Skip to main content

Sweet Is the Memory of Past Troubles: NK Cells Remember

  • Chapter
  • First Online:
Natural Killer Cells

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 395))

Abstract

Natural killer (NK) cells are important in host defense against tumors and microbial pathogens. Recent studies indicate that NK cells share many features with the adaptive immune system, and like B cells and T cells, NK cells can acquire immunological memory. Here, we review evidence for NK cell memory and the molecules involved in the generation and maintenance of these self-renewing NK cells that provide enhanced protection of the host.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Kiessling R, Klein E, Wigzell H (1975) “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 5:112–117

    Article  CAS  PubMed  Google Scholar 

  • Horowitz A, Strauss-Albee DM, Leipold M, Kubo J, Nemat-Gorgani N, Dogan OC, Dekker CL, Mackey S, Maecker H, Swan GE, Davis MM, Norman PJ, Guethlein LA, Desai M, Parham P, Blish CA (2013) Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry. Sci Transl Med 5:208ra145

    Google Scholar 

  • Cudkowicz G, Stimpfling JH (1964) Induction of immunity and of unresponsiveness to parental marrow grafts in adult F-1 hybrid mice. Nature 204:450–453

    Article  CAS  PubMed  Google Scholar 

  • Murphy WJ, Kumar V, Bennett M (1987) Rejection of bone marrow allografts by mice with severe combined immune deficiency (SCID). Evidence that natural killer cells can mediate the specificity of marrow graft rejection. J Exp Med 165:1212–1217

    Article  CAS  PubMed  Google Scholar 

  • O’Leary JG, Goodarzi M, Drayton DL, von Andrian UH (2006) T cell– and B cell–independent adaptive immunity mediated by natural killer cells. Nat Immunol 7:507–516

    Article  PubMed  CAS  Google Scholar 

  • Gorbachev AV, Fairchild RL (2001) Induction and regulation of T-cell priming for contact hypersensitivity. Crit Rev Immunol 21:451–472

    Article  CAS  PubMed  Google Scholar 

  • Schatz DG, Ji Y (2011) Recombination centres and the orchestration of V(D)J recombination. Nat Rev Immunol 11:251–263

    Article  CAS  PubMed  Google Scholar 

  • Paust S, Gill HS, Wang B-Z, Flynn MP, Moseman EA, Senman B, Szczepanik M, Telenti A, Askenase PW, Compans RW, von Andrian UH (2010) Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses. Nat Immunol 11:1127–1135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Majewska-Szczepanik M, Paust S, von Andrian UH, Askenase PW, Szczepanik M (2013) Natural killer cell-mediated contact sensitivity develops rapidly and depends on interferon-α, interferon-γ and interleukin-12. Immunology 140:98–110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deng L, Chen N, Li Y, Zheng H, Lei Q (2010) CXCR6/CXCL16 functions as a regulator in metastasis and progression of cancer. Biochim Biophys Acta 1806:42–49

    CAS  PubMed  Google Scholar 

  • Geissmann F, Cameron TO, Sidobre S, Manlongat N, Kronenberg M, Briskin MJ, Dustin ML, Littman DR (2005) Intravascular immune surveillance by CXCR6+NKT cells patrolling liver sinusoids. PLoS Biol 3:e113

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Borghesi L, Hsu L-Y, Miller JP, Anderson M, Herzenberg L, Herzenberg L, Schlissel MS, Allman D, Gerstein RM (2004) B lineage-specific regulation of V(D)J recombinase activity is established in common lymphoid progenitors. J Exp Med 199:491–502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lanier LL (2005) NK cell recognition. Annu Rev Immunol 23:225–274

    Article  CAS  PubMed  Google Scholar 

  • Gazit R, Gruda R, Elboim M, Arnon TI, Katz G, Achdout H, Hanna J, Qimron U, Landau G, Greenbaum E, Zakay-Rones Z, Porgador A, Mandelboim O (2006) Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nat Immunol 7:517–523

    Article  CAS  PubMed  Google Scholar 

  • Draghi M, Pashine A, Sanjanwala B, Gendzekhadze K, Cantoni C, Cosman D, Moretta A, Valiante NM, Parham P (2007) NKp46 and NKG2D recognition of infected dendritic cells is necessary for NK cell activation in the human response to influenza infection. J Immunol 178:2688–2698

