Skip to main content

Glutamate Receptors: NMDA and Delta Receptors

  • Reference work entry
Handbook of Neurochemistry and Molecular Neurobiology
  • 1530 Accesses

Abstract

N-methyl-d-aspartate (NMDA) receptors and delta (δ) receptors are members of the ionotropic glutamate receptor (iGluR) family, along with α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and kainate receptors. Unlike AMPA receptors, both NMDA and δ receptors do not contribute to normal fast neurotransmission. Instead, the activity of these receptors regulates AMPA receptor trafficking and synaptic plasticity. The traditional function of NMDA receptors is achieved through their Ca2+ permeable channels. However, it has become increasingly clear that intracellular proteins that bind to the C-termini of NR2 subunits, and possibly those of NR3 subunits, play crucial roles in NMDA receptor trafficking and intracellular signaling, leading to specific gene expression. Similarly, recent studies have indicated that the δ2 glutamate receptor does not function as a channel, but as a non-ionotropic receptor that regulates intracellular signaling through its C-terminal interaction. Another feature common to both NMDA and δ2 receptors is their ability to bind to d-serine and glycine; these molecules are released from glial cells as “gliotransmitters” and regulate synaptic plasticity. Therefore, although the amino acid sequence similarity between the two receptor families is rather low, characterization of the signaling mechanisms underlying each family should add to the knowledge of each family, facilitating a better understanding of learning and memory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AMPA:

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

BDNF:

brain-derived neurotrophic factor

CaN:

calcineurin

CREB:

cyclic AMP responsive element-binding protein

ER:

endoplasmic reticulum

ERK:

extracellular signal-regulated kinase

iGluR:

ionotropic glutamate receptor

JNK:

c-Jun NH2-terminal kinase

LBD:

ligand-binding domain

LTD:

long-term depression

LTP:

long-term potentiation

MAPK:

mitogen-activated protein kinase

NMDA:

N-methyl-d-aspartate

NTD:

N-terminal domain

PF:

parallel fiber

PKC:

protein kinase C

PSD:

postsynaptic density

SynGAP:

synaptic Ras GTPase activating protein

TM1:

transmembrane domain 1

References

  • Al-Hallaq RA, Conrads TP, Veenstra TD, Wenthold RJ. 2007. NMDA di-heteromeric receptor populations and associated proteins in rat hippocampus. J Neurosci 27: 8334–8343.

    Article  PubMed  CAS  Google Scholar 

  • Barria A, Malinow R. 2002. Subunit-specific NMDA receptor trafficking to synapses. Neuron 35: 345–353.

    Article  PubMed  CAS  Google Scholar 

  • Barria A, Malinow R. 2005. NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII. Neuron 48: 289–301.

    Article  PubMed  CAS  Google Scholar 

  • Bellone C, Nicoll RA. 2007. Rapid bidirectional switching of synaptic NMDA receptors. Neuron 55: 779–785.

    Article  PubMed  CAS  Google Scholar 

  • Berberich S, Jensen V, Hvalby O, Seeburg PH, Kohr G. 2007. The role of NMDAR subtypes and charge transfer during hippocampal LTP induction. Neuropharmacology 52: 77–86.

    Article  PubMed  CAS  Google Scholar 

  • Billard JM. 2008. D-serine signalling as a prominent determinant of neuronal-glial dialogue in the healthy and diseased brain. J Cell Mol Med 12(5B): 1872–1884.

    PubMed  CAS  Google Scholar 

  • Chatterton JE, Awobuluyi M, Premkumar LS, Takahashi H, Talantova M, et al. 2002. Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 415: 793–798.

    PubMed  CAS  Google Scholar 

  • Cull-Candy SG, Leszkiewicz DN. 2004. Role of distinct NMDA receptor subtypes at central synapses. Sci STKE 2004 re16.

    Google Scholar 

  • Dingledine R, Borges K, Bowie D, Traynelis SF. 1999. The glutamate receptor ion channels. Pharmacol Rev 51: 7–61.

    PubMed  CAS  Google Scholar 

  • Ehlers MD. 2003. Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat Neurosci 6: 231–242.

    Article  PubMed  CAS  Google Scholar 

  • Fukaya M, Hayashi Y, Watanabe M. 2005a. NR2 to NR3B subunit switchover of NMDA receptors in early postnatal motoneurons. Eur J Neurosci 21: 1432–1436.

    Article  PubMed  Google Scholar 

  • Fukaya M, Watanabe M. 2005b. Selective localization of NMDA receptor NR3A subunit at climbing fiber-interneuron synapses in the cerebellum. Neurosci Res 52: S125.

    Google Scholar 

  • Furukawa H, Gouaux E. 2003. Mechanisms of activation, inhibition and specificity: Crystal structures of the NMDA receptor NR1 ligand-binding core. Embo J 22: 2873–2885.

    Article  PubMed  CAS  Google Scholar 

  • Gao J, Maison SF, Wu X, Hirose K, Jones SM, et al. 2007. Orphan glutamate receptor delta1 subunit required for high-frequency hearing. Mol Cell Biol 27: 4500–4512.

    Article  PubMed  CAS  Google Scholar 

  • Gereau RW, IV, Swanson GT. 2008. The glutamate receptors. Humana Press.New Jersey:

    Book  Google Scholar 

  • Guillaud L, Wong R, Hirokawa N. 2008. Disruption of KIF17-Mint1 interaction by CaMKII-dependent phosphorylation: A molecular model of kinesin-cargo release. Nat Cell Biol 10: 19–29.

    Article  PubMed  CAS  Google Scholar 

  • Hirai H. 2001. Ca2+-dependent regulation of synaptic delta2 glutamate receptor density in cultured rat Purkinje neurons. Eur J Neurosci 14: 73–82.

    Article  PubMed  CAS  Google Scholar 

  • Hirai H, Launey T, Mikawa S, Torashima T, Yanagihara D, et al. 2003. New role of delta2-glutamate receptors in AMPA receptor trafficking and cerebellar function. Nat Neurosci 6: 869–876.

    Article  PubMed  CAS  Google Scholar 

  • Hirai H, Miyazaki T, Kakegawa W, Matsuda S, Mishina M, et al. 2005. Rescue of abnormal phenotypes of the delta2 glutamate receptor-null mice by mutant delta2 transgenes. EMBO Rep 6: 90–95.

    Article  PubMed  CAS  Google Scholar 

  • Hori N, Tan Y, King M, Strominger NL, Carpenter DO. 2002. Differential actions and excitotoxicity of glutamate agonists on motoneurons in adult mouse cervical spinal cord slices. Brain Res 958: 434–438.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda Y, Dick KA, Weatherspoon MR, Gincel D, Armbrust KR, et al. 2006. Spectrin mutations cause spinocerebellar ataxia type 5. Nat Genet 38: 184–190.

    Article  PubMed  CAS  Google Scholar 

  • Jackson MF, Konarski JZ, Weerapura M, Czerwinski W, MacDonald JF. 2006. Protein kinase C enhances glycine-insensitive desensitization of NMDA receptors independently of previously identified protein kinase C sites. J Neurochem 96: 1509–1518.

    Article  PubMed  CAS  Google Scholar 

  • Jakobs TC, Ben Y, Masland RH. 2007. Expression of mRNA for glutamate receptor subunits distinguishes the major classes of retinal neurons, but is less specific for individual cell types. Mol Vis 13: 933–948.

    PubMed  CAS  Google Scholar 

  • Kakegawa W, Kohda K, Yuzaki M. 2007a. The delta2 ‘ionotropic’ glutamate receptor functions as a non-ionotropic receptor to control cerebellar synaptic plasticity. J Physiol 584: 89–96.

    Article  PubMed  CAS  Google Scholar 

  • Kakegawa W, Miyazaki T, Emi K, Matsuda K, Kohda K, et al. 2008. Differential regulation of synaptic plasticity and cerebellar motor learning by the C-terminal PDZ-binding motif of GluRdelta2. J Neurosci 28: 1460–1468.

    Article  PubMed  CAS  Google Scholar 

  • Kakegawa W, Miyazaki T, Hirai H, Motohashi J, Mishina M, et al. 2007b. Ca2+ permeability of the channel pore is not essential for the delta2 glutamate receptor to regulate synaptic plasticity and motor coordination. J Physiol 579: 729–735.

    Article  PubMed  CAS  Google Scholar 

  • Kim MJ, Dunah AW, Wang YT, Sheng M. 2005. Differential roles of NR2A- and NR2B-containing NMDA receptors in Ras-ERK signaling and AMPA receptor trafficking. Neuron 46: 745–760.

