Skip to main content

Changes in Tropical Cyclone Activity due to Global Warming in a General Circulation Model

  • Chapter
  • First Online:
Hurricanes and Climate Change
  • 2747 Accesses

Abstract

This study investigates the possible changes that the greenhouse global warming might generate in the characteristics of the tropical cyclones (TCs). The analysis has been performed using scenario climate simulations carried out with a fully coupled high-resolution global general circulation model. The capability of the model to reproduce a reasonably realistic TC climatology has been assessed by comparing the model results from a simulation of the 20th Century with observations. The model appears to be able to simulate tropical cyclone-like vortices with many features similar to the observed TCs. The simulated TC activity exhibits realistic geographical distribution, seasonal modulation and interannual variability, suggesting that the model is able to reproduce the major basic mechanisms that link the TC occurrence with the large scale circulation.

The results from the climate scenarios reveal a substantial general reduction of the TC frequency when the atmospheric CO2 concentration is doubled and quadrupled. The reduction appears particularly evident for the tropical North West Pacific and North Atlantic (NA). In the NWP the weaker TC activity seems to be associated with a reduced amount of convective instabilities. In the ATL region the weaker TC activity seems to be due to both the increased stability of the atmosphere and a stronger vertical wind shear. Despite the generally reduced TC activity, there is evidence of increased rainfall associated with the simulated cyclones. Despite the overall warming of the tropical upper ocean and the expansion of warm SSTs to the subtropics and mid-latitudes, the action of the TCs remains well confined to the tropical region and the peak of TC number remains equatorward of 20° latitude in both Hemispheres.

An extended version of this work is in publication on Journal of Climate (Gualdi et al. 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anthes R.A., Corell R.W., Holland G., Hurrel J.W., MacCracken M.C., and K.E. Trenberth, 2006: Hurricanes and Global Warming - Potential Linkages and Consequences. Bull. Am. Meteor. Soc., DOI:10.1175/BAMS-87-5-617.

    Google Scholar 

  • Aiyyer, A.Rand Thorncroft, C. 2006: Climatology of vertical wind shear over the tropical Atlantic, Atmos. Res., 19, 2969-2983.

    Google Scholar 

  • Behera, S.K, J.J.. Luo, S. Masson, P. Delecluse, Gualdi S., A., Navarra, T., Yamagata 2005: Paramount impact of the Indian Ocean dipole on the East African short rains: A CGCM study, J. of Clim., 18, 4514-4530.

    Article  Google Scholar 

  • Bengtsson, L, M.. Botzet, M. Esch 1995: Hurricane--type vortices in a general--circulation model, Tellus-A., 47, 175-196.

    Article  Google Scholar 

  • Bengtsson, L, M.. Botzet, M. Esch 1996: Will greenhouse gas--induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes?, Tellus-A., 48, 57-73.

    Article  Google Scholar 

  • Bengtsson, L, K.I.. Hodges, M. Esch, N. Keenlyside, L. Kornblueh, J.-J. Luoand T., Yamagata 2007: How may tropical cyclones change in a warmer climate?, Tellus-A., 59, 539-561.

    Article  Google Scholar 

  • Bister, Mand K.A., Emanuel 2002: Low frequency variability of tropical cyclone potential intensity. 1. Interannual to interdecadal variability, J. Geophys. Res., 107, 4801doi:10.1029/2001JD000776.

    Article  Google Scholar 

  • Blanke, B, P., Delecluse 1993: Low frequency variability of the tropical Atlantic ocean simulated by a general circulation model with mixed layer physics, J. Phys. Oceanogr., 23, 1363-1388.

    Article  Google Scholar 

  • Broccoli, A.Jand S.. Manabe 1990: Can existing climate models be used to study anthropogenic changes in tropical cyclone climate, Geophys. Res. Lett., 17, 1917-1920.

    Article  Google Scholar 

  • Camargo, S.J, A.G.. Barnstonand S.E., Zebiak 2004: Properties of Tropical Cyclones in atmospheric general circulation models. IRI Tech. Rep. 04-02 International Research Institute for Climate Prediction Palisades, N.Y., 72 pp.

    Google Scholar 

  • Chan, J.C.-L 2000: Tropical cyclone activity over the western North Pacific associated with El Niño and La Niña events, J. of Clim., 13, 2960-2972.

    Article  Google Scholar 

  • Chauvin, F., J.-F. Royer, and M. Deque, 2006: Response of hurricane-type vortices to global warming as simulated by ARPEGE-Climat at high resolution, Clim. Dyn, 27, 377-399.

    Article  Google Scholar 

  • Chia, H.H, and C.F. Ropelewski, 2002: The interannual variability in the genesis location of tropical cyclones in the northwest Pacific, J. of Clim, 15, 2934-2944.

    Article  Google Scholar 

  • Delworth, T.L., and M.E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere, J. of Clim, 16, 661-676.

    Google Scholar 

  • De Maria, M, J.A. Knaff, and B.H. Connell, 2001: A Tropical Cyclone Genesis Parameter for the Tropical Atlantic, Weath. Forec, 16, 219-233.

    Article  Google Scholar 

  • Dutton, J. F., C. J. Poulsen, and J. L Evans, 2000: The effect of global climate change on the region of tropical convection in CSM1, Gophys. Res. Lett, 27, 3049-3052.

    Article  Google Scholar 

  • Elsner, J.B., and B. Kocher, 2000: Global tropical cyclone activity: A link to the North Atlantic Oscillation, Geophys. Res. Lett, 27, 129-132.

    Article  Google Scholar 

  • Emanuel, K.A., 1987: The dependence of hurricane intensity on climate, Nature, 326, 483-485.

    Article  Google Scholar 

  • Emanuel, K.A., 2003: Tropical Cyclones, Annu. Rev. Earth Planet. Sci, 31, 75-104.

    Article  Google Scholar 

  • Emanuel K.A., and D.S. Nolan, 2004: Tropical cyclone activity and global climate. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL., Amer. Meteor. Soc., 240-241.

    Google Scholar 

  • Emanuel, K.A., 2005: Increasing destructiveness of tropical Cyclones over the past 30 years, Nature, 436, 686-688.

    Article  Google Scholar 

  • Fichefet, T, Morales-Maqueda, M. A., 1999: Modelling the influence of snow accumulation and snow--ice formation on the seasonal cycle of the Antarctic sea-ice cover, Clim. Dyn, 15, 251-268.

    Article  Google Scholar 

  • Frank, W.M., 1977: The structure and energetics of the Tropical Cyclone I. The Storm structure, Mon. Wea. Rev, 105, 1119-1135.

    Article  Google Scholar 

  • Frank, W.M., and G.S. Young, 2007: The Interannual Variability of Tropical Cyclones, Mon. Wea. Rev, 135, 3587-3598.

    Article  Google Scholar 

  • Gent, P.R., and J.C. McWilliams, 1990: Isopycnal mixing in ocean circulation models, J. Phys. Ocean, 20, 150-155.

    Article  Google Scholar 

  • Goldenberg, S.B.., C.W. Landsea, A.M. Mestas-Nunez, and W.M Gray, 2001: The recent increase in the Atlantic hurricane activity: causes and implications, Science, 293, 474-479.

    Article  Google Scholar 

  • Goldenberg, S.B.., L.J. Shapiro, 1996: Physical mechanisms for the association of El Niño and west African rainfall with Atlantic major hurricane activity, J. of Clim, 9, 1169-1187.

    Article  Google Scholar 

  • Gray, W.M., 1968: Global view of the origin of tropical disturbances and storms, Mon. Wea. Rev, 96, 669-700.

    Article  Google Scholar 

  • Gray W.M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D.B. Shaw (Ed.), Royal Meteorological Society, 155-218.

    Google Scholar 

  • Gray W.M., : Atlantic seasonal hurricane frequency .1. El-Nino and 30-mb Quasi--biennial oscillation influences. Mon. Weather Rev., >112, 1649-1668.

    Google Scholar 

  • Gualdi, S., A. Navarra, E. Guilyardi, and P. Delecluse, 2003a: Assessment of the tropical Indo-Pacific climate in the SINTEX CGCM, Ann. Geophysics, 46, 1-26.