    Article  CAS  PubMed  Google Scholar 

  • Bursch LS, Wang L, Igyarto B, Kissenpfennig A, Malissen B, Kaplan DH, Hogquist KA (2007) Identification of a novel population of Langerin+ dendritic cells. J Exp Med 204:3147–3156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaplan DH, Jenison MC, Saeland S, Shlomchik WD, Shlomchik MJ (2005) Epidermal langerhans cell-deficient mice develop enhanced contact hypersensitivity. Immunity 23:611–620

    Article  CAS  PubMed  Google Scholar 

  • Kaplan DH (2010) In vivo function of Langerhans cells and dermal dendritic cells. Trends Immunol 31:446–451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dilulio NA, Engeman T, Armstrong D, Tannenbaum C, Hamilton TA, Fairchild RL (1999) Groalpha-mediated recruitment of neutrophils is required for elicitation of contact hypersensitivity. Eur J Immunol 29:3485–3495

    Article  CAS  PubMed  Google Scholar 

  • Kish DD, Li X, Fairchild RL (2009) CD8 T cells producing IL-17 and IFN-gamma initiate the innate immune response required for responses to antigen skin challenge. J. Immunol. 182:5949–5959

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rouzaire P, Luci C, Blasco E, Bienvenu J, Walzer T, Nicolas J-F, Hennino A (2012) Natural killer cells and T cells induce different types of skin reactions during recall responses to haptens. Eur J Immunol 42:80–88

    Article  CAS  PubMed  Google Scholar 

  • Peng H, Jiang X, Chen Y, Sojka DK, Wei H, Gao X, Sun R, Yokoyama WM, Tian Z (2013) Liver-resident NK cells confer adaptive immunity in skin-contact inflammation. J Clin Invest 123:1444–1456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Fougerolles AR, Sprague AG, Nickerson-Nutter CL, Chi-Rosso G, Rennert PD, Gardner H, Gotwals PJ, Lobb RR, Koteliansky VE (2000) Regulation of inflammation by collagen-binding integrins alpha1beta1 and alpha2beta1 in models of hypersensitivity and arthritis. J Clin Invest 105:721–729

    Article  PubMed Central  PubMed  Google Scholar 

  • Daussy C, Faure F, Mayol K, Viel S, Gasteiger G, Charrier E, Bienvenu J, Henry T, Debien E, Hasan UA, Marvel J, Yoh K, Takahashi S, Prinz I, de Bernard S, Buffat L, Walzer T (2014) T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. J Exp Med 211:563–577

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marquardt N, Béziat V, Nyström S, Hengst J, Ivarsson MA, Kekäläinen E, Johansson H, Mjösberg J, Westgren M, Lankisch TO, Wedemeyer H, Ellis EC, Ljunggren H-G, Michaëlsson J, Björkström NK (2015) Cutting edge: identification and characterization of human intrahepatic CD49a+ NK cells. J Immunol 194:2467–2471

    Article  CAS  PubMed  Google Scholar 

  • Min-Oo G, Kamimura Y, Hendricks DW, Nabekura T, Lanier LL (2013) Natural killer cells: walking three paths down memory lane. Trends Immunol 34:251–258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marcus A, Raulet DH (2013) Evidence for natural killer cell memory. Curr Biol CB 23:R817–R820

    Article  CAS  PubMed  Google Scholar 

  • Goodrum F, Caviness K, Zagallo P (2012) Human cytomegalovirus persistence. Cell Microbiol 14:644–655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hanley PJ, Bollard CM (2014) Controlling cytomegalovirus: helping the immune system take the lead. Viruses 6:2242–2258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • López-Botet M, Muntasell A, Vilches C (2014) The CD94/NKG2C+ NK-cell subset on the edge of innate and adaptive immunity to human cytomegalovirus infection. Semin Immunol 26:145–151

    Article  PubMed  CAS  Google Scholar 

  • Tyznik AJ, Verma S, Wang Q, Kronenberg M, Benedict CA (2014) Distinct requirements for activation of NKT and NK cells during viral infection. J. Immunol. 192:3676–3685

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gumá M, Angulo A, Vilches C, Gómez-Lozano N, Malats N, López-Botet M (2004) Imprint of human cytomegalovirus infection on the NK cell receptor repertoire. Blood 104:3664–3671

    Article  PubMed  CAS  Google Scholar 

  • Vidal SM, Lanier LL (2006) NK cell recognition of mouse cytomegalovirus-infected cells. Curr Top Microbiol Immunol 298:183–206

    CAS  PubMed  Google Scholar 

  • Sun JC, Lanier LL (2009) The natural selection of herpesviruses and virus-specific NK cell receptors. Viruses 1:362

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brizić I, Lenac Roviš T, Krmpotić A, Jonjić S (2014) MCMV avoidance of recognition and control by NK cells. Semin. Immunopathol. 36:641–650

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Girard S, Macina D, Busà M, Zafer A, Belouchi A, Gros P, Vidal SM (2001) Susceptibility to mouse cytomegalovirus is associated with deletion of an activating natural killer cell receptor of the C-type lectin superfamily. Nat Genet 28:42–45

    CAS  PubMed  Google Scholar 

  • Arase H, Mocarski ES, Campbell AE, Hill AB, Lanier LL (2002) Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296:1323–1326

    Article  CAS  PubMed  Google Scholar 

  • Dokun AO, Kim S, Smith HRC, Kang H-SP, Chu DT, Yokoyama WM (2001) Specific and nonspecific NK cell activation during virus infection. Nat Immunol 2:951–956

    Article  CAS  PubMed  Google Scholar 

  • Smith HRC, Heusel JW, Mehta IK, Kim S, Dorner BG, Naidenko OV, Iizuka K, Furukawa H, Beckman DL, Pingel JT, Scalzo AA, Fremont DH, Yokoyama WM (2002) Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc Natl Acad Sci 99:8826–8831

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scalzo AA, Fitzgerald NA, Wallace CR, Gibbons AE, Smart YC, Burton RC, Shellam GR (1992) The effect of the Cmv-1 resistance gene, which is linked to the natural killer cell gene complex, is mediated by natural killer cells. J. Immunol. 149:581–589

    CAS  PubMed  Google Scholar 

  • Sun JC, Beilke JN, Lanier LL (2009) Adaptive immune features of natural killer cells. Nature 457:557–561

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun JC, Beilke JN, Lanier LL (2010) Immune memory redefined: characterizing the longevity of natural killer cells. Immunol Rev 236:83–94

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nabekura T, Kanaya M, Shibuya A, Fu G, Gascoigne NRJ, Lanier LL (2014) Costimulatory molecule DNAM-1 is essential for optimal differentiation of memory natural killer cells during mouse cytomegalovirus infection. Immunity 40:225–234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Biron CA, Tarrio ML (2015) Immunoregulatory cytokine networks: 60 years of learning from murine cytomegalovirus. Med Microbiol Immunol (Berl) 204(3):345–354

    Google Scholar 

  • Sun JC, Madera S, Bezman NA, Beilke JN, Kaplan MH, Lanier LL (2012) Proinflammatory cytokine signaling required for the generation of natural killer cell memory. J Exp Med 209:947–954

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Firth MA, Madera S, Beaulieu AM, Gasteiger G, Castillo EF, Schluns KS, Kubo M, Rothman PB, Vivier E, Sun JC (2013) Nfil3-independent lineage maintenance and antiviral response of natural killer cells. J Exp Med 210:2981–2990

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Madera S, Sun JC (2015) Cutting edge: stage-specific requirement of IL-18 for antiviral NK cell expansion. J Immunol 194:1408–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nabekura T, Girard J-P, Lanier LL (2015) IL-33 receptor ST2 amplifies the expansion of Natural Killer cells and enhances host defense during mouse cytomegalovirus infection. J Immunol 194:5948–5952

    Google Scholar 

  • Zawislak CL, Beaulieu AM, Loeb GB, Karo J, Canner D, Bezman NA, Lanier LL, Rudensky AY, Sun JC (2013) Stage-specific regulation of natural killer cell homeostasis and response against viral infection by microRNA-155. Proc Natl Acad Sci USA 110:6967–6972

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kamimura Y, Lanier LL (2015) Homeostatic control of memory cell progenitors in the natural killer cell lineage. Cell Rep. 10:280–291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prlic M, Williams MA, Bevan MJ (2007) Requirements for CD8 T-cell priming, memory generation and maintenance. Curr Opin Immunol 19:315–319

    Article  CAS  PubMed  Google Scholar 

  • Kurtulus S, Tripathi P, Opferman JT, Hildeman DA (2010) Contracting the “mus cells”—does down-sizing suit us for diving into the memory pool? Immunol Rev 236:54–67

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grayson JM, Zajac AJ, Altman JD, Ahmed R (2000) Cutting edge: increased expression of Bcl-2 in antigen-specific memory CD8+ T cells. J Immunol 164:3950–3954

    Article  CAS  PubMed  Google Scholar 

  • Zehn D, Roepke S, Weakly K, Bevan MJ, Prlic M (2014) Inflammation and TCR signal strength determine the breadth of the T cell response in a bim-dependent manner. J Immunol 192:200–205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hildeman DA, Zhu Y, Mitchell TC, Bouillet P, Strasser A, Kappler J, Marrack P (2002) Activated T cell death in vivo mediated by proapoptotic bcl-2 family member bim. Immunity 16:759–767

    Article  CAS  PubMed  Google Scholar 

  • Pellegrini M, Belz G, Bouillet P, Strasser A (2003) Shutdown of an acute T cell immune response to viral infection is mediated by the proapoptotic Bcl-2 homology 3-only protein Bim. Proc Natl Acad Sci USA 100:14175–14180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Min-Oo G, Bezman NA, Madera S, Sun JC, Lanier LL (2014) Proapoptotic Bim regulates antigen-specific NK cell contraction and the generation of the memory NK cell pool after cytomegalovirus infection. J Exp Med 211:1289–1296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jay DC, Mitchell DM, Williams MA (2013) Bim mediates the elimination of functionally unfit Th1 responders from the memory pool. PLoS ONE 8:e67363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • George TC, Ortaldo JR, Lemieux S, Kumar V, Bennett M (1999) Tolerance and alloreactivity of the Ly49D subset of murine NK cells. J Immunol 163:1859–1867

    CAS  PubMed  Google Scholar 

  • Nabekura T, Lanier LL (2014) Antigen-specific expansion and differentiation of natural killer cells by alloantigen stimulation. J Exp Med 211:2455–2465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lopez-Vergès S, Milush JM, Schwartz BS, Pando MJ, Jarjoura J, York VA, Houchins JP, Miller S, Kang S-M, Norris PJ, Nixon DF, Lanier LL (2011) Expansion of a unique CD57+NKG2Chi natural killer cell subset during acute human cytomegalovirus infection. Proc Natl Acad Sci 108:14725–14732

    Article  PubMed Central  PubMed  Google Scholar 

  • Foley B, Cooley S, Verneris MR, Pitt M, Curtsinger J, Luo X, Lopez-Vergès S, Lanier LL, Weisdorf D, Miller JS (2012) Cytomegalovirus reactivation after allogeneic transplantation promotes a lasting increase in educated NKG2C+ natural killer cells with potent function. Blood 119:2665–2674

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Focosi D, Bestagno M, Burrone O, Petrini M (2010) CD57+ T lymphocytes and functional immune deficiency. J Leukoc Biol 87:107–116

    Article  CAS  PubMed  Google Scholar 

  • Béziat V, Dalgard O, Asselah T, Halfon P, Bedossa P, Boudifa A, Hervier B, Theodorou I, Martinot M, Debré P, Björkström NK, Malmberg K-J, Marcellin P, Vieillard V (2012) CMV drives clonal expansion of NKG2C+ NK cells expressing self-specific KIRs in chronic hepatitis patients. Eur J Immunol 42:447–457

    Article  PubMed  CAS  Google Scholar 

  • Gumá M, Cabrera C, Erkizia I, Bofill M, Clotet B, Ruiz L, López-Botet M (2006) Human cytomegalovirus infection is associated with increased proportions of NK cells that express the CD94/NKG2C receptor in aviremic HIV-1–positive patients. J Infect Dis 194:38–41

    Article  PubMed  Google Scholar 

  • Björkström NK, Lindgren T, Stoltz M, Fauriat C, Braun M, Evander M, Michaëlsson J, Malmberg K-J, Klingström J, Ahlm C, Ljunggren H-G (2011a) Rapid expansion and long-term persistence of elevated NK cell numbers in humans infected with hantavirus. J Exp Med 208:13–21

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Petitdemange C, Becquart P, Wauquier N, Béziat V, Debré P, Leroy EM, Vieillard V (2011) Unconventional repertoire profile is imprinted during acute chikungunya infection for natural killer cells polarization toward cytotoxicity. PLoS Pathog 7:e1002268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hendricks DW, Balfour HH, Dunmire SK, Schmeling DO, Hogquist KA, Lanier LL (2014) Cutting edge: NKG2C(hi)CD57+ NK cells respond specifically to acute infection with cytomegalovirus and not Epstein-Barr virus. J Immunol 192:4492–4496

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jost S, Reardon J, Peterson E, Poole D, Bosch R, Alter G, Altfeld M (2011) Expansion of 2B4+ natural killer (NK) cells and decrease in NKp46+ NK cells in response to influenza. Immunology 132:516–526

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fu X, Liu Y, Li L, Li Q, Qiao D, Wang H, Lao S, Fan Y, Wu C (2011) Human natural killer cells expressing the memory-associated marker CD45RO from tuberculous pleurisy respond more strongly and rapidly than CD45RO- natural killer cells following stimulation with interleukin-12. Immunology 134:41–49

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hong HS, Eberhard JM, Keudel P, Bollmann BA, Ballmaier M, Bhatnagar N, Zielinska-Skowronek M, Schmidt RE, Meyer-Olson D (2010) HIV infection is associated with a preferential decline in less-differentiated CD56dim CD16+ NK cells. J Virol 84:1183–1188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lanier LL, Yu G, Phillips JH (1989) Co-association of CD3ζ with a receptor (CD16) for IgG Fc on human natural killer cells. Nature 342:803–805

    Article  CAS  PubMed  Google Scholar 

  • Lanier LL, Yu G, Phillips JH (1991) Analysis of Fc gamma RIII (CD16) membrane expression and association with CD3 zeta and Fc epsilon RI-gamma by site-directed mutation. J Immunol 146:1571–1576

    CAS  PubMed  Google Scholar 

  • Lanier LL (2003) Natural killer cell receptor signaling. Curr Opin Immunol 15:308–314

    Article  CAS  PubMed  Google Scholar 

  • Hwang I, Zhang T, Scott JM, Kim AR, Lee T, Kakarla T, Kim A, Sunwoo JB, Kim S (2012) Identification of human NK cells that are deficient for signaling adaptor FcRγ and specialized for antibody-dependent immune functions. Int Immunol 24:793–802

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang T, Scott JM, Hwang I, Kim S (2013) Cutting edge: antibody-dependent memory-like NK cells distinguished by FcRγ deficiency. J Immunol 190:1402–1406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee J, Zhang T, Hwang I, Kim A, Nitschke L, Kim M, Scott JM, Kamimura Y, Lanier LL, Kim S (2015) Epigenetic modification and antibody-dependent expansion of memory-like NK cells in human cytomegalovirus-infected individuals. Immunity 42:431–442

    Article  CAS  PubMed  Google Scholar 

  • Schlums H, Cichocki F, Tesi B, Theorell J, Beziat V, Holmes TD, Han H, Chiang SCC, Foley B, Mattsson K, Larsson S, Schaffer M, Malmberg K-J, Ljunggren H-G, Miller JS, Bryceson YT (2015) Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function. Immunity 42:443–456

    Article  CAS  PubMed  Google Scholar 

  • Min-Oo G, Lanier LL (2014) Cytomegalovirus generates long-lived antigen-specific NK cells with diminished bystander activation to heterologous infection. J Exp Med 211(13):2669–2680

    Google Scholar 

  • Suarez-Ramirez JE, Tarrio ML, Kim K, Demers DA, Biron CA (2014) CD8 T cells in innate immune responses: using STAT4-dependent but antigen-independent pathways to gamma interferon during viral infection. mBio 5:e01978–e01914

    Google Scholar 

  • Odumade OA, Knight JA, Schmeling DO, Masopust D, Balfour HH Jr, Hogquist KA (2012) Primary Epstein-Barr virus infection does not erode preexisting CD8+ T cell memory in humans. J Exp Med 209:471–478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Björkström NK, Svensson A, Malmberg K-J, Eriksson K, Ljunggren H-G (2011b) Characterization of natural killer cell phenotype and function during recurrent human HSV-2 infection. PLoS ONE 6:e27664

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cooper MA, Elliott JM, Keyel PA, Yang L, Carrero JA, Yokoyama WM (2009) Cytokine-induced memory-like natural killer cells. Proc Natl Acad Sci USA 106:1915–1919