    Article  PubMed  CAS  Google Scholar 

  • Kina S, Tezuka T, Kusakawa S, Kishimoto Y, Kakizawa S, et al. 2007. Involvement of protein-tyrosine phosphatase PTPMEG in motor learning and cerebellar long-term depression. Eur J Neurosci 26: 2269–2278.

    Article  PubMed  Google Scholar 

  • Kohda K, Kakegawa W, Matsuda S, Nakagami R, Kakiya N, et al. 2007. The extreme C-terminus of GluRdelta2 is essential for induction of long-term depression in cerebellar slices. Eur J Neurosci 25: 1357–1362.

    Article  PubMed  Google Scholar 

  • Kohda K, Wang Y, Yuzaki M. 2000. Mutation of a glutamate receptor motif reveals its role in gating and delta2 receptor channel properties. Nat Neurosci 3: 315–322.

    Article  PubMed  CAS  Google Scholar 

  • Krapivinsky G, Krapivinsky L, Manasian Y, Ivanov A, Tyzio R, et al. 2003. The NMDA receptor is coupled to the ERK pathway by a direct interaction between NR2B and RasGRF1. Neuron 40: 775–784.

    Article  PubMed  CAS  Google Scholar 

  • Lau CG, Zukin RS. 2007. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci 8: 413–426.

    Article  PubMed  CAS  Google Scholar 

  • Laube B, Hirai H, Sturgess M, Betz H, Kuhse J. 1997. Molecular determinants of agonist discrimination by NMDA receptor subunits: Analysis of the glutamate binding site on the NR2B subunit. Neuron 18: 493–503.

    Article  PubMed  CAS  Google Scholar 

  • Lavezzari G, McCallum J, Dewey CM, Roche KW. 2004. Subunit-specific regulation of NMDA receptor endocytosis. J Neurosci 24: 6383–6391.

    Article  PubMed  CAS  Google Scholar 

  • Leonard AS, Bayer KU, Merrill MA, Lim IA, Shea MA, et al. 2002. Regulation of calcium/calmodulin-dependent protein kinase II docking to N-methyl-d-aspartate receptors by calcium/calmodulin and alpha-actinin. J Biol Chem 277: 48441–48448.

    Article  PubMed  CAS  Google Scholar 

  • Leonard AS, Lim IA, Hemsworth DE, Horne MC, Hell JW. 1999. Calcium/calmodulin-dependent protein kinase II is associated with the N-methyl-D-aspartate receptor. Proc Natl Acad Sci USA 96: 3239–3244.

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Wong TP, Pozza MF, Lingenhoehl K, Wang Y, et al. 2004. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 304: 1021–1024.

    Article  PubMed  CAS  Google Scholar 

  • Losi G, Prybylowski K, Fu Z, Luo J, Wenthold RJ, et al. 2003. PSD-95 regulates NMDA receptors in developing cerebellar granule neurons of the rat. J Physiol 548: 21–29.

    Article  PubMed  CAS  Google Scholar 

  • Low CM, Lyuboslavsky P, French A, Le P, Wyatte K, et al. 2003. Molecular determinants of proton-sensitive N-methyl-d-aspartate receptor gating. Mol Pharmacol 63: 1212–1222.

    Article  PubMed  CAS  Google Scholar 

  • Martineau M, Baux G, Mothet JP. 2006. d-serine signalling in the brain: Friend and foe. Trends Neurosci 29: 481–491.

    Article  PubMed  CAS  Google Scholar 

  • Massey PV, Johnson BE, Moult PR, Auberson YP, Brown MW, et al. 2004. Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression. J Neurosci 24: 7821–7828.

    Article  PubMed  CAS  Google Scholar 

  • Matsuda K, Fletcher M, Kamiya Y, Yuzaki M. 2003. Specific assembly with the NMDA receptor 3B subunit controls surface expression and calcium permeability of NMDA receptors. J Neurosci 23: 10064–10073.

    PubMed  CAS  Google Scholar 

  • Matsuda K, Matsuda S, Gladding CM, Yuzaki M. 2006a. Characterization of the delta2 glutamate receptor-binding protein delphilin: Splicing variants with differential palmitoylation and an additional PDZ domain. J Biol Chem 281: 25577–25587.

    Article  PubMed  CAS  Google Scholar 

  • Matsuda S, Matsuda K, Yuzaki M. 2006b. A new motif necessary and sufficient for stable localization of the delta2 glutamate receptors at postsynaptic spines. J Biol Chem 281: 17501–17509.

