Skip to main content

Thrombin Receptor Modulators: Medicinal Chemistry, Biological Evaluation, and Clinical Application

  • Chapter
  • First Online:
Thrombin

Abstract

The serine protease a-thrombin maintains haemostasis through its coagulant, anticoagulant, and platelet-activator functions. This enzyme also has important cellular effects involving cell proliferation, cytokine and growth factor release, and tissue remodeling, which are mediated by G-protein coupled receptors known as protease-activated receptors (PARs). Thrombin can activate three of the four PAR family members, and PAR1 is the primary thrombin-responsive receptor in human cells. PAR1 plays an important role during the response to tissue injury and the associated inflammatory processes. The blockade of PAR1 offers a new approach for treating various disorders that depend on thrombin generation, including thrombosis and restenosis. Antagonists of PAR1 will interrupt thrombin’s receptor function, but not thrombin’s proteolytic activity, thereby providing an alternative means to attenuate the pathological effects of thrombin. This chapter deals with the topic of PAR1, with the key medicinal chemistry, pharmacology, and clinical aspects of PAR1 antagonists, and with the topic of PAR4. The full potential of PAR1 antagonists has yet to be realized commercially, but the promise of novel therapeutics is reflected by two antiplatelet PAR1 antagonists in advanced human clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahn, H. S., Foster, C., Boykow, G., Arik, L., Smith-Torhan, A., Hesk, D., Chatterjee, M. 1997. Binding of a thrombin receptor tethered ligand analogue to human platelet thrombin receptor. Mol. Pharmacol. 51: 350–356

    PubMed  CAS  Google Scholar 

  • Ahn, H. S., Arik, L., Boykow, G., Burnett, D. A., Caplen, M. A., Czarniecki, M., Domalski, M. S., Foster, C., Manna, M., Stamford, A. W., Wu, Y. 1999. Structure–activity relationships of pyrroloquinazolines as thrombin receptor antagonists. Bioorg. Med. Chem. Lett. 9: 2073–2078

    Article  PubMed  CAS  Google Scholar 

  • Ahn, H. S., Foster, C., Boykow, G., Stamford, A., Manna, M., Graziano, M. 2000. Inhibition of cellular action of thrombin by N3-cyclopropyl-7-[[4-(1-methylethyl)phenyl]methyl]-7H-pyrrolo[3, 2-f]quinazoline-1,3-diamine (SCH 79797), a nonpeptide thrombin receptor antagonist. Biochem. Pharmacol. 60: 1425–1434

    Article  PubMed  CAS  Google Scholar 

  • Ahn, H. S., Chackalamannil, S., Boykow, G., Graziano, M. P., Foster, C. 2003. Development of proteinase-activated receptor 1 antagonists as therapeutic agents for thrombosis, restenosis and inflammatory diseases. Curr. Pharm. Des. 9: 2349–2365

    Article  PubMed  CAS  Google Scholar 

  • Andrade-Gordon, P., Maryanoff, B. E., Derian, C. K., Zhang, H. C., Addo, M. F., Darrow, A. L., Eckardt, A. J., Hoekstra, W. J., McComsey, D. F., Oksenberg, D., Reynolds, E. E., Santulli, R. J., Scarborough, R. M., Smith, C. E., White, K. B. 1999. Design, synthesis, and biological characterization of a peptide-mimetic antagonist for a tethered-ligand receptor. Proc. Natl Acad. Sci. USA 96: 12257–12262

    Article  PubMed  CAS  Google Scholar 

  • Andrade-Gordon, P., Derian, C. K., Maryanoff, B. E., Zhang, H. C., Addo, M. F., Cheung, W., Damiano, B. P., D’Andrea, M. R., Darrow, A. L., de Garavilla, L., Eckardt, A. J., Giardino, E. C., Haertlein, B. J., McComsey, D. F. 2001. Administration of a potent antagonist of proteinase-activated receptor-1 (PAR-1) attenuates vascular restenosis following balloon angioplasty in rats. J. Pharmacol. Exp. Ther. 298: 34–42

    PubMed  CAS  Google Scholar 

  • Anon. (Eisai). 2006. A randomized, double-blind, placebo-controlled study of the safety and tolerability of E-5555, and its effects on markers of intravascular inflammation in subjects with coronary artery disease. October 2006. Accessed in January 2008 at http://www.clinicaltrials.gov/ct2/show/NCT00312052?term=E-5555

  • Anon. (S.-P.). 2007a. A multicenter, randomized, double-blind, placebo-controlled study to evaluate the safety of Sch 530348 in subjects undergoing nonemergent percutaneous coronary intervention. Completed in 2007. Accessed in January 2008 at http://www.clinicaltrials.gov/ct2/show/NCT00132912?term=SCH+530348

  • Anon. (S.-P.). 2007b. A multicenter, randomized, double-blind, placebo-controlled study to evaluate the safety and efficacy of Sch 530348 in addition to standard of care in subjects with a history of atherosclerotic disease: Thrombin receptor antagonist in secondary prevention of atherothrombotic ischemic events (TRA 2 P-TIMI 50). December 2007. Accessed in January 2008 at http://www.clinicaltrials.gov/ct2/show/NCT00526474?term=SCH+530348

  • Barrow, J. C., Nantermet, P. G., Selnick, H. G., Glass, K. L., Ngo, P. L., Young, M. B., Pellicore, J. M., Breslin, M. J., Hutchinson, J. H., Freidinger, R. M., Condra, C., Karczewski, J., Bednar, R. A., Gaul, S. L., Stern, A., Gould, R., Connolly, T. M. 2001. Discovery and initial structure–activity relationships of trisubstituted ureas as thrombin receptor (PAR-1) antagonists. Bioorg. Med. Chem. Lett. 11: 2691–2696

    Article  PubMed  CAS  Google Scholar 

  • Barry, G. D., Le, G. T., Fairlie, D. P. 2006. Agonists and antagonists of protease activated receptors (PARs). Curr. Med. Chem. 13: 243–265

    Article  PubMed  CAS  Google Scholar 

  • Bernatowicz, M. S., Klimas, C. E., Hartl, K. S., Peluso, M., Allegretto, N. J., Seiler, S. M. 1996. Development of potent thrombin receptor antagonist peptides. J. Med. Chem. 39: 4879–4887

    Article  PubMed  CAS  Google Scholar 

  • Black, P. C., Mize, G. J., Karlin, P., Greenberg, D. L., Hawley, S. J., True, L. D., Vessella, R. L., Takayama, T. K. 2007. Overexpression of protease-activated receptors-1,-2, and-4 (PAR-1, -2, and -4) in prostate cancer. Prostate 67: 743–756

    Article  PubMed  CAS  Google Scholar 

  • Boire, A., Covic, L., Agarwal, A., Jacques, S., Sherifi, S., Kuliopulos, A. 2005. PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 120: 303–313

    Article  PubMed  CAS  Google Scholar 

  • Booden, M. A., Eckert, L. B., Der, C. J., Trejo, J. 2004. Persistent signaling by dysregulated thrombin receptor trafficking promotes breast carcinoma cell invasion. Mol. Cell. Biol. 24: 1990–1999

    Article  PubMed  CAS  Google Scholar 

  • Brass, L. F, Vassallo, R. R. , Jr.Belmonte, E., Ahuja, M., Cichowski, K., Hoxie, J. A. 1992. Structure and function of the human platelet thrombin receptor. Studies using monoclonal antibodies directed against a defined domain within the receptor N terminus. J. Biol. Chem. 267: 13795–13798

    PubMed  CAS  Google Scholar 

  • Ceruso, M. A., McComsey, D. F., Leo, G. C., Andrade-Gordon, P., Addo, M. F., Scarborough, R. M., Oksenberg, D., Maryanoff, B. E. 1999. Thrombin receptor-activating peptides (TRAPs): Investigation of bioactive conformations via structure–activity, spectroscopic, and computational studies. Bioorg. Med. Chem. 7: 2353–2371

    Article  PubMed  CAS  Google Scholar 

  • Chackalamannil, S. 2006. Thrombin receptor (protease activated receptor-1) antagonists as potent antithrombotic agents with strong antiplatelet effects. J. Med. Chem. 49: 5389–5403

    Article  PubMed  CAS  Google Scholar 

  • Chackalamannil, S., Davies, R. J., Asberom, T., Doller, D., Lone, D. 1996. A highly efficient total synthesis of (+)-himbacin. J. Am. Chem. Soc. 118: 9812–9813

    Article  CAS  Google Scholar 

  • Chackalamannil, S., Davies, R. J., Wang, Y., Asberom, T., Doller, D., Wong, J., Leone, D., McPhail, A. T. 1999. Total synthesis of (+)-himbacine and (+)-himbeline. J. Org. Chem. 64: 1932–1940

    Article  PubMed  CAS  Google Scholar 

  • Chackalamannil, S., Doller, D., Eagen, K., Czarniecki, M., Ahn, H. S., Foster, C. J., Boykow, G. 2001. Potent, low molecular weight thrombin receptor antagonists. Bioorg. Med. Chem. Lett. 11: 2851–2853

    Article  PubMed  CAS  Google Scholar 

  • Chackalamannil, S., Xia, Y., Greenlee, W. J., Clasby, M., Doller, D., Tsai, H., Asberom, T., Czarniecki, M., Ahn, H. S., Boykow, G., Foster, C., Agans-Fantuzzi, J., Bryant, M., Lau, J., Chintala, M. 2005. Discovery of potent orally active thrombin receptor (protease activated receptor 1) antagonists as novel antithrombotic agents. J. Med. Chem. 48: 5884–5887

    Article  PubMed  CAS  Google Scholar 

  • Chao, B. H., Kalkunte, S., Maraganore, J. M., Stone, S. R. 1992. Essential groups in synthetic agonist peptides for activation of the platelet thrombin receptor. Biochemistry 31: 6175–6178

    Article  PubMed  CAS  Google Scholar 

  • Chelliah, M. V., Chackalamannil, S., Xia, Y., Eagen, K., Clasby, M. C., Gao, X., Greenlee, W., Ahn, H. S., Agans-Fantuzzi, J., Boykow, G., Hsieh, Y., Bryant, M., Palamanda, J., Chan, T. M., Hesk, D., Chintala, M. 2007. Heterotricyclic himbacine analogs as potent, orally active thrombin receptor (protease activated receptor-1) antagonists. J. Med. Chem. 50: 5147–5160

    Article  PubMed  CAS  Google Scholar 

  • Chen, H. S., Kuo, S. C., Teng, C. M., Lee, F. Y., Wang, J. P., Lee, Y. C., Kuo, C. W., Huang, C. C., Wu, C. C., Huang, L. J. 2008. Synthesis and antiplatelet activity of ethyl 4-(1-benzyl-1H-indazol-3-yl)benzoate (YD-3) derivatives. Bioorg. Med. 16: 1262–1278

    Article  CAS  Google Scholar 

  • Cheung, W. M., D’Andrea, M. R., Andrade-Gordon, P., Damiano, B. P. 1999. Altered vascular injury responses in mice deficient in protease-activated receptor-1. Arterioscler. Thromb. Vasc. Biol. 19: 3014–3024

    Article  PubMed  CAS  Google Scholar 

  • Clasby, M. C., Chackalamannil, S., Czarniecki, M., Doller, D., Eagen, K., Greenlee, W., Kao, G., Lin, Y., Tsai, H., Xia, Y., Ahn, H. S., Agans-Fantuzzi, J., Boykow, G., Chintala, M., Foster, C., Smith-Torhan, A., Alton, K., Bryant, M., Hsieh, Y., Lau, J., Palamanda, J. 2007a. Metabolism-based identification of a potent thrombin receptor antagonist. J. Med. Chem. 50: 129–138

    Article  CAS  Google Scholar 

  • Clasby, M. C., Chackalamannil, S., Czarniecki, M., Doller, D., Eagen, K., Greenlee, W. J., Lin, Y., Tagat, J. R., Tsai, H., Xia, Y., Ahn, H. S., Agans-Fantuzzi, J., Boykow, G., Chintala, M., Hsieh, Y., McPhail, A. T. 2007b. Himbacine derived thrombin receptor antagonists: Discovery of a new tricyclic core. Bioorg. Med. Chem. Lett. 17: 3647–3651

    Article  CAS  Google Scholar 

  • Connolly, T. M., Condra, C., Feng, D. M., Cook, J. J., Stranieri, M. T., Reilly, C. F., Nutt, R. F., Gould, R. J. 1994. Species variability in platelet and other cellular responsiveness to thrombin receptor-derived peptides. Thromb. Haemost. 72: 627–633

    PubMed  CAS  Google Scholar 

  • Connolly, A. J., Ishihara, H., Kahn, M. L., Farese, R. V., Jr., Coughlin, S. R. 1996. Role of the thrombin receptor in development and evidence for a second receptor. Nature 381: 516–519

    Article  PubMed  CAS  Google Scholar 

  • Cook, N. S., Zerwes, H. G., Tapparelli, C., Powling, M., Singh, J., Metternich, R., Hagenbach, A. 1993. Platelet aggregation and fibrinogen binding in human, rhesus monkey, guinea-pig, hamster and rat blood: Activation by ADP and a thrombin receptor peptide and inhibition by glycoprotein IIb/IIIa antagonists. Thromb. Haemost. 70: 531–539

    PubMed  CAS  Google Scholar 

  • Cotecchia, S., Ostrowski, J., Kjelsberg, M. A., Caron, M. G., Lefkowitz, R. J. 1992. Discrete amino acid sequences of the alpha 1-adrenergic receptor determine the selectivity of coupling to phosphatidylinositol hydrolysis. J. Biol. Chem. 267: 1633–1639

    PubMed  CAS  Google Scholar 

  • Coughlin, S. R. 2000. Thrombin signalling and protease-activated receptors. Nature 407: 258–264

    Article  PubMed  CAS  Google Scholar 

  • Coughlin, S. R. 2001. Protease-activated receptors in vascular biology. Thromb. Haemost. 86: 298–307

    PubMed  CAS  Google Scholar 

  • Coughlin, S. R. 2005. Protease-activated receptors in hemostasis, thrombosis and vascular biology. J. Thromb. Haemost. 3: 1800–1814

    Article  PubMed  CAS  Google Scholar 

  • Covic, L., Gresser, A. L., Kuliopulos, A. 2000. Biphasic kinetics of activation and signaling for PAR1 and PAR4 thrombin receptors in platelets. Biochemistry 39: 5458–5467

    Article  PubMed  CAS  Google Scholar 

  • Covic, L., Gresser, A. L., Talavera, J., Swift, S., Kuliopulos, A. 2002a. Activation and inhibition of G protein-coupled receptors by cell-penetrating membrane-tethered peptides. Proc. Natl. Acad. Sci. USA 99: 643–648

    Article  CAS  Google Scholar 

  • Covic, L., Misra, M., Badar, J., Singh, C., Kuliopulos, A. 2002b. Pepducin-based intervention of thrombin-receptor signaling and systemic platelet activation. Nat. Med. 8: 1161–1165

    Article  CAS  Google Scholar 

  • Covic, L., Tchernychev, B., Jacques, S., Kuliopulos, A. 2006. Pharmacology and in vivo efficacy of pepducins in hemostasis and arterial thrombosis. In Langel, U.,Handbook of Cell-Penetrating Peptides. 2nd ed., CRC: London, UK, 245–257

    Chapter  Google Scholar 

  • Damiano, B. P., Derian, C. K., Maryanoff, B. E., Zhang, H. C., Gordon, P. A. 2003. RWJ-58259: A selective antagonist of protease activated receptor-1. Cardiovasc. Drug. Rev. 21: 313–326

    Article  PubMed  CAS  Google Scholar 

  • Darmoul, D., Gratio, V., Devaud, H., Lehy, T., Laburthe, M. 2003. Aberrant expression and activation of the thrombin receptor protease-activated receptor-1 induces cell proliferation and motility in human colon cancer cells. Am. J. Pathol. 162: 1503–1513

    Article  PubMed  CAS  Google Scholar 

  • Darmoul, D., Gratio, V., Devaud, H., Peiretti, F., Laburthe, M. 2004. Activation of proteinase-activated receptor 1 promotes human colon cancer cell proliferation through epidermal growth factor receptor transactivation. Mol. Cancer Res. 2: 514–522

    PubMed  CAS  Google Scholar 

  • Darrow, A. L., Fung-Leung, W. P., Ye, R. D., Santulli, R. J., Cheung, W. M., Derian, C. K., Burns, C. L., Damiano, B. P., Zhou, L., Keenan, C. M., Peterson, P. A., Andrade-Gordon, P. 1996. Biological consequences of thrombin receptor deficiency in mice. Thromb. Haemost. 76: 860–866

    PubMed  CAS  Google Scholar 

  • Derian, C. K., Santulli, R. J., Tomko, K. A., Haertlein, B. J., Andrade-Gordon, P. 1995. Species differences in platelet responses to thrombin and SFLLRN. receptor-mediated calcium mobilization and aggregation, and regulation by protein kinases. Thromb. Res. 78: 505–519

    Article  PubMed  CAS  Google Scholar 

  • Derian, C. K., Damiano, B. P., Addo, M. F., Darrow, A. L., D’Andrea, M. R., Nedelman, M., Zhang, H. C., Maryanoff, B. E., Andrade-Gordon, P. 2003a. Blockade of the thrombin receptor protease-activated receptor-1 with a small-molecule antagonist prevents thrombus formation and vascular occlusion in nonhuman primates. J. Pharmacol. Exp. Ther. 304: 855–861

    Article  CAS  Google Scholar 

  • Derian, C. K., Maryanoff, B. E., Zhang, H. C., Andrade-Gordon, P. 2003b. Therapeutic potential of protease-activated receptor-1 antagonists. Expert Opin. Invest. Drugs 12: 209–221

    Article  CAS  Google Scholar 

  • Di Serio, C., Pellerito, S., Duarte, M., Massi, D., Naldini, A., Cirino, G., Prudovsky, I., Santucci, M., Geppetti, P., Marchionni, N., Masotti, G., Tarantini, F. 2007. Protease-activated receptor 1-selective antagonist SCH79797 inhibits cell proliferation and induces apoptosis by a protease-activated receptor 1-independent mechanism. Basic Clin. Pharmacol. Toxicol. 101: 63–69

    Article  PubMed  CAS  Google Scholar 

  • Doller, D., Chackalamannil, S., Czarniecki, M., McQuade, R., Ruperto, V. 1999. Design, synthesis, and structure-activity relationship studies of himbacine derived muscarinic receptor antagonists. Bioorg. Med. Chem. Lett. 9: 901–906

    Article  PubMed  CAS  Google Scholar 

  • Elliott, J. T., Hoekstra, W. J., Maryanoff, B. E., Prestwich, G. D. 1999. Photoactivatable peptides based on BMS-197525: A potent antagonist of the human thrombin receptor (PAR-1). Bioorg. Med. Chem. Lett. 9: 279–284

    Article  PubMed  CAS  Google Scholar 

  • Even-Ram, S., Uziely, B., Cohen, P., Grisaru-Granovsky, S., Maoz, M., Ginzburg, Y., Reich, R., Vlodavsky, I., Bar-Shavit, R. 1998. Thrombin receptor overexpression in malignant and physiological invasion processes. Nat. Med. 4: 909–914

    Article  PubMed  CAS  Google Scholar 

  • Even-Ram, S. C., Maoz, M., Pokroy, E., Reich, R., Katz, B. Z., Gutwein, P., Altevogt, P., Bar-Shavit, R. 2001. Tumor cell invasion is promoted by activation of protease activated receptor-1 in cooperation with the alpha v beta 5 integrin. J. Biol. Chem. 276: 10952–10962

    Article  PubMed  CAS  Google Scholar 

  • Faruqi, T. R., Weiss, E. J., Shapiro, M. J., Huang, W., Coughlin, S. R. 2000. Structure-function analysis of protease-activated receptor 4 tethered ligand peptides. Determinants of specificity and utility in assays of receptor function. J. Biol. Chem. 275: 19728–19734

    Article  PubMed  CAS  Google Scholar 

  • Feng, D. M., Veber, D. F., Connolly, T. M., Condra, C., Tang, M. J., Nutt, R. F. 1995. Development of a potent thrombin receptor ligand. J. Med. Chem. 38: 4125–4130

    Article  PubMed  CAS  Google Scholar 

  • Fujita, T., Nose, T., Nakajima, M., Inoue, Y., Costa, T., Shimohigashi, Y. 1999. Design and synthesis of para.-fluorophenylalanine amide derivatives as thrombin receptor antagonists J. Biochem. (Tokyo) 126: 174–179

    Article  CAS  Google Scholar 

  • Gertz, S. D., Fallon, J. T., Gallo, R., Taubman, M. B., Banai, S., Barry, W. L., Gimple, L. W., Nemerson, Y., Thiruvikraman, S., Naidu, S. S., Chesebro, J. H., Fuster, V., Sarembock, I. J., Badimon, J. J. 1998. Hirudin reduces tissue factor expression in neointima after balloon injury in rabbit femoral and porcine coronary arteries. Circulation 98: 580–587

    Article  PubMed  CAS  Google Scholar 

  • Granovsky-Grisaru, S., Zaidoun, S., Grisaru, D., Yekel, Y., Prus, D., Beller, U., Bar-Shavit, R. 2006. The pattern of protease pctivated peceptor 1 (PAR1) expression in endometrial carcinoma. Gynecol. Oncol. 103: 802–806

    Article  PubMed  CAS  Google Scholar 

  • Greenlee, W. J. 2005. Design and synthesis of thrombin receptor (PAR-1) antagonists-Alfred Burger Award Address. Abstracts of Papers, 229th ACS National Meeting, San Diego, CA, March 13–17, 2005, MEDI-018

    Google Scholar 

  • Hall, S. W., Gibbs, C. S., Leung, L. L. 1997. Strategies for development of novel antithrombotics: Modulating thrombin’s procoagulant and anticoagulant properties. Cell. Mol. Life Sci. 53: 731–736

    Article  PubMed  CAS  Google Scholar 

  • Harker, L. A., Hanson, S. R., Runge, M. S. 1995. Thrombin hypothesis of thrombus generation and vascular lesion formation. Am. J. Cardiol. 75: 12B–17B

    Article  PubMed  CAS  Google Scholar 

  • Henrikson, K. P., Salazar, S. L., Fenton, J. W., II, Pentecost, B. T. 1999. Role of thrombin receptor in breast cancer invasiveness. Br. J. Cancer 79: 401–406

    Article  PubMed  CAS  Google Scholar 

  • Herbert, J. M., Guy, A. F., Lamarche, I., Mares, A. M., Savi, P., Dol, F. 1997. Intimal hyperplasia following vascular injury is not inhibited by an antisense thrombin receptor oligodeoxynucleotide. J. Cell. Physiol. 170: 106–114

    Article  PubMed  CAS  Google Scholar 

  • Hollenberg, M. D., Saifeddine, M. 2001. Proteinase-activated receptor 4 (PAR4): Activation and inhibition of rat platelet aggregation by PAR4-derived peptides. Can. J. Physiol. Pharmacol. 79: 439–442

    Article  PubMed  CAS  Google Scholar 

  • Hollenberg, M. D., Saifeddine, M., Sandhu, S., Houle, S., Vergnolle, N. 2004. Proteinase-activated receptor-4: Evaluation of tethered ligand-derived peptides as probes for receptor function and as inflammatory agonists in vivo. Br. J. Pharmacol. 143: 443–454

    Article  PubMed  CAS  Google Scholar 

  • Houle, S., Papez, M. D., Ferazzini, M., Hollenberg, M. D., Vergnolle, N. 2005. Neutrophils and the kallikrein–kinin system in proteinase-activated receptor 4-mediated inflammation in rodents. Br. J. Pharmacol. 146: 670–678

    Article  PubMed  CAS  Google Scholar 

  • Hung, D. T., Vu, T. H., Nelken, N. A., Coughlin, S. R. 1992a. Thrombin-induced events in non-platelet cells are mediated by the unique proteolytic mechanism established for the cloned platelet thrombin receptor. J. Cell Biol. 116: 827–832

    Article  CAS  Google Scholar 

  • Hung, D. T., Vu, T. K., Wheaton, V. I., Ishii, K., Coughlin, S. R. 1992b. Cloned platelet thrombin receptor is necessary for thrombin-induced platelet activation. J. Clin. Invest. 89: 1350–1353

    Article  CAS  Google Scholar 

  • Jang, I. K., Gold, H. K., Leinbach, R. C., Fallon, J. T., Collen, D. 1990a. In vivo thrombin inhibition enhances and sustains arterial recanalization with recombinant tissue-type plasminogen activator. Circ. Res. 67: 1552–1561

    Article  CAS  Google Scholar 

  • Jang, I. K., Gold, H. K., Ziskind, A. A., Leinbach, R. C., Fallon, J. T., Collen, D. 1990b. Prevention of platelet-rich arterial thrombosis by selective thrombin inhibition. Circulation 81: 219–225

    Article  CAS  Google Scholar 

  • Kahn, M. L., Hammes, S. R., Botka, C., Coughlin, S. R. 1998a. Gene and locus structure and chromosomal localization of the protease-activated receptor gene family. J. Biol. Chem. 273: 23290–23296

    Article  CAS  Google Scholar 

  • Kahn, M. L., Zheng, Y. W., Huang, W., Bigornia, V., Zeng, D., Moff, S., Farese, R. V., Jr., Tam, C., Coughlin, S. R. 1998b. A dual thrombin receptor system for platelet activation. Nature 394: 690–694

    Article  CAS  Google Scholar 

  • Kahn, M. L., Nakanishi-Matsui, M., Shapiro, M. J., Ishihara, H., Coughlin, S. R. 1999. Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. J. Clin. Invest. 103: 879–887

    Article  PubMed  CAS  Google Scholar 

  • Kaneider, N. C., Agarwal, A., Leger, A. J., Kuliopulos, A. 2005. Reversing systemic inflammatory response syndrome with chemokine receptor pepducins. Nat. Med. 11: 661–665

    Article  PubMed  CAS  Google Scholar 

  • Kaneider, N. C., Leger, A. J., Agarwal, A., Nguyen, N., Perides, G., Derian, C., Covic, L., Kuliopulos, A. 2007. ‘Role reversal’ for the receptor PAR1 in sepsis-induced vascular damage. Nat. Immunol. 8: 1303–1312

    Article  PubMed  CAS  Google Scholar 

  • Kato, Y., Kita, Y., Nishio, M., Hirasawa, Y., Ito, K., Yamanaka, T., Motoyama, Y., Seki, J. 1999. In vitro antiplatelet profile of FR171113, a novel non-peptide thrombin receptor antagonist. Eur. J. Pharmacol. 384: 197–202

    Article  PubMed  CAS  Google Scholar 

  • Kato, Y., Kita, Y., Hirasawa-Taniyama, Y., Nishio, M., Mihara, K., Ito, K., Yamanaka, T., Seki, J., Miyata, S., Mutoh, S. 2003. Inhibition of arterial thrombosis by a protease-activated receptor 1 antagonist, FR171113, in the guinea pig. Eur. J. Pharmacol. 473: 163–169

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann, R., Rahn, S., Pollrich, K., Hertel, J., Dittmar, Y., Hommann, M., Henklein, P., Biskup, C., Westermann, M., Hollenberg, M. D., Settmacher, U. 2007. Thrombin-mediated hepatocellular carcinoma cell migration: Cooperative action via proteinase-activated receptors 1 and 4. J. Cell. Physiol. 211: 699–707

    Article  PubMed  CAS  Google Scholar 

  • Kawabata, A., Saifeddine, M., Al-Ani, B., Leblond, L., Hollenberg, M. D. 1999. Evaluation of proteinase-activated receptor-1 (PAR1) agonists and antagonists using a cultured cell receptor desensitization assay: Activation of PAR2 by PAR1-targeted ligands. J. Pharmacol. Exp. Ther. 288: 358–370

    PubMed  CAS  Google Scholar 

  • Kawahara, T., Suzuki, S., Matsuura, F., Clark, R. S. J., Kogushi, M., Kobayashi, H., Hishinuma, I., Sato, N., Terauchi, T., Kajiwara, A., and Matsuoka, T. 2004. Discovery and optimization of potent orally active small molecular thrombin receptor (PAR-1) antagonists. Abstracts of Papers, 227th ACS National Meeting, Anaheim, CA, March 28-April 1, 2004, MEDI-085

    Google Scholar 

  • Keuren, J. F., Wielders, S. J., Ulrichts, H., Hackeng, T., Heemskerk, J. W., Deckmyn, H., Bevers, E. M., Lindhout, T. 2005. Synergistic effect of thrombin on collagen-induced platelet procoagulant activity is mediated through protease-activated receptor-1. Arterioscler. Thromb. Vasc. Biol. 25:1499–1505

    Article  CAS  Google Scholar 

  • Kinlough-Rathbone, R. L., Rand, M. L., Packham, M. A. 1993. Rabbit and rat platelets do not respond to thrombin receptor peptides that activate human platelets. Blood 82:103–106

    PubMed  CAS  Google Scholar 

  • Kjelsberg, M. A., Cotecchia, S., Ostrowski, J., Caron, M. G., Lefkowitz, R. J. 1992. Constitutive activation of the alpha 1B-adrenergic receptor by all amino acid substitutions at a single site. Evidence for a region which constrains receptor activation. J. Biol. Chem. 267:1430–1433

    PubMed  CAS  Google Scholar 

  • Klein, T. W., Newton, C., Larsen, K., Lu, L., Perkins, I., Nong, L., Friedman, H. 2003. The cannabinoid system and immune modulation. J. Leukoc. Biol. 74:486–496

    Article  PubMed  CAS  Google Scholar 

  • Kogushi, M., Kobayashi, H., Matsuoka, T., Suzuki, S., Kawahara, T., Kajiwara, A., Hishinuma, I. 2003. Antithrombotic and bleeding time effects of E-5555, an orally active protease-activated receptor-1 antagonist, in guinea pigs. Circulation 108: 17 (American Heart Association annual meeting, Orlando, FL, November 9–12, 2003, Abstr. 1327)

    Article  Google Scholar 

  • Kogushi, M., Yokohama, H., Kitamura, S., and Hishinuma, I. 2007. Effects of E-5555, a protease-activated receptor-1 antagonist, on the inflammatory markers in vitro. XXIst Congress of the International Society on Thrombosis and Haemostasis, Geneva, Switzerland, July 7-12, 2007, Abstr. P-M-059

    Google Scholar 

  • Kosoglou, T., Reyderman, L., Fales, R.,Yang, B., Keller, R., Shah, A., Maxwell, S., Veltri, E., Cutler, D. 2005. Pharmacodynamics and Pharmacokinetics of a Novel Protease-Activated Receptor (PAR-1) Antagonist SCH 530348. American Heart Association Scientific Sessions 2005, Dallas, TX, November 13–16, 2005, Abstr. 245

    Google Scholar 

  • Kostenis, E., Conklin, B. R., Wess, J. 1997. Molecular basis of receptor/G protein coupling selectivity studied by coexpression of wild type and mutant m2 muscarinic receptors with mutant G alpha(q) subunits. Biochemistry 36: 1487–1495

    Article  PubMed  CAS  Google Scholar 

  • Kubo, S., Ishiki, T., Doe, I., Sekiguchi, F., Nishikawa, H., Kawai, K., Matsui, H., Kawabata, A. 2006. Distinct activity of peptide mimetic intracellular ligands (pepducins) for proteinase-activated receptor-1 in multiple cells/tissues. Ann. N Y Acad. Sci. 1091: 445–459

    Article  PubMed  CAS  Google Scholar 

  • Kuliopulos, A., Covic, L. 2003. Blocking receptors on the inside: Pepducin-based intervention of PAR signaling and thrombosis. Life Sci. 74: 255–262

    Article  PubMed  CAS  Google Scholar 

  • Leger, A. J., Covic, L., Kuliopulos, A. 2006a. Protease-activated receptors in cardiovascular diseases. Circulation 114: 1070–1077

    Article  CAS  Google Scholar 

  • Leger, A. J., Jacques, S. L., Badar, J., Kaneider, N. C., Derian, C. K., Andrade-Gordon, P., Covic, L., Kuliopulos, A. 2006b. Blocking the protease-activated receptor 1–4 heterodimer in platelet-mediated thrombosis. Circulation 113: 1244–1254

    Article  CAS  Google Scholar 

  • Leung, L. L., Gibbs, C. S. 1997. Modulation of thrombin’s procoagulant and anticoagulant properties. Thromb. Haemost. 78: 577–580

    PubMed  CAS  Google Scholar 

  • Luo, W., Wang, Y., Reiser, G. 2007. Protease-activated receptors in the brain: Receptor expression, activation, and functions in neurodegeneration and neuroprotection. Brain Res. Rev. 56: 331–345

    Article  PubMed  CAS  Google Scholar 

  • Ma, L., Hollenberg, M. D., Wallace, J. L. 2001. Thrombin-induced platelet endostatin release is blocked by a proteinase activated receptor-4 (PAR4) antagonist. Br. J. Pharmacol. 134: 701–704

    Article  PubMed  CAS  Google Scholar 

  • Ma, L., Perini, R., McKnight, W., Dicay, M., Klein, A., Hollenberg, M. D., Wallace, J. L. 2005. Proteinase-activated receptors 1 and 4 counter-regulate endostatin and VEGF release from human platelets. Proc. Natl Acad. Sci. USA 102: 216–220

    Article  PubMed  CAS  Google Scholar 

  • Majumdar, M., Tarui, T., Shi, B., Akakura, N., Ruf, W., Takada, Y. 2004. Plasmin-induced migration requires signaling through protease-activated receptor 1 and integrin alpha(9)beta(1). J. Biol. Chem. 279: 37528–37534

    Article  PubMed  CAS  Google Scholar 

  • Mao, Y., Jin, J., Kunapuli, S. P. 2008. Characterization of a new peptide agonist of the protease-activated receptor-1. Biochem. Pharmacol. 75: 438–447

    Article  PubMed  CAS  Google Scholar 

  • Maryanoff, B. E. 2006. Adventures in drug discovery: Potent agents based on ligands for cell-surface receptors. Acc. Chem. Res. 39: 831–840

    Article  PubMed  CAS  Google Scholar 

  • Maryanoff, B. E., Zhang, H. C., Andrade-Gordon, P., Derian, C. K. 2003. Discovery of potent peptide-mimetic antagonists for the human thrombin receptor, protease-activated receptor-1 (PAR-1). Curr. Med. Chem.-Cardiovasc. Hematol. Agents 1: 13–36

    Article  PubMed  CAS  Google Scholar 

  • Matsoukas, J. M., Panagiotopoulos, D., Keramida, M., Mavromoustakos, T., Yamdagni, R., Wu, Q., Moore, G. J., Saifeddine, M., Hollenberg, M. D. 1996. Synthesis and contractile activities of cyclic thrombin receptor-derived peptide analogues with a Phe-Leu-Leu-Arg motif: Importance of the Phe/Arg relative conformation and the primary amino group for activity. J. Med. Chem. 39: 3585–3591

    Article  PubMed  CAS  Google Scholar 

  • McComsey, D. F., Hawkins, M. J., Andrade-Gordon, P., Addo, M. F., Oksenberg, D., Maryanoff, B. E. 1999a. Heterocycle-peptide hybrid compounds. Aminotriazole-containing agonists of the thrombin receptor (PAR-1). Bioorg. Med. Chem. Lett. 9: 1423–1428

    Article  CAS  Google Scholar 

  • McComsey, D. F., Hecker, L. R., Andrade-Gordon, P., Addo, M. F., Maryanoff, B. E. 1999b. Macrocyclic hexapeptide analogues of the thrombin receptor (PAR-1) activation motif SFLLRN. Bioorg. Med. Chem. Lett. 9: 255–260

    Article  CAS  Google Scholar 

  • McNamara, C. A., Sarembock, I. J., Gimple, L. W., Fenton, J. W., II, Coughlin, S. R., Owens, G. K. 1993. Thrombin stimulates proliferation of cultured rat aortic smooth muscle cells by a proteolytically activated receptor. J. Clin. Invest. 91: 94–98

    Article  PubMed  CAS  Google Scholar 

  • Meadows, T. A. Bhatt, D. L. 2007. Clinical aspects of platelet inhibitors and thrombus formation. Circ. Res. 100: 1261–1275

    Article  PubMed  CAS  Google Scholar 

  • Moliterno, D., Becker, R., Jennings, L., Berman, G., Jong, B., Strony, J., Vettri, E., and Horrington, R., for the TRA-PCI Study Investigators. 2007. Results from a multinational randomized, double-blind, placebo-controlled study of a novel thrombin receptor antagonist SCH 530348 in percutaneous coronary intervention. 56th Annual Session of the American College of Cardiology Annual Meeting, March 24–27, 2007, New Orleans, LA, Abstr. 2402–2409

    Google Scholar 

  • Nakanishi-Matsui, M., Zheng, Y. W., Sulciner, D. J., Weiss, E. J., Ludeman, M. J., Coughlin, S. R. 2000. PAR3 is a cofactor for PAR4 activation by thrombin. Nature 404: 609–613

    Article  PubMed  CAS  Google Scholar 

  • Nantermet, P. G., Barrow, J. C., Lundell, G. F., Pellicore, J. M., Rittle, K. E., Young, M., Freidinger, R. M., Connolly, T. M., Condra, C., Karczewski, J., Bednar, R. A., Gaul, S. L., Gould, R. J., Prendergast, K., Selnick, H. G. 2002. Discovery of a nonpeptidic small molecule antagonist of the human platelet thrombin receptor (PAR-1). Bioorg. Med. Chem. Lett. 12: 319–323

    Article  PubMed  CAS  Google Scholar 

  • Natarajan, S., Riexinger, D., Peluso, M., Seiler, S. M. 1995. “Tethered ligand” derived pentapeptide agonists of thrombin receptor: A study of side chain requirements for human platelet activation and GTPase stimulation. Int. J. Pept. Protein Res. 45: 145–151

    Article  PubMed  CAS  Google Scholar 

  • Nelken, N. A., Soifer, S. J., O’Keefe, J., Vu, T. K., Charo, I. F., Coughlin, S. R. 1992. Thrombin receptor expression in normal and atherosclerotic human arteries. J. Clin. Invest. 90: 1614–1621

    Article  PubMed  CAS  Google Scholar 

  • Nose, T., Shimohigashi, Y., Ohno, M., Costa, T., Shimizu, N., Ogino, Y. 1993. Enhancement of thrombin receptor activation by thrombin receptor-derived heptapeptide with para-fluorophenylalanine in place of phenylalanine. Biochem. Biophys. Res. Commun. 193: 694–699

    Article  PubMed  CAS  Google Scholar 

  • O’Brien, P. J., Prevost, N., Molino, M., Hollinger, M. K., Woolkalis, M. J., Woulfe, D. S., Brass, L. F. 2000. Thrombin responses in human endothelial cells. Contributions from receptors other than PAR1 include the transactivation of PAR2 by thrombin-cleaved PAR1. J. Biol. Chem. 275: 13502–13509

    Article  PubMed  Google Scholar 

  • Patterson, C., Stouffer, G. A., Madamanchi, N., Runge, M. S. 2001. New tricks for old dogs: Nonthrombotic effects of thrombin in vessel wall biology. Circ. Res. 88: 987–997

    Article  PubMed  CAS  Google Scholar 

  • Peng, C. Y., Pan, S. L., Guh, J. H., Liu, Y. N., Chang, Y. L., Kuo, S. C., Lee, F. Y., Teng, C. M. 2004. The indazole derivative YD-3 inhibits thrombin-induced vascular smooth muscle cell proliferation and attenuates intimal thickening after balloon injury. Thromb. Haemost. 92: 1232–1239

    PubMed  CAS  Google Scholar 

  • Pertwee, R. G. 2000. Cannabinoid receptor ligands: Clinical and neuropharmacological considerations, relevant to future drug discovery and development. Expert Opin. Invest. Drugs 9: 1553–1571

    Article  CAS  Google Scholar 

  • Quinton, T. M., Kim, S., Derian, C. K., Jin, J., Kunapuli, S. P. 2004. Plasmin-mediated activation of platelets occurs by cleavage of protease-activated receptor 4. J. Biol. Chem. 279: 18434–18439

    Article  PubMed  CAS  Google Scholar 

  • Rudroff, C., Schafberg, H., Nowak, G., Weinel, R., Scheele, J., Kaufmann, R. 1998. Characterization of functional thrombin receptors in human pancreatic tumor cells (MIA PACA-2). Pancreas 16: 189–194

    Article  PubMed  CAS  Google Scholar 

  • Sabo, T., Gurwitz, D., Motola, L., Brodt, P., Barak, R., Elhanaty, E. 1992. Structure–activity studies of the thrombin receptor activating peptide. Biochem. Biophys. Res. Commun. 188: 604–610

    Article  PubMed  CAS  Google Scholar 

  • Salah, Z., Maoz, M., Pizov, G., Bar-Shavit, R. 2007a. Transcriptional regulation of human protease-activated receptor 1: A role for the early growth response-1 protein in prostate cancer. Cancer Res. 67: 9835–9843

    Article  CAS  Google Scholar 

  • Salah, Z., Maoz, M., Pokroy, E., Lotem, M., Bar-Shavit, R., Uziely, B. 2007b. Protease-activated receptor-1 (hPar1), a survival factor eliciting tumor progression. Mol. Cancer Res. 5: 229–240

    Article  CAS  Google Scholar 

  • Sambrano, G. R., Weiss, E. J., Zheng, Y. W., Huang, W., Coughlin, S. R. 2001. Role of thrombin signalling in platelets in haemostasis and thrombosis. Nature 413: 74–78

    Article  PubMed  CAS  Google Scholar 

  • Scarborough, R. M., Naughton, M. A., Teng, W., Hung, D. T., Rose, J., Vu, T. K., Wheaton, V. I., Turck, C. W., Coughlin, S. R. 1992. Tethered ligand agonist peptides. Structural requirements for thrombin receptor activation reveal mechanism of proteolytic unmasking of agonist function. J. Biol. Chem. 267: 13146–13149

    PubMed  CAS  Google Scholar 

  • Scarborough, R. M., Teng, W., Rose, J. W., Alves, V. A. A., Naughton, M. A. 1994. Thrombin receptor antagonists derived from “tethered ligand” agonist peptides. In Hodges, R., Smith, J., Peptides: Chemistry, Structure and Biology, Proceedings of 13th American Peptide Symposium, Meeting Date 1993. ESCOM: Leiden, NL, pp. 695–697

    Google Scholar 

  • Seiler, S. M., Bernatowicz, M. S. 2003. Peptide-derived protease-activated receptor-1 (PAR-1) antagonists. Curr. Med. Chem.-Cardiovasc. Hematol. Agents 1: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Seiler, S. M., Peluso, M., Michel, I. M., Goldenberg, H., Fenton, J. W., 2nd, Riexinger, D., Natarajan, S. 1995. Inhibition of thrombin and SFLLR-peptide stimulation of platelet aggregation, phospholipase A2 and Na+/H+ exchange by a thrombin receptor antagonist. Biochem. Pharmacol. 49: 519–528

    Article  PubMed  CAS  Google Scholar 

  • Seiler, S. M., Peluso, M., Tuttle, J. G., Pryor, K., Klimas, C., Matsueda, G. R., Bernatowicz, M. S. 1996. Thrombin receptor activation by thrombin and receptor-derived peptides in platelet and CHRF-288 cell membranes: Receptor-stimulated GTPase and evaluation of agonists and partial agonists. Mol. Pharmacol. 49: 190–197

    PubMed  CAS  Google Scholar 

  • Sokolova, E. Reiser, G. 2007. A novel therapeutic target in various lung diseases: Airway proteases and protease-activated receptors. Pharmacol. Ther. 115: 70–83

    Article  PubMed  CAS  Google Scholar 

  • Stampfuss, J. J., Schror, K., Weber, A. A. 2003. Inhibition of platelet thromboxane receptor function by a thrombin receptor-targeted pepducin. Nat. Med. 9: 1447–1448 1447; author reply

    Article  PubMed  CAS  Google Scholar 

  • Strande, J. L., Hsu, A., Su, J., Fu, X., Gross, G. J., Baker, J. E. 2007. SCH 79797, a selective PAR1 antagonist, limits myocardial ischemia/reperfusion injury in rat hearts. Basic Res. Cardiol. 102: 350–358

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, S., Kotake, M., Miyamoto, M., Kawahara, T., Kajiwara, A., Hishinuma, I., Okano, K., Miyazawa, S., Clark, R., Ozaki, F., Sato, N., Shinoda, M., Kamada, A., Tsukada, I., Matsuura, F., Naoe, Y., Terauchi, T., Oohashi, Y., Ito, O., Tanaka, H., Musya, T., Kogushi, M., Kawada, T., Matsuoka, T., Kobayashi, H., Chiba, K., Kimura, A., Ono, N. 2002a. Preparation of 2-iminopyrrolidine derivatives as thrombin receptor antagonists. PCT Int Appl, WO 2002085855. 948353062(CAN 137:)

    Google Scholar 

  • Suzuki, S., Kotake, M., Miyamoto, M., Kawahara, T., Kajiwara, A., Hishinuma, I., Okano, K., Miyazawa, S., Clark, R., Ozaki, F., Sato, N., Shinoda, M., Kamada, A., Tsukada, I., Matsuura, F., Naoe, Y., Terauchi, T., Oohashi, Y., Ito, O., Tanaka, H., Musya, T., Kogushi, M., Kawada, T., Matsuoka, T., Kobayashi, H., Chiba, K., Kimura, A., Ono, N. 2002b. Preparation of 2-iminoimidazole derivatives as thrombin receptor antagonists. PCT Int Appl, WO 2002088092, 171 353022(CAN 137:)

    Google Scholar 

  • Suzuki, S., Kotake, M., Miyamoto, M., Kawahara, T., Kajiwara, A., Hishinuma, I., Okano, K., Miyazawa, S., Clark, R., Ozaki, F., Sato, N., Shinoda, M., Kamada, A., Tsukada, I., Matsuura, F., Naoe, Y., Terauchi, T., Oohashi, Y., Ito, O., Tanaka, H., Musya, T., Kogushi, M., Kawada, T., Matsuoka, T., Kobayashi, H., Chiba, K., Kimura, A., Ono, N. 2002c. Preparation of cyclic amidine derivatives as thrombin receptor antagonists. PCT Int Appl, WO 2002085850, 231 337774CAN 137:)

    Google Scholar 

  • Takada, M., Tanaka, H., Yamada, T., Ito, O., Kogushi, M., Yanagimachi, M., Kawamura, T., Musha, T., Yoshida, F., Ito, M., Kobayashi, H., Yoshitake, S., Saito, I. 1998. Antibody to thrombin receptor inhibits neointimal smooth muscle cell accumulation without causing inhibition of platelet aggregation or altering hemostatic parameters after angioplasty in rat. Circ. Res. 82: 980–987

    Article  PubMed  CAS  Google Scholar 

  • Tantivejkul, K., Loberg, R. D., Mawocha, S. C., Day, L. L., John, L. S., Pienta, B. A., Rubin, M. A., Pienta, K. J. 2005. PAR1-mediated NFkappaB activation promotes survival of prostate cancer cells through a Bcl-xL-dependent mechanism. J. Cell Biochem. 96: 641–652

    Article  PubMed  CAS  Google Scholar 

  • Tellez, C., Bar-Eli, M. 2003. Role and regulation of the thrombin receptor (PAR-1) in human melanoma. Oncogene 22: 3130–3137

    Article  PubMed  CAS  Google Scholar 

  • Traynelis, S. F., Trejo, J. 2007. Protease-activated receptor signaling: New roles and regulatory mechanisms. Curr. Opin. Hematol. 14, 230–235

    Article  Google Scholar 

  • Tsopanoglou, N. E., Maragoudakis, M. E. 2004. Role of thrombin in angiogenesis and tumor progression. Semin. Thromb. Hemost. 30: 63–69

    Article  PubMed  CAS  Google Scholar 

  • Tsopanoglou, N. E., Maragoudakis, M. E. 2007. Inhibition of angiogenesis by small-molecule antagonists of protease-activated receptor-1. Semin. Thromb. Hemost. 33: 680–687

    Article  PubMed  CAS  Google Scholar 

  • Tsopanoglou, N. E., Papaconstantinou, M. E., Flordellis, C. S., Maragoudakis, M. E. 2004. On the mode of action of thrombin-induced angiogenesis: Thrombin peptide, TP508, mediates effects in endothelial cells via alphavbeta3 integrin. Thromb. Haemost. 92: 846–857

    PubMed  CAS  Google Scholar 

  • Vassallo, R. R., Jr., Kieber-Emmons, T., Cichowski, K., Brass, L. F. 1992. Structure-function relationships in the activation of platelet thrombin receptors by receptor-derived peptides. J. Biol. Chem. 267: 6081–6085

    PubMed  CAS  Google Scholar 

  • Vu, T. K., Hung, D. T., Wheaton, V. I., Coughlin, S. R. 1991a. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64: 1057–1068

    Article  CAS  Google Scholar 

  • Vu, T. K., Wheaton, V. I., Hung, D. T., Charo, I., Coughlin, S. R. 1991b. Domains specifying thrombin-receptor interaction. Nature 353: 674–677

    Article  CAS  Google Scholar 

  • Wilcox, J. N. 1994. Thrombotic mechanisms in atherosclerosis. Coronary Artery Dis. 5: 223–229

    Article  CAS  Google Scholar 

  • Wilcox, J. N., Rodriguez, J., Subramanian, R., Ollerenshaw, J., Zhong, C., Hayzer, D. J., Horaist, C., Hanson, S. R., Lumsden, A., Salam, T. A. et al. 1994. Characterization of thrombin receptor expression during vascular lesion formation. Circ. Res. 75: 1029–1038

    Article  PubMed  CAS  Google Scholar 

  • Wojtukiewicz, M. Z., Tang, D. G., Ben-Josef, E., Renaud, C., Walz, D. A., Honn, K. V. 1995. Solid tumor cells express functional “tethered ligand” thrombin receptor. Cancer Res. 55: 698–704

    PubMed  CAS  Google Scholar 

  • Wu, C. C., Teng, C. M. 2006. Comparison of the effects of PAR1 antagonists, PAR4 antagonists, and their combinations on thrombin-induced human platelet activation. Eur. J. Pharmacol. 546: (1–3)142–147

    Article  PubMed  CAS  Google Scholar 

  • Wu, C. C., Huang, S. W., Hwang, T. L., Kuo, S. C., Lee, F. Y., Teng, C. M. 2000. YD-3, a novel inhibitor of protease-induced platelet activation. Br. J. Pharmacol. 130: 1289–1296

    Article  PubMed  CAS  Google Scholar 

  • Wu, C. C., Hwang, T. L., Liao, C. H., Kuo, S. C., Lee, F. Y., Lee, C. Y., Teng, C. M. 2002. Selective inhibition of protease-activated receptor 4-dependent platelet activation by YD-3. Thromb. Haemost. 87: 1026–1033

    PubMed  CAS  Google Scholar 

  • Wu, C. C., Hwang, T. L., Liao, C. H., Kuo, S. C., Lee, F. Y., Teng, C. M. 2003. The role of PAR4 in thrombin-induced thromboxane production in human platelets. Thromb. Haemost. 90: 299–308

    PubMed  CAS  Google Scholar 

  • Xu, W. F., Andersen, H., Whitmore, T. E., Presnell, S. R., Yee, D. P., Ching, A., Gilbert, T., Davie, E. W., Foster, D. C. 1998. Cloning and characterization of human protease-activated receptor 4. Proc. Natl Acad. Sci. USA 95: 6642–6646

    Article  PubMed  CAS  Google Scholar 

  • Xia, Y., Chackalamannil, S., Chan, T. M., Czarniecki, M., Doller, D., Eagen, K., Greenlee, W. J., Tsai, H., Wang, Y., Ahn, H. S., Boykow, G. C., McPhail, A. T. 2006. Himbacine derived thrombin receptor (PAR-1) antagonists: Structure–activity relationship of the lactone ring. Bioorg. Med. Chem. Lett. 16: 4969–4972

    Article  PubMed  CAS  Google Scholar 

  • Xia, Y., Chackalamannil, S., Clasby, M., Doller, D., Eagen, K., Greenlee, W. J., Tsai, H., Agans-Fantuzzi, J., Ahn, H. S., Boykow, G. C., Hsieh, Y., Lunn, C. A., Chintala, M. (2007). “Himbacine derived thrombin receptor (PAR-1) antagonists: SAR of the pyridine ring.” Bioorg. Med. Chem. Lett. 17: 4509–4513

    Article  CAS  Google Scholar 

  • Zania, P., Kritikou, S., Flordellis, C. S., Maragoudakis, M. E., Tsopanoglou, N. E. 2006. Blockade of angiogenesis by small molecule antagonists to protease-activated receptor-1: Association with endothelial cell growth suppression and induction of apoptosis. J. Pharmacol. Exp. Ther. 318: 246–254

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H. C., Derian, C. K., Andrade-Gordon, P., Hoekstra, W. J., McComsey, D. F., White, K. B., Poulter, B. L., Addo, M. F., Cheung, W. M., Damiano, B. P., Oksenberg, D., Reynolds, E. E., Pandey, A., Scarborough, R. M., Maryanoff, B. E. 2001. Discovery and optimization of a novel series of thrombin receptor (PAR-1) antagonists: Potent, selective peptide mimetics based on indole and indazole templates. J. Med. Chem. 44: 1021–1024

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H. C., White, K. B., McComsey, D. F., Addo, M. F., Andrade-Gordon, P., Derian, C. K., Oksenberg, D., Maryanoff, B. E. 2003. High-affinity thrombin receptor (PAR-1) ligands: A new generation of indole-based peptide mimetic antagonists with a basic amine at the C-terminus. Bioorg. Med. Chem. Lett. 13: 2199–2203

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the executive management of Johnson & Johnson for supporting our research and drug discovery activities with proteinase-activated receptors. This chapter is dedicated to the memory of Dr. Robert M. Scarborough (deceased, 25 June 2006), who collaborated with us for several years in the PAR1 area.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cailin Chen* .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chen*, C., Maryanoff*, B.E., Andrade-Gordon, P. (2009). Thrombin Receptor Modulators: Medicinal Chemistry, Biological Evaluation, and Clinical Application. In: Maragoudakis, M., Tsopanoglou, N. (eds) Thrombin. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09637-7_12

Download citation

Publish with us

Policies and ethics