    Article  Google Scholar 

  • Gualdi, S., E. Guilyardi, A. Navarra, S. Masina, and P. Delecluse, 2003b: The interannual variability in the tropical Indian Ocean as simulated by a CGCM, Clim. Dyn, 20, 567-582.

    Google Scholar 

  • Gualdi, S., E. Scoccimarro, A. Navarra, 2008: Changes in Tropical Cyclone Activity due to Global Warming: Results from a High-Resolution Coupled General Circulation Model. J. of Clim. In revision.

    Google Scholar 

  • Guilyardi, E.., P. Delecluse, S. Gualdi, and A. Navarra, 2003: Mechanisms for ENSO phase change in a coupled GCM, J. of Clim, 16, 1141-1158.

    Article  Google Scholar 

  • Haarsma, R.J.., J.F.B. Mitchell, C.A. Senior, 1993: Tropical disturbances in a GCM, Clim. Dyn, 8, 247-257.

    Article  Google Scholar 

  • Held, I.M, and B.J. Soden, 2006: Robust responses of the hydrological cycle to global warming, J. of Clim, 19, 5686-5699.

    Article  Google Scholar 

  • Henderson-Sellers, A., H. Zhang, G. Berz, K.A. Emanuel, W. Gray, C. Landsea, G. Holland, J. Lighthill, S.L., Shieh, P. Webster, and McGuffie, K., 1998: Tropical cyclones and global climate change: A post-IPCC assessment, Bull. Am. Meteor. Soc., 79, 79-38.

    Article  Google Scholar 

  • Holland, G.J., 1993: "Ready Reckoner" - Chapter 9, Global Guide to Tropical Cyclone Forecasting, WMO/TC-No. 560, Report No. TCP-31 World Meteorological Organization Geneva, Switzerland.

    Google Scholar 

  • Holland, G.J., 1997: The maximum potential intensity of tropical cyclones, J. Atmos. Sci, 54, 2519-2541.

    Article  Google Scholar 

  • Knutson, T.R, and R.E. Tuleya, 2005: Reply, J. of Clim., 18, 5183-5187.

    Article  Google Scholar 

  • Knutson, T.R., and R.E. Tuleya, 2004: Impact of CO2 induced warming on simulated hurricane intensity and precipitation: sensitivity to the choice of climate model and convective parametrization, J. of Clim., 17, 3477-3495.

    Article  Google Scholar 

  • Knutson, T.R R.E., Tuleya W., Shen, and I. Ginis, 2001: Impact of CO2-induced warming on hurricane intensities simulated in a hurricane model with ocean coupling, J. of Clim., 14, 2458-2468.

    Article  Google Scholar 

  • Knutson, T.R S., Manabe, 1995: Time-response over the tropical Pacific to increased CO2 in a coupled ocean atmosphere model, J. of Clim., 8, 2181-2199.

    Article  Google Scholar 

  • Landsea, C.W B.A., Harper K., Hoarau, and J. Knaff, 2006: Can we detect trends in extreme tropical cyclones?, Science, 313, 452-454.

    Article  Google Scholar 

  • Landsea, C.W, 2007: Counting Atlantic Tropical Cyclones Back to 1900, EOS, 88, 197-202.

    Article  Google Scholar 

  • Latif, M N., Keenlyside J., Bader, 2007: Tropical sea surface temperature, vertical wind shear, and hurricane development, Geophys. Res. Lett., 34, L01710.

    Article  Google Scholar 

  • Luo, J.-J S., Masson S., Behera P., Delecluse S., Gualdi A., Navarra T., and Yamagata, 2003: South Pacific origin of the decadal ENSO-like variation as simulated by a coupled GCM, Geophys. Res. Lett, 30, 2250.doi:10.1029/2003GL018649

    Article  Google Scholar 

  • Madec, G., P.. Delecluse, M., Imbard, and C., Levy 1998: OPA 8.1 Ocean General Circulation Model reference manual, Internal Rep. 11 Inst. Pierre--Simon Laplace Paris, France.

    Google Scholar 

  • Luo, J.-J S., Masson S., Behera P., Delecluse S., Gualdi A., Navarra T., and Yamagata, 2003: South Pacific origin of the decadal ENSO-like variation as simulated by a coupled GCM, Geophys. Res. Lett, 30, 2250.doi:10.1029/2003GL018649

    Article  Google Scholar 

  • Masson, S J.-J., Luo G., Madec J., Vialfard F., Durand S., Gualdi E., Guilyardi S., Behera P., Delecluse A., Navarra T., and Yamagata, 2005: Impact of barrier layer on winter-spring variability of the southeastern Arabian Sea, Geophys. Res. Lett, 32, L07703.doi:10.1029/2004GL021980

    Article  Google Scholar 

  • McDonald, R.E D.G., Bleaken D.R., Cresswell, 2005: Tropical storms: representation and diagnosis in climate models and the impacts of climate change, Clim. Dyn, 25, 19-36.doi:10.1007/s00382-004-0491-0

    Article  Google Scholar 

  • Michaels, P.J P.C., Knappenberger, and C, Landsea, 2005: Comments on "impacts of CO2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective scheme", J. of Clim, 18, 5179-5182.

    Article  Google Scholar 

  • Mocrette, J.J, 1991: Radiation and cloud radiative properties in the European centre for medium range weather forecasts forecasting system, J. Geophys. Res, 96, 9121-9132.

    Article  Google Scholar 

  • Nordeng, T.E. 1994: Extended versions of the convective parametrization scheme at ECMWF and their impact on the mean and transient activity of the model in the Tropics. ECMWF Research Department, Technical Memorandum No. 206, October 1994 European Center for Medium Range Weather Forecasts, Reading UK, 41 pp

    Google Scholar 

  • Oouchi, K. J., Yoshimura, R., Mizuta, S. Kusunoki, and N.A. Noda, 2006: Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: Frequency and wind intensity analyses, J. Meteor. Soc. Japan., 84, 259-276.

    Article  Google Scholar 

  • Palmen, E., 1948: On the formation and structure of tropical hurricanes, Geophysica., 3, 26-39.

    Google Scholar 

  • Pezza, A.B., and I Simmonds, 2005: The first South Atlantic hurricane: Unprecedented blocking, low shear and climate change, Geophys. Res. Lett., 32, L15712doi:10.1029/2005GL023390.

    Article  Google Scholar 

  • Pielke Jr. R., C. Landsea, M. Mayfield, J. Laver, and R. Pasch, 2006: Reply to "Hurricanes and Global Warming - Potential Linkages and Consequences. Bull. Am. Meteor. Soc., DOI:10.1175/BAMS-87-5-622.

    Google Scholar 

  • Pielke Jr. R., C. Landsea, M. Mayfield, J. Laver, and R. Pasch, 2005: Hurricanes and Global Warming. Bull. Am. Meteor. Soc., DOI:10.1175/BAMS-86-11-1571.

    Google Scholar 

  • Rayner, N.A. D.E., Parker E.B., Horton, C.K. Folland, L.V. Alexander, D.P. Rowell, E.C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res., 108, D14, 4407.

    Article  Google Scholar 

  • Roeckner E, and Coauthors (1996) The atmospheric general circulation model Echam-4: model description and simulation of present-day climate. Max-Planck-Institut fur Meteorologie, Rep. No 218, Hamburg, Germany, 90 pp.Roeckner E, and Coauthors (1996) The atmospheric general circulation model Echam-4: model description and simulation of present-day climate. Max-Planck-Institut fur Meteorologie, Rep. No 218, Hamburg, Germany, 90 pp.

    Google Scholar 

  • Roullet, G., and G. Madec, 2000: Salt conservation, free surface, and varying levels: a new formulation for ocean general circulation models, J. Geophys. Res., 105, 23927-23942

    Article  Google Scholar 

  • Royer, J.-F. F., Chauvin B., Timbal, P Araspin, and D. Grimal, 1998: A GCM study of the impact of greenhouse gas increase on the frequency of occurrence of tropical cyclones, Clim Dyn., 38, D14, 307-343.

    Google Scholar 

  • Stevens, B., 2005: Atmospheric Moist Convection, 2005, Annu.Rev.Earth Planet.Sci., 33, D14, 605-43 doi:10.1146/annurev.earth.33.092203.122658.

    Article  Google Scholar 

  • Sugi, M. A., Noda N., Sato, 2002: Influence of global warming on tropical cyclone climatology: an experiment with the JMA global model, J. Meteor. Soc. Japan., 80, D14, 249-272.

    Article  Google Scholar 

  • Sugi, M., and J., Yoshimura, 2004: A mechanism of tropical precipitation change due to CO2 increase, J. of Clim., 17, D14, 238-243.

    Article  Google Scholar 

  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parametrization in large-scale models, Mon. Weather Rev., 117, D14, 1779-1800.

    Article  Google Scholar 

  • Timmermann, R., H., Goosse, G., Madec, T., Fichefet, C, Ethe, and V., Dulie`re, 2005: On the representation of high latitude processes in the ORCALIM global coupled sea ice-ocean model, Ocean Modell., 8, D14, 175-201.

    Article  Google Scholar 

  • Trenberth, K., 2005: Uncertainty in Hurricanes and Global Warming, Science., 308, D14, 1753-1754.

    Article  Google Scholar 

  • Valke S, L. Terray, A. Piacentini, 2000: The OASIS coupled user guide version 2.4, Technical Report TR/ CMGC/00-10, CERFACS

    Google Scholar 

  • Vecchi, G.A., B.J., Soden, 2007a: Global Warming and the Weakening of the Tropical Circulation, J. of Clim., 20, 4316-4340.

    Article  Google Scholar 

  • Vecchi, G.A., B.J., Soden, 2007b: Increased tropical Atlantic wind shear in model projections of global warming, Geophys. Res. Lett., 34, L08702.

    Article  Google Scholar 

  • Walsh, K.J.E, 1997: Objective detection of tropical cyclones in high--resolution analyses, Mon. Weather Rev., 120, 958-977.

    Google Scholar 

  • Walsh, K.J.E., and B.F., Ryan, 2000: Tropical cyclone intensity increase near Australia as a result of climate change, J. of Clim., 13, D14, 3029-3036.

    Article  Google Scholar 

  • Walsh, K.J.E., 2004: Tropical cyclones and climate change: unresolved issues, Clim. Res., 22, 77-83.

    Article  Google Scholar 

  • Watterson, I.G., J.L., Evans, and B.F., Ryan, 1995: Seasonal and interannual variability of tropical cyclogenesis: Diagnostics from large-scale fields, J. of Clim., 8, 3052-3066.

    Article  Google Scholar 

  • Webster, P.J., G.J., Holland, J.A., Curry, and H.-R., Chang, 2005: Changes in Tropical Cyclones Number, Duration and Intensity in a Warming Environment,

    Article  Google Scholar 

  • Willoughby, H.E., J.A., Clos, M.G., Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex, J. Atmos. Sci., 39, 395-411.

    Article  Google Scholar 

  • Xie, P., and P., Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs, Bull. Am. Meteor. Soc., 78, 2539-2558.

    Article  Google Scholar 

  • Yoshimura, J., M., Sigu, and A., Noda, 2006: Influence of greenhouse warming on tropical cyclone frequency, J. Meteor. Soc. Japan., 84, 405-428.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Gabriel Vecchi, Chiara Cagnazzo and Andrea Alessandri for their precious help, useful suggestions and stimulating discussions. They also want to thank the three anonymous reviewers for their suggestions and constructive criticisms and K. Emanuel for making available the routines to compute the maximum potential index, MPI (http://wind.mit.edu/~emanuel/home.html). This work has been supported by the Euro-Mediterranean Centre for Climate Change and by the European Community project ENSEMBLES, contract number GOCE-CT-2003-505539.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

S, G., E, S., A, N., Gualdi, S. (2009). Changes in Tropical Cyclone Activity due to Global Warming in a General Circulation Model. In: Elsner, J., Jagger, T. (eds) Hurricanes and Climate Change. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09410-6_16

Download citation

Publish with us

Policies and ethics