    Article  PubMed  CAS  Google Scholar 

  • Matsuda S, Miura E, Matsuda K, Kakegawa W, Kohda K, et al. 2008. Accumulation of AMPA receptors in autophagosomes in neuronal axons lacking adaptor protein AP-4. Neuron 57: 730–745.

    Article  PubMed  CAS  Google Scholar 

  • Matsuda S, Yuzaki M. 2002. Mutation in hotfoot-4J mice results in retention of delta2 glutamate receptors in ER. Eur J Neurosci 16: 1507–1516.

    Article  PubMed  Google Scholar 

  • Mauceri D, Gardoni F, Marcello E, Di Luca M. 2007. Dual role of CaMKII-dependent SAP97 phosphorylation in mediating trafficking and insertion of NMDA receptor subunit NR2A. J Neurochem 100: 1032–1046.

    Article  PubMed  CAS  Google Scholar 

  • Miyagi Y, Yamashita T, Fukaya M, Sonoda T, Okuno T, et al. 2002. Delphilin: A novel PDZ and formin homology domain-containing protein that synaptically colocalizes and interacts with glutamate receptor delta 2 subunit. J Neurosci 22: 803–814.

    PubMed  CAS  Google Scholar 

  • Nagy GG, Watanabe M, Fukaya M, Todd AJ. 2004. Synaptic distribution of the NR1, NR2A and NR2B subunits of the N-methyl-d-aspartate receptor in the rat lumbar spinal cord revealed with an antigen-unmasking technique. Eur J Neurosci 20: 3301–3312.

    Article  PubMed  Google Scholar 

  • Nakanishi S, Okazawa M. 2006. Membrane potential-regulated Ca2+ signalling in development and maturation of mammalian cerebellar granule cells. J Physiol 575: 389–395.

    Article  PubMed  CAS  Google Scholar 

  • Nakazawa T, Komai S, Watabe AM, Kiyama Y, Fukaya M, et al. 2006. NR2B tyrosine phosphorylation modulates fear learning as well as amygdaloid synaptic plasticity. Embo J 25: 2867–2877.

    Article  PubMed  CAS  Google Scholar 

  • Naur P, Hansen KB, Kristensen AS, Dravid SM, Pickering DS, et al. 2007. Ionotropic glutamate-like receptor delta2 binds D-serine and glycine. Proc Natl Acad Sci USA 104: 14116–14121.

    Article  PubMed  CAS  Google Scholar 

  • Nishi M, Hinds H, Lu HP, Kawata M, Hayashi Y. 2001. Motoneuron-specific expression of NR3B, a novel NMDA-type glutamate receptor subunit that works in a dominant-negative manner. J Neurosci 21: RC185.

    PubMed  CAS  Google Scholar 

  • Nuriya M, Huganir RL. 2006. Regulation of AMPA receptor trafficking by N-cadherin. J Neurochem 97: 652–661.

    Article  PubMed  CAS  Google Scholar 

  • Paoletti P, Neyton J. 2007. NMDA receptor subunits: Function and pharmacology. Curr Opin Pharmacol 7: 39–47.

    Article  PubMed  CAS  Google Scholar 

  • Papadakis M, Hawkins LM, Stephenson FA. 2004. Appropriate NR1-NR1 disulfide-linked homodimer formation is requisite for efficient expression of functional, cell surface N-methyl-D-aspartate NR1/NR2 receptors. J Biol Chem 279: 14703–14712.

    Article  PubMed  CAS  Google Scholar 

  • Perez-Otano I, Ehlers MD. 2005. Homeostatic plasticity and NMDA receptor trafficking. Trends Neurosci 28: 229–238.

    Article  PubMed  CAS  Google Scholar 

  • Perez-Otano I, Lujan R, Tavalin SJ, Plomann M, Modregger J, et al. 2006. Endocytosis and synaptic removal of NR3A-containing NMDA receptors by PACSIN1/syndapin1. Nat Neurosci 9: 611–621.

    Article  PubMed  CAS  Google Scholar 

  • Perez-Otano I, Schulteis CT, Contractor A, Lipton SA, Trimmer JS, et al. 2001. Assembly with the NR1 subunit is required for surface expression of NR3A-containing NMDA receptors. J Neurosci 21: 1228–1237.

    PubMed  CAS  Google Scholar 

  • Plested AJ, Mayer ML. 2007. Structure and mechanism of kainate receptor modulation by anions. Neuron 53: 829–841.

    Article  PubMed  CAS  Google Scholar 

  • Prybylowski K, Chang K, Sans N, Kan L, Vicini S, et al. 2005. The synaptic localization of NR2B-containing NMDA receptors is controlled by interactions with PDZ proteins and AP-2. Neuron 47: 845–857.

    Article  PubMed  CAS  Google Scholar 

  • Quinlan EM, Lebel D, Brosh I, Barkai E. 2004. A molecular mechanism for stabilization of learning-induced synaptic modifications. Neuron 41: 185–192.

    Article  PubMed  CAS  Google Scholar 

  • Rao VR, Finkbeiner S. 2007. NMDA and AMPA receptors: Old channels, new tricks. Trends Neurosci 30: 284–291.

    Article  PubMed  CAS  Google Scholar 

  • Roche KW, Standley S, McCallum J, Dune Ly C, Ehlers MD, et al. 2001. Molecular determinants of NMDA receptor internalization. Nat Neurosci 4: 794–802.

    Article  PubMed  CAS  Google Scholar 

  • Saglietti L, Dequidt C, Kamieniarz K, Rousset MC, Valnegri P, et al. 2007. Extracellular interactions between GluR2 and N-cadherin in spine regulation. Neuron 54: 461–477.

    Article  PubMed  CAS  Google Scholar 

  • Salter MG, Fern R. 2005. NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature 438: 1167–1171.

    Article  PubMed  CAS  Google Scholar 

  • Sans N, Prybylowski K, Petralia RS, Chang K, Wang YX, et al. 2003. NMDA receptor trafficking through an interaction between PDZ proteins and the exocyst complex. Nat Cell Biol 5: 520–530.

    Article  PubMed  CAS  Google Scholar 

  • Schorge S, Colquhoun D. 2003. Studies of NMDA receptor function and stoichiometry with truncated and tandem subunits. J Neurosci 23: 1151–1158.

    PubMed  CAS  Google Scholar 

  • Schuler T, Mesic I, Madry C, Bartholomaus I, Laube B. 2008. Formation of NR1/NR2 and NR1/NR3 heterodimers constitutes the initial step in N-methyl-D-aspartate receptor assembly. J Biol Chem 283: 37–46.

    Article  PubMed  CAS  Google Scholar 

  • Scott DB, Blanpied TA, Ehlers MD. 2003. Coordinated PKA and PKC phosphorylation suppresses RXR-mediated ER retention and regulates the surface delivery of NMDA receptors. Neuropharmacology 45: 755–767.

    Article  PubMed  CAS  Google Scholar 

  • Scott DB, Blanpied TA, Swanson GT, Zhang C, Ehlers MD. 2001. An NMDA receptor ER retention signal regulated by phosphorylation and alternative splicing. J Neurosci 21: 3063–3072.

    PubMed  CAS  Google Scholar 

  • Scott DB, Michailidis I, Mu Y, Logothetis D, Ehlers MD. 2004. Endocytosis and degradative sorting of NMDA receptors by conserved membrane-proximal signals. J Neurosci 24: 7096–7109.

    Article  PubMed  CAS  Google Scholar 

  • Setou M, Nakagawa T, Seog DH, Hirokawa N. 2000. Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 288: 1796–1802.

    Article  PubMed  CAS  Google Scholar 

  • Smothers CT, Woodward JJ. 2007. Pharmacological characterization of glycine-activated currents in HEK 293 cells expressing N-methyl-D-aspartate NR1 and NR3 subunits. J Pharmacol Exp Ther 322: 739–748.

    Article  PubMed  CAS  Google Scholar 

  • Standley S, Roche KW, McCallum J, Sans N, Wenthold RJ. 2000. PDZ domain suppression of an ER retention signal in NMDA receptor NR1 splice variants. Neuron 28: 887–898.

    Article  PubMed  CAS  Google Scholar 

  • Thomas CG, Krupp JJ, Bagley EE, Bauzon R, Heinemann SF, et al. 2006a. Probing N-methyl-D-aspartate receptor desensitization with the substituted-cysteine accessibility method. Mol Pharmacol 69: 1296–1303.

    Article  PubMed  CAS  Google Scholar 

  • Thomas CG, Miller AJ, Westbrook GL. 2006b. Synaptic and extrasynaptic NMDA receptor NR2 subunits in cultured hippocampal neurons. J Neurophysiol 95: 1727–1734.

    Article  PubMed  CAS  Google Scholar 

  • Uemura T, Kakizawa S, Yamasaki M, Sakimura K, Watanabe M, et al. 2007. Regulation of long-term depression and climbing fiber territory by glutamate receptor delta2 at parallel fiber synapses through its C-terminal domain in cerebellar Purkinje cells. J Neurosci 27: 12096–12108.

    Article  PubMed  CAS  Google Scholar 

  • Uemura T, Mori H, Mishina M. 2004. Direct interaction of GluRdelta2 with Shank scaffold proteins in cerebellar Purkinje cells. Mol Cell Neurosci 26: 330–341.

    Article  PubMed  CAS  Google Scholar 

  • Vissel B, Krupp JJ, Heinemann SF, Westbrook GL. 2002. Intracellular domains of NR2 alter calcium-dependent inactivation of N-methyl-D-aspartate receptors. Mol Pharmacol 61: 595–605.

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Matsuda S, Drews V, Torashima T, Meisler MH, et al. 2003. A hot spot for hotfoot mutations in the gene encoding the delta2 glutamate receptor. Eur J Neurosci 17: 1581–1590.

    Article  PubMed  Google Scholar 

  • Wee KS, Zhang Y, Khanna S, Low CM. 2008. Immunolocalization of NMDA receptor subunit NR3B in selected structures in the rat forebrain, cerebellum, and lumbar spinal cord. J Comp Neurol 509: 118–135.

    Article  PubMed  CAS  Google Scholar 

  • Wollmuth LP, Kuner T, Jatzke C, Seeburg PH, Heintz N, et al. 2000. The Lurcher mutation identifies delta 2 as an AMPA/kainate receptor-like channel that is potentiated by Ca2+. J Neurosci 20: 5973–5980.

    PubMed  CAS  Google Scholar 

  • Wong HK, Liu XB, Matos MF, Chan SF, Perez-Otano I, et al. 2002. Temporal and regional expression of NMDA receptor subunit NR3A in the mammalian brain. J Comp Neurol 450: 303–317.

    Article  PubMed  CAS  Google Scholar 

  • Yaka R, Thornton C, Vagts AJ, Phamluong K, Bonci A, et al. 2002. NMDA receptor function is regulated by the inhibitory scaffolding protein, RACK1. Proc Natl Acad Sci USA 99: 5710–5715.

    Article  PubMed  CAS  Google Scholar 

  • Yamakura T, Askalany AR, Petrenko AB, Kohno T, Baba H, et al. 2005. The NR3B subunit does not alter the anesthetic sensitivities of recombinant N-methyl-D-aspartate receptors. Anesth Analg 100: 1687–1692.

    Article  PubMed  CAS  Google Scholar 

  • Yao Y, Mayer ML. 2006. Characterization of a soluble ligand binding domain of the NMDA receptor regulatory subunit NR3A. J Neurosci 26: 4559–4566.

    Article  PubMed  CAS  Google Scholar 

  • Yasumura M, Uemura T, Yamasaki M, Sakimura K, Watanabe M, et al. 2008. Role of the internal Shank-binding segment of glutamate receptor delta2 in synaptic localization and cerebellar functions. Neurosci Lett 433: 146–151.

    Article  PubMed  CAS  Google Scholar 

  • Yuzaki M. 2003. The delta2 glutamate receptor: 10 years later. Neurosci Res 46: 11–22.

    Article  PubMed  CAS  Google Scholar 

  • Yuzaki M. 2004. The delta2 glutamate receptor: A key molecule controlling synaptic plasticity and structure in Purkinje cells. Cerebellum 3: 89–93.

    Article  PubMed  CAS  Google Scholar 

  • Yuzaki M. 2005. Transgenic rescue for characterizing orphan receptors: A review of delta2 glutamate receptor. Transgenic Res 14: 117–121.

    Article  PubMed  CAS  Google Scholar 

  • Yuzaki M. 2008. New (but old) molecules regulating synapse integrity and plasticity. Cbn1 and the δ2 glutamate receptor. Neurosci, in press.

    Google Scholar 

  • Zhu Y, Pak D, Qin Y, McCormack SG, Kim MJ, et al. 2005. Rap2-JNK removes synaptic AMPA receptors during depotentiation. Neuron 46: 905–916.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Yuzaki, M. (2009). Glutamate Receptors: NMDA and Delta Receptors. In: Lajtha, A., Mikoshiba, K. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30370-3_16

Download citation

Publish with us

Policies and ethics