Skip to main content
  • 2717 Accesses

Abstract

In this chapter, we review important concepts and approaches for phylogeny reconstruction from sequence data.We first cover some basic definitions and properties of phylogenetics, and briefly explain how scientists model sequence evolution and measure sequence divergence. We then discuss three major approaches for phylogenetic reconstruction: distance-based phylogenetic reconstruction, maximum parsimony, and maximum likelihood. In the third part of the chapter, we review how multiple phylogenies are compared by consensus methods and how to assess confidence using bootstrapping. At the end of the chapter are two sections that list popular software packages and additional reading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, B., Steel, M.: Subtree transfer operations and their induced metrics on evolutionary trees. Annals of Combinatorics 5, 1–15 (2001)

    Article  MathSciNet  Google Scholar 

  2. Amenta, N., Clarke, F., St. John, K.: A linear-time majority tree algorithm. In: Algorithms in Bioinformatics, Lecture Notes in Computer Science, vol. 2812, pp. 216–227. Springer, Heidelberg (2003)

    Google Scholar 

  3. Bollobas, B.: Modern Graph Theory. Springer (2002)

    Google Scholar 

  4. Buneman, P.: A note on the metric property of trees. J. Combin. Theory Ser. B 17, 48–50 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  5. CIPRES: Cipres. URL http://www.phylo.org/

  6. DasGupta, B., He, X., Jiang, T., Li, M., Tromp, J., Zhang, L.: On computing the nearest neighbor interchange distance. Proc. DIMACS Workshop on Discrete Problems with Medical Applications 55, 125–143 (2000)

    MathSciNet  Google Scholar 

  7. Day, W.: Computational complexity of inferring phylogenies fromdissimilarity matrices. Bull. Math. Biol. 49, 461–467 (1987)

    MATH  MathSciNet  Google Scholar 

  8. Dayhoff, M., Schwartz, R., Orcutt, B.: A model of evolutionary change in proteins. In: Atlas of protein sequence and structure, vol. 5, pp. 345–358. Nat. Biomed. Res. Found. (1978)

    Google Scholar 

  9. Desper, R., Gascuel, O.: Fast and accurate phylogeny reconstruction algorithms based on the minimum-evolution principle. J Comput Biol 9(5), 687–705 (2002)

    Article  Google Scholar 

  10. Efron, B., Halloran, E., Holmes, S.: Bootstrap confidence levels for phylogenetic trees. PNAS 93(23), 13, 429–13,429 (1996)

    Article  Google Scholar 

  11. Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17(6), 368–376 (1981)

    Article  Google Scholar 

  12. Felsenstein, J.: Inferring phylogenies. Sinauer Associates (2004)

    Google Scholar 

  13. Finden, C.R., Gordon, A.D.: Obtaining common pruned trees. Journal of Classification 2(1), 255–276 (1985)

    Article  Google Scholar 

  14. Fitch, W.: Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20(4) (1971)

    Article  Google Scholar 

  15. Gascuel, O.: BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14(7), 685–695 (1997)

    Google Scholar 

  16. Gascuel, O., Steel, M.: Neighbor-joining revealed. Mol Biol Evol 23(11), 1997–2000 (2006)

    Article  Google Scholar 

  17. Goloboff, P.: Analyzing large data sets in reasonable times: Solutions for composite optima. Cladistics 15(4), 415–428 (1999)

    Article  Google Scholar 

  18. Grassly, N., Adachj, J., Rambaut, A.: PSeq-Gen: an application for the Monte Carlo simulation of protein sequence evolution along phylogenetic trees (1997)

    Google Scholar 

  19. Green, P.: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82(4), 711–732 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  20. Guindon, S., Gascuel, O.: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52(5), 696–704 (2003)

    Article  Google Scholar 

  21. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University Press (1997)

    Google Scholar 

  22. Hasegawa, M., Kishino, H., Yano, T.: Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22(2), 160–174 (1985)

    Article  Google Scholar 

  23. Hastings, W.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970)

    Article  MATH  Google Scholar 

  24. Hickey, G., Dehne, F., Rau-Chaplin, A., Blouin, C.: SPR distance computation for unrooted trees. Evolutionary Bioinformatics 4, 17–27 (2008)

    Google Scholar 

  25. Huelsenbeck, J.P., Ronquist, F.: MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8), 754–755 (2001)

    Article  Google Scholar 

  26. Jukes, T., Cantor, C.: Evolution of protein molecules in HN Munro, ed. Mammalian protein metabolism, pp. 21–132. Academic Press, New York (1969)

    Google Scholar 

  27. Kimura, M.: A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16(2), 111–120 (1980)

    Article  Google Scholar 

  28. Li, W., Graur, D.: Fundamentals of Molecular Evolution. Sinauer Associates, Sunderland, Massachusetts (1991)

    Google Scholar 

  29. Lunter, G., Mikls, I., Drummond, A., Jensen, J.L., Hein, J.: Bayesian coestimation of phylogeny and sequence alignment. BMC Bioinfo 6, 83 (2005)

    Article  Google Scholar 

  30. Maddison, W.P., Maddison., D.: Mesquite: a modular system for evolutionary analysis. Version 2.5 (2008). URL http://mesquiteproject.org

  31. Margush, T., McMorris, F.R.: Consensus n-trees. Bulletin of Mathematical Biology 43(2), 239–244 (1981)

    MATH  MathSciNet  Google Scholar 

  32. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equation of state calculations by fast computing machines. The Journal of Chemical Physics 21(6), 1087 (1953)

    Article  Google Scholar 

  33. Moret, B., Bader, D., Warnow, T.: High-performance algorithm engineering for computational phylogenetics. The Journal of Supercomputing 22, 99–111 (2002)

    Article  MATH  Google Scholar 

  34. Olsen, G.: Gary Olsen’s interpretation of the ”Newick’s 8:45” tree format standard. URL http://evolution.genetics.washington.edu/phylip/newick doc.html

  35. Ota, S., Li, W.H.: NJML: a hybrid algorithmfor the neighbor-joining and maximum-likelihood methods. Mol Biol Evol 17(9), 1401–1409 (2000)

    Google Scholar 

  36. Paradis, E., Claude, J., Strimmer, K.: APE: Analyses of phylogenetics and evolution in r language. Bioinformatics 20(2), 289–290 (2004)

    Article  Google Scholar 

  37. R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2008). URL http://www.R-project.org

  38. Rifaieh, R., Unwin, R., Carver, J., Miller, M.: SWAMI: Integrating biological databases and analysis tools within user friendly environment. Data Integration in the Life Sciences 4th International Workshop, DILS 2007, Philadelphia, PA, USA, June 27-29, 2007: Proceedings (2007)

    Google Scholar 

  39. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4), 406–425 (1987)

    Google Scholar 

  40. Sanderson, M.: r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19(2), 301–302 (2003)

    Article  Google Scholar 

  41. Semple, C., Steel, M.: Phylogenetics, Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2003)

    Google Scholar 

  42. Sneath, P.: Numerical taxonomy. WH Freeman and Co., San Francisco (1973)

    MATH  Google Scholar 

  43. Stamatakis, A., Ludwig, T., Meier, H.: RAxML-III: a fast program for maximum likelihoodbased inference of large phylogenetic trees. Bioinformatics 21(4), 456–463 (2005)

    Article  Google Scholar 

  44. Stoye, J.: Rose: generating sequence families. Bioinformatics 14(2), 157–163 (1998)

    Article  Google Scholar 

  45. Swofford, D., Olsen, G., Waddell, P., Hillis, D.: Phylogenetic inference. In: Molecular Systematics, vol. 2, pp. 407–514. Sunderland (1996)

    Google Scholar 

  46. Swofford, D.L.: PAUP*: Phylogenetic Analysis Using Parsimony (and Other Methods). Sinauer Associates (2003). Version 4

    Google Scholar 

  47. Waterman, M.S., Smith, T.F., Singh, M., Beyer, W.A.: Additive evolutionary trees. J Theor Biol 64(2), 199–213 (1977)

    Article  MathSciNet  Google Scholar 

  48. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall (2000)

    Google Scholar 

  49. Yang, Z.: Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods. Journal ofMolecular Evolution 39(3), 306–314 (1994)

    Article  Google Scholar 

  50. Yang, Z.: PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13(5), 555–556 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Ryvkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer US

About this chapter

Cite this chapter

Ryvkin, P., Wang, LS. (2010). Phylogenetic Trees From Sequences. In: Heath, L., Ramakrishnan, N. (eds) Problem Solving Handbook in Computational Biology and Bioinformatics. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09760-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09760-2_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-09759-6

  • Online ISBN: 978-0-387-09760-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics