Skip to main content

ArtiSynth: A Fast Interactive Biomechanical Modeling Toolkit Combining Multibody and Finite Element Simulation

  • Chapter
  • First Online:

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 11))

Abstract

ArtiSynth (http://www.artisynth.org) is an open source, Java-based biomechanical simulation environment for modeling complex anatomical systems composed of both rigid and deformable structures. Models can be built from a rich set of components, including particles, rigid bodies, finite elements with both linear and nonlinear materials, point-to-point muscles, and various bilateral and unilateral constraints including contact. A state-of-the-art physics simulator provides forward simulation capabilities that combine multibody and finite element models. Inverse simulation capabilities allow the computation of the muscle activations needed to achieve prescribed target motions. ArtiSynth is highly interactive, with component parameters and state variables exposed as properties that can be interactively read and adjusted as the simulation proceeds. Streams of input and output data, used for controlling or observing the simulation, can be viewed, arranged, and edited on an interactive timeline display, and support is provided for the graphical editing of model structures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For further details refer to: http://www.mathworks.com/help/techdoc/matlab_external/

  2. 2.

    Since the ODE contains algebraic constraints, it is technically a differential algebraic equation, or DAE.

  3. 3.

    The case of multiple masters arises if we connect a particle to an FEM element, in which case each of the elements’ nodes acts as a master of the particle.

  4. 4.

    The addition of unilateral constraints leads to a more complex mathematical programming problem with complementarity constraints (MPCC).

References

  1. Aftosmis, M.J., Berger, M.J., Melton, J.E.: Robust and efficient cartesian mesh generation for component-based geometry. AIAA J. 36(6), 952–960 (1998)

    Article  Google Scholar 

  2. Allard, J., Cotin S., Faure F., Bensoussan P-J., Poyer F., Duriez C., Delingette H., Grisoni L.: Sofa an open source framework for medical simulation. In: Medicine Meets Virtual Reality (MMVR), pp. 13–18, (2007). February

    Google Scholar 

  3. Anitescu, M., Hart, G.D.: A constraint-stabilized time-stepping approach for rigid multibody dynamics with joints, contact and friction. Int. J. Numer. Methods Eng. 60(14), 2335–2371 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anitescu, M., Florian, A.P.: A time-stepping method for stiff multibody dynamics with contact and friction. Int. J. Numer. Methods Eng. 55(7), 753–784 (2002)

    Article  MATH  Google Scholar 

  5. ArtiSynth Project. Artisynth User Interface Guide. http://www.artisynth.org/doc/html/uiguide/uiguide.htm

  6. ArtiSynth Project. Maspack Reference Manual. http://www.artisynth.org/doc/html/maspack/maspack.htm

  7. Belytschko, T., Liu, W.K., Moran, B.: Nonlinear Finite Elements for Continua and Structures. Wiley, Chichester (2000)

    MATH  Google Scholar 

  8. Bonet, J., Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  9. Buchaillard, S., Brix, M., Perrier, P., Payan, Y.: Simulations of the consequences of tongue surgery on tongue mobility: Implications for speech production in post-surgery conditions. Int. J. Med. Robotics Comp. Assist. Surg. 3(3), 252 (2007)

    Article  Google Scholar 

  10. Buchaillard, S., Perrier, P., Payan, Y.: A biomechanical model of cardinal vowel production: Muscle activations and the impact of gravity on tongue positioning. J. Acoust. Soc. Am. 126(4), 2033–2051 (2009)

    Article  Google Scholar 

  11. Cavusoglu, M.C., Goktekin, T., Tendick, F.: Gipsi: A framework for open source/open architecture software development for organ-level surgical simulation. IEEE Trans. Inform. Technol. Biomedicine 10(2), 312–322 (2006)

    Article  Google Scholar 

  12. Chabanas, M., Luboz, V., Payan, Y.: Patient specific finite element model of the face soft tissues for computer-assisted maxillofacial surgery. Med. Image Anal. 7(2), 131–151 (2003)

    Article  Google Scholar 

  13. Cottle, R.W., Pang, J.-S., Stone, R.E: The Linear Complementarity Problem. Academic Press, New York (1992)

    MATH  Google Scholar 

  14. Douglas Crockford.: The application/json media type for javascript object notation (json). (2006)

    Google Scholar 

  15. Delp, S., Anderson, F., Arnold, A., Loan, P., Habib, A., John, C., Guendelman, E., Thelen, D.: OpenSim: Open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomedical Eng. 54(11), 1940–1950 (2007)

    Article  Google Scholar 

  16. Edelsbrunner, H., Mücke, E.P: Simulation of simplicity: A technique to cope with degenerate cases in geometric algorithms. ACM Trans. Graph 9(1), 66–104 (1990)

    Article  MATH  Google Scholar 

  17. Hannam, A.G., Stavness, I., Lloyd, J.E., Fels, S.: A dynamic model of jaw and hyoid biomechanics during chewing. J. Biomechanics 41(5), 1069–1076 (2008)

    Article  Google Scholar 

  18. Hannam, A.G., Stavness, I., Lloyd, J.E., Fels, S., Miller, A., Curtis, D.: A comparison of simulated jaw dynamics in models of segmental mandibular resection versus resection with alloplastic reconstruction. J. Prosthetic Dent. 104(3), 191–198 (2010)

    Article  Google Scholar 

  19. Huang, Y., White, D., Malhotra, A.: Use of computational modeling to predict responses to upper airway surgery in obstructive sleep apnea. Laryngoscope 117, 648–653 (2007)

    Article  Google Scholar 

  20. Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Publications, New York (2000)

    MATH  Google Scholar 

  21. Lacoursière C.: Ghosts and machines: Regularized variational methods for interactive simulations of multibodies with dry frictional contacts. PhD thesis, Computer Science Department, Umea University, Sweden (2007)

    Google Scholar 

  22. Lundy, D.S., Smith, C., Colangelo, L., Sullivan, P.A., Logemann, J.A., Lazarus, C.L., Newman, L.A., Murry, T., Lombard, L., Gaziano, J.: Aspiration: Cause and implications. Otolaryngol. Neck Surg. 120(4), 474–478 (1999)

    Article  Google Scholar 

  23. Lunk, C., Simeon, B.: Solving constrained mechanical systems by the family of newmark and \(\alpha\)-methods. J. Appl. Math. Mech. (ZAMM) 86(10), 772–784 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Montgomery, K., Cynthia, B., Joel, B., Stephen, S, Frederic, M., Guillaume, T., Arnaud, T., Benjamin, L., Menon, Anil., Spring.: A general framework for collaborative, real-time surgical simulation. In: Medicine Meets Virtual Reality (MMVR), vol. 23(26) pp. 23–26 (2002)

    Google Scholar 

  25. Müller M., Gross, M., Interactive virtual materials. In GI ’04 Proceedings of Graphics Interface, pp. 239–246 (2004)

    Google Scholar 

  26. Musculoskeletal Research Laboratories. FEBio: finite elements for biomechanics. http://mrl.sci.utah.edu/software/febi.

  27. Potra, F.A., Anitescu, M., Gavrea, B., Trinkle, J.: A linearly implicit trapezoidal method for integrating stiff multibody dynamics with contact, joints, and friction. Int. J. Numer. Methods Eng. 66(7), 1079–1124 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schenk, O., Gärtner, K.: Solving unsymmetric sparse systems of linear equations with PARDISO. Future Gener. Comput. Syst. 20(3), 475–487 (2004)

    Article  Google Scholar 

  29. Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  30. Shinar, T., Schroeder C., Fedkiw, R.: Two-way coupling of rigid and deformable bodies. In: SCA ’08: Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 95–103 (2008)

    Google Scholar 

  31. Stavness I.: Byte your tongue: A computational model of human mandibular-lingual biomechanics for biomedical applications. PhD thesis, University of British Columbia, Department of Electrical and Computer Engineering (2010)

    Google Scholar 

  32. Stavness I., Gick, B., Derrick D., Fels S.: Biomechanical modeling of English /r/ variants. J. Acoust. Soc. Am. Express Lett. (2012, in press)

    Google Scholar 

  33. Stavness, I., Hannam, A., Lloyd, J.E., Fels, S.: Predicting muscle patterns for hemimandibulectomy models. Comp. Methods Biomechanics Biomedical Eng. 13(4), 483–491 (2010)

    Article  Google Scholar 

  34. Stavness, I., Lloyd, J., Fels, S.: Inverse-dynamics simulation of muscular-hydrostat finite-element models. In: 23rd International Society of Biomechanics Congress (ISB), vol. 933, 2011. July

    Google Scholar 

  35. Stavness, I., Lloyd, J., Payan, Y., Fels, S.: Towards speech articulation simulation with a dynamic coupled face-jaw-tongue model. In: International Seminar of Speech Production, 2011

    Google Scholar 

  36. Stavness, I., Lloyd, J.E., Payan, Y., Fels, S.: Dynamic hard-soft tissue models for orofacial biomechanics. In: ACM SIGGRAPH Talks, p. 1, (2010)

    Google Scholar 

  37. Stavness, I., Lloyd, J.E., Payan, Y., Fels, S.: Coupled hard-soft tissue simulation with contact and constraints applied to jaw-tongue-hyoid dynamics. Int. J. Numer. Methods Biomedical Eng. 27, 367–390 (2011)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John E. Lloyd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lloyd, J.E., Stavness, I., Fels, S. (2012). ArtiSynth: A Fast Interactive Biomechanical Modeling Toolkit Combining Multibody and Finite Element Simulation. In: Payan, Y. (eds) Soft Tissue Biomechanical Modeling for Computer Assisted Surgery. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2012_126

Download citation

  • DOI: https://doi.org/10.1007/8415_2012_126

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29013-8

  • Online ISBN: 978-3-642-29014-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics