Skip to main content

Leading-Edge Models

  • Chapter
Neuroscience
  • 597 Accesses

Abstract

To develop an intuitive understanding of a challenging area, it is sometimes useful to bracket the problem, on one hand looking fully at the intricacies and on the other taking the simplest possible perspective. Having considered a rather complete description of a squid axon in Chapter 4, we now turn our attention to simpler models of a nerve fiber that focus attention on the leading edge of an impulse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. KS Cole, Membranes, Ions and Impulses, University of California Press, Berkeley, 1968.

    Google Scholar 

  2. KS Cole and HJ Curtis, Electrical impedance of a squid giant axon during activity, J. Gen. Physiol 22 (1939) 649–670.

    Article  CAS  PubMed  Google Scholar 

  3. JW Cooley and FA Dodge, Digital computer solutions for excitation and propagation of the nerve impulse, Biophys. J. 6 (1966) 583–599.

    PubMed  CAS  Google Scholar 

  4. AV Gurevich, RG Mints, and AA Pukhov, Motion of a kink in a bistable medium with hysteresis, Physica D 35 (1989) 382–394.

    Article  Google Scholar 

  5. AF Huxley, Can a nerve propagate a subthreshold disturbance? J, Physiol (London) 148 (1959) 80P–81P.

    Google Scholar 

  6. BI Khodorov, The Problem of Excitability, Plenum Press, New York, 1974.

    Google Scholar 

  7. H Kunov, Nonlinear Transmission Lines Simulating Nerve Axon, PhD Thesis, Electronics Laboratory, Technical University of Denmark, 1966.

    Google Scholar 

  8. R Luther, Räumliche Fortpflanzung chemischer Reaktionen. Z, Elektrochem. 12(32) (1906) 596–600.

    Article  CAS  Google Scholar 

  9. R Luther, (English translation in J. Chem, Ed. 64 (1987) 740–742.)

    Article  Google Scholar 

  10. OA Mornev and AC Scott, unpublished calculations.

    Google Scholar 

  11. D Noble and RB Stein, The threshold conditions for initiation of action potentials by excitable cells, J, Physiol (London) 187 (1966) 129–142.

    CAS  Google Scholar 

  12. F Offner, A Weinberg, and C Young, Nerve conduction theory: Some mathematical consequences of Bernstein’s model, Bull Math. Biophys. 2 (1940) 89–103.

    Article  Google Scholar 

  13. VF Pastushenko, YA Chizmadzhev, and VS Markin, Speed of excitation in the reduced Hodgkin-Huxley model: I. Rapid relaxation of sodium current, Biophysics 20 (1975) 685–692.

    Google Scholar 

  14. VF Pastushenko, YA Chizmadzhev, and VS Markin, Speed of excitation in the reduced Hodgkin-Huxley model: I I. Slow relaxation of sodium current, Biophysics 20 (1975) 894–901.

    Google Scholar 

  15. AC Scott, Analysis of nonlinear distributed systems, Trans. IRE CT-9 (1962) 192–195.

    Google Scholar 

  16. AC Scott, Neuristor propagation on a tunnel diode loaded transmission line. Proc. IEEE 51 (1963) 240.

    Article  Google Scholar 

  17. AC Scott. Strength duration curves for threshold excitation of nerves, Math. Biosci. 18 (1973) 137–152.

    Article  Google Scholar 

  18. AC Scott, The electrophysics of a nerve fiber, Rev. Mod. Phys. 11 (1975) 487–533.

    Article  Google Scholar 

  19. AC Scott; Nonlinear Science: Emergence and Dynamics of Coherent Structures, Oxford University Press, Oxford; 1999.

    Google Scholar 

  20. YL Vorontsov, MI Kozhevonikova, and IV Polyakov, Wave processes in active RC-lines, Radio Eng. Electron. Phys. (USSR) 11 (1967) 1449–1456.

    Google Scholar 

  21. YB Zeldovich and GI Barenblatt, Theory of flame propagation. Combust. and Flame 3 (1959) 61–74.

    Article  CAS  Google Scholar 

  22. YB Zeldovich and DA Frank-Kamenetsky, K teorii ravnomernogo rasprostranenia plameni, Dokl. Akad. Nauk SSSR 19 (1938) 693–697.

    CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

(2002). Leading-Edge Models. In: Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-0-387-22463-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-22463-3_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95403-5

  • Online ISBN: 978-0-387-22463-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics