • Sanges D, Comitato A, Tammaro R, Marigo V. 2006. Apoptosis in retinal degeneration involves cross-talk between apoptosis-inducing factor (AIF) and caspase-12 and is blocked by calpain inhibitors. Proc Natl Acad Sci USA 103: 17366–17371.

    CAS  PubMed  Google Scholar 

  • Santella L, Kyozuka K, De Riso L, Carafoli E. 1998. Calcium, protease action, and the regulation of the cell cycle. Cell Calcium 23: 123–130.

    CAS  PubMed  Google Scholar 

  • Sarin A, Clerici M, Blatt SP, Hendrix CW, Shearer GM, et al. 1994. Inhibition of activation-induced programmed cell death and restoration of defective immune responses of HIV+ donors by cysteine protease inhibitors. J Immunol 153: 862–872.

    CAS  PubMed  Google Scholar 

  • Sato S, Quarles RH, Brady RO, Tourtellotte WW. 1984. Elevated neutral protease activity in myelin from brains of patients with multiple sclerosis. Ann Neurol 15: 264–267.

    CAS  PubMed  Google Scholar 

  • Schaecher K, Goust JM, Banik NL. 2004. The effects of calpain inhibition on IkB alpha degradation after activation of PBMCs: Identification of the calpain cleavage sites. Neurochem Res 29: 1443–1451.

    CAS  PubMed  Google Scholar 

  • Schaecher KE, Goust JM, Banik NL. 2001. The effects of calpain inhibition upon IL-2 and CD25 expression in human peripheral blood mononuclear cells. J Neuroimmunol 119: 333–342.

    CAS  PubMed  Google Scholar 

  • Shao H, Huang Z, Sun SL, Kaplan HJ, Sun D. 2004. Myelin/oligodendrocyte glycoprotein-specific T-cells induce severe optic neuritis in the C57BL/6 mouse. Invest Ophthalmol Vis Sci 45: 4060–4065.

    PubMed  Google Scholar 

  • Sharma AK, Rohrer B. 2004. Calcium-induced calpain mediates apoptosis via caspase-3 in a mouse photoreceptor cell line. J Biol Chem 279: 35564–35572.

    CAS  PubMed  Google Scholar 

  • Sharma AK, Rohrer B. 2007. Sustained elevation of intracellular cGMP causes oxidative stress triggering calpain-mediated apoptosis in photoreceptor degeneration. Curr Eye Res 32: 259–269.

    CAS  PubMed  Google Scholar 

  • Shearer TR, David LL. 1982. Role of calcium in selenium cataract. Curr Eye Res 2: 777–784.

    PubMed  Google Scholar 

  • Shearer TR, David LL. 1990. Calpain in lens and cataract. Intracellular Calcium-Dependent Proteolysis. Mellgren RL, editor. CRC Press; pp. 265–274.

    Google Scholar 

  • Shields DC, Banik NL. 1998a. Upregulation of calpain activity and expression in experimental allergic encephalomyelitis: A putative role for calpain in demyelination. Brain Res 794: 68–74.

    CAS  Google Scholar 

  • Shields DC, Banik NL. 1998b. Putative role of calpain in the pathophysiology of experimental optic neuritis. Exp Eye Res 67: 403–410.

    CAS  Google Scholar 

  • Shields DC, Banik NL. 1999. Pathophysiological role of calpain in experimental demyelination. J Neurosci Res 55: 533–541.

    CAS  PubMed  Google Scholar 

  • Shields DC, Leblanc C, Banik NL. 1997. Calcium-mediated neurofilament protein degradation in rat optic nerve in vitro: Activity and autolysis of calpain proenzyme. Exp Eye Res 65: 15–21.

    CAS  PubMed  Google Scholar 

  • Shields DC, Schaecher KE, Goust JM, Banik NL. 1999a. Calpain activity and expression are increased in splenic inflammatory cells associated with experimental allergic encephalomyelitis. J Neuroimmunol 99: 1–12.

    CAS  Google Scholar 

  • Shields DC, Schaecher KE, Saido TC, Banik NL. 1999b. A putative mechanism of demyelination in multiple sclerosis by a proteolytic enzyme, calpain. Proc Natl Acad Sci USA 96: 11486–11491.

    CAS  Google Scholar 

  • Shields DC, Tyor WR, Deibler GE, Banik NL. 1998. Increased calpain expression in experimental demyelinating optic neuritis: An immunocytochemical study. Brain Res 784: 299–304.

    CAS  PubMed  Google Scholar 

  • Shindler KS, Guan Y, Ventura E, Bennett J, Rostami A. 2006. Retinal ganglion cell loss induced by acute optic neuritis in a relapsing model of multiple sclerosis. Mult Scler 12: 526–532.

    PubMed  Google Scholar 

  • Shirasaki Y, Nakamura M, Yamaguchi M, Miyashita H, Sakai O, et al. 2006. Exploration of orally available calpain inhibitors 2: Peptidyl hemiacetal derivatives. J Med Chem 49: 3926–3932.

    CAS  PubMed  Google Scholar 

  • Smith KJ, Hall SM. 2001. Factors directly affecting impulse transmission in inflammatory demyelinating disease: Recent advances in our understanding. Curr Opin Neurol 14: 289–298.

    CAS  PubMed  Google Scholar 

  • Smith T, Schmied M, Hewson AK, Lassmann H, Cuzner ML. 1996. Apoptosis of T cells and macrophages in the central nervous system of intact and adrenalectomized Lewis rats during experimental allergic encephalomyelitis. J Autoimmun 9: 167–174.

    CAS  PubMed  Google Scholar 

  • Soede RD, Driessens MH, Ruuls-Van Stalle L, Van Hulten PE, Brink A, et al. 1999. LFA-1 to LFA-1 signals involve zeta-associated protein-70 (ZAP-70) tyrosine kinase: Relevance for invasion and migration of a T cell hybridoma. J Immunol 163: 4253–4261.

    CAS  PubMed  Google Scholar 

  • Squier MK, Miller AC, Malkinson AM, Cohen JJ. 1994. Calpain activation in apoptosis. J Cell Physiol 159: 229–237.

    CAS  PubMed  Google Scholar 

  • Stewart MP, McDowall A, Hogg N. 1998. LFA-1-mediated adhesion is regulated by cytoskeletal restraint and by a Ca2+-dependent protease, calpain. J Cell Biol 140: 699–707.

    CAS  PubMed  Google Scholar 

  • Storch MK, Stefferl A, Brehm U, Weissert R, Wallstrom E, et al. 1998. Autoimmunity to myelin oligodendrocyte glycoprotein in rats mimics the spectrum of multiple sclerosis pathology. Brain Pathol 8: 681–694.

    CAS  PubMed  Google Scholar 

  • Suzuki K, Hata S, Kawabata Y, Sorimachi H. 2004. Structure, activation, and biology of calpain. Diabetes 53 (Suppl 1): S12–S18.

    CAS  PubMed  Google Scholar 

  • Thome M, Acuto O. 1995. Molecular mechanism of T-cell activation: Role of protein tyrosine kinases in antigen receptor-mediated signal transduction. Res Immunol 146: 291–307.

    CAS  PubMed  Google Scholar 

  • Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, et al. 1998. Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338: 278–285.

    CAS  PubMed  Google Scholar 

  • Twining SS, Kirschner SE, Mahnke LA, Frank DW. 1993. Effect of Pseudomonas aeruginosa elastase, alkaline protease, and exotoxin A on corneal proteinases and proteins. Invest Ophthalmol Vis Sci 34: 2699–2712.

    CAS  PubMed  Google Scholar 

  • von Sallmann L, Myers RE, Lerner EM 2nd, Stone SH. 1967. Vasculo-occlusive retinopathy in experimental allergic encephalomyelitis. Arch Ophthalmol 78: 112–120.

    CAS  PubMed  Google Scholar 

  • Wagner BJ, Margolis JW. 1993. Thermal stability and activation of bovine lens multicatalytic proteinase complex (proteasome). Arch Biochem Biophys 307: 146–152.

    CAS  PubMed  Google Scholar 

  • Wang KK, Posmantur R, Nadimpalli R, Nath R, Mohan P, et al. 1998. Caspase-mediated fragmentation of calpain inhibitor protein calpastatin during apoptosis. Arch Biochem Biophys 356: 187–196.

    CAS  PubMed  Google Scholar 

  • Watanabe N, Vande Woude GF, Ikawa Y, Sagata N. 1989. Specific proteolysis of the c-mos proto-oncogene product by calpain on fertilization of Xenopus eggs. Nature 342: 505–511.

    CAS  PubMed  Google Scholar 

  • Watt F, Molloy PL. 1993. Specific cleavage of transcription factors by the thiol protease, m-calpain. Nucleic Acids Res 21: 5092–5100.

    CAS  PubMed  Google Scholar 

  • Williams KC, Ulvestad E, Hickey WF. 1994. Immunology of multiple sclerosis. Clin Neurosci 2: 229–245.

    CAS  PubMed  Google Scholar 

  • Wood DE, Newcomb EW. 2000. Cleavage of Bax enhances its cell death function. Exp Cell Res 256: 375–382.

    CAS  PubMed  Google Scholar 

  • Wu HY, Tomizawa K, Matsui H. 2007. Calpain-calcineurin signaling in the pathogenesis of calcium-dependent disorder. Acta Med Okayama 61: 123–137.

    CAS  PubMed  Google Scholar 

  • Wujek JR, Bjartmar C, Richer E, Ransohoff RM, Yu M, et al. 2002. Axon loss in the spinal cord determines permanent neurological disability in an animal model of multiple sclerosis. J Neuropathol Exp Neurol 61: 23–32.

    PubMed  Google Scholar 

  • Yamamoto K, Arakawa T, Ueda N, Yamamoto S. 1995. Transcriptional roles of nuclear factor kappa B and nuclear factor-interleukin-6 in the tumor necrosis factor alpha-dependent induction of cyclooxygenase-2 in MC3T3-E1 cells. J Biol Chem 270: 31315–31320.

    CAS  PubMed  Google Scholar 

  • Yoshida H, Murachi T, Tsukahara I. 1984. Degradation of actin and vimentin by calpain II, a Ca2+-dependent cysteine proteinase, in bovine lens. FEBS Lett 170: 259–262.

    CAS  PubMed  Google Scholar 

  • Youn YK, LaLonde C, Demling R. 1991. Use of antioxidant therapy in shock and trauma. Circ Shock 35: 245–249.

    CAS  PubMed  Google Scholar 

  • Zimmerman UJ, Boring L, Pak JH, Mukerjee N, Wang KK. 2000. The calpain small subunit gene is essential: Its inactivation results in embryonic lethality. IUBMB Life 50: 63–68.

    CAS  PubMed  Google Scholar 

  • Zingarelli B, O’Connor M, Wong H, Salzman AL, Szabo C. 1996. Peroxynitrite-mediated DNA strand breakage activates poly-adenosine diphosphate ribosyl synthetase and causes cellular energy depletion in macrophages stimulated with bacterial lipopolysaccharide. J Immunol 156: 350–358.

    CAS  PubMed  Google Scholar 

  • Zuckerman LA, Pullen L, Miller J. 1998. Functional consequences of costimulation by ICAM-1 on IL-2 gene expression and T cell activation. J Immunol 160: 3259–3268.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the R01 grants (CA-91460, NS-31622, NS-38146, NS-41088, NS-45967, NS-56176, and NS-57811) from the National Institutes of Health and Spinal Cord Injury Research Foundation grants (SCIRF-0803, SCIRF-1205, and SCIRF-607) from the State of South Carolina.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Guyton, M.K., Smith, A.W., Ray, S.K., Banik, N.L. (2009). Experimental Autoimmune Encephalomyelitis in the Pathogenesis of Optic Neuritis: Is Calpain Involved?. In: Lajtha, A., Banik, N., Ray, S.K. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30375-8_22

Download citation

Publish with us

Policies and ethics