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zehn D, King C, Bevan MJ, Palmer E (2012) TCR signaling requirements for activating T cells and for generating memory. Cell Mol Life Sci CMLS 69:1565–1575

    Article  CAS  PubMed  Google Scholar 

  • Youngblood B, Hale JS, Ahmed R (2013) T-cell memory differentiation: insights from transcriptional signatures and epigenetics. Immunology 139:277–284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stetson DB, Mohrs M, Reinhardt RL, Baron JL, Wang Z-E, Gapin L, Kronenberg M, Locksley RM (2003) Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J Exp Med 198:1069–1076

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van Helden MJG, de Graaf N, Boog CJP, Topham DJ, Zaiss DMW, Sijts AJAM (2012) The bone marrow functions as the central site of proliferation for long-lived NK cells. J Immunol 189:2333–2337

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mandelboim O, Lieberman N, Lev M, Paul L, Arnon TI, Bushkin Y, Davis DM, Strominger JL, Yewdell JW, Porgador A (2001) Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 409:1055–1060

    Article  CAS  PubMed  Google Scholar 

  • Arnon TI, Lev M, Katz G, Chernobrov Y, Porgador A, Mandelboim O (2001) Recognition of viral hemagglutinins by NKp44 but not by NKp30. Eur J Immunol 31:2680–2689

    Article  CAS  PubMed  Google Scholar 

  • Heltzer ML, Coffin SE, Maurer K, Bagashev A, Zhang Z, Orange JS, Sullivan KE (2009) Immune dysregulation in severe influenza. J Leukoc Biol 85:1036–1043

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ni J, Miller M, Stojanovic A, Garbi N, Cerwenka A (2012) Sustained effector function of IL-12/15/18-preactivated NK cells against established tumors. J Exp Med 209:2351–2365

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Levy EM, Roberti MP, Mordoh J (2011) Natural killer cells in human cancer: from biological functions to clinical applications. J Biomed Biotechnol 2011:676198

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Passweg JR, Koehl U, Uharek L, Meyer-Monard S, Tichelli A (2006) Natural-killer-cell-based treatment in haematopoietic stem-cell transplantation. Best Pract Res Clin Haematol 19:811–824

    Article  CAS  PubMed  Google Scholar 

  • Romee R, Schneider SE, Leong JW, Chase JM, Keppel CR, Sullivan RP, Cooper MA, Fehniger TA (2012) Cytokine activation induces human memory-like NK cells. Blood 120:4751–4760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prlic M, Blazar BR, Farrar MA, Jameson SC (2003) In vivo survival and homeostatic proliferation of natural killer cells. J Exp Med 197:967–976

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jamieson AM, Isnard P, Dorfman JR, Coles MC, Raulet DH (2004) Turnover and proliferation of NK cells in steady state and lymphopenic conditions. J Immunol 172:864–870

    Article  CAS  PubMed  Google Scholar 

  • Sun JC, Beilke JN, Bezman NA, Lanier LL (2011) Homeostatic proliferation generates long-lived natural killer cells that respond against viral infection. J Exp Med 208:357–368

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ranson T, Vosshenrich CAJ, Corcuff E, Richard O, Müller W, Di Santo JP (2003) IL-15 is an essential mediator of peripheral NK-cell homeostasis. Blood 101:4887–4893

    Article  CAS  PubMed  Google Scholar 

  • Boyman O, Krieg C, Homann D, Sprent J (2012) Homeostatic maintenance of T cells and natural killer cells. Cell Mol Life Sci CMLS 69:1597–1608

    Article  CAS  PubMed  Google Scholar 

  • Elliott JM, Yokoyama WM (2011) Unifying concepts of MHC-dependent natural killer cell education. Trends Immunol 32:364–372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gillard GO, Bivas-Benita M, Hovav A-H, Grandpre LE, Panas MW, Seaman MS, Haynes BF, Letvin NL (2011) Thy1+ NK cells from vaccinia virus-primed mice confer protection against vaccinia virus challenge in the absence of adaptive lymphocytes. PLoS Pathog 7:e1002141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Abdul-Careem MF, Lee AJ, Pek EA, Gill N, Gillgrass AE, Chew MV, Reid S, Ashkar AA (2012) Genital HSV-2 infection induces short-term NK cell memory. PLoS ONE 7:e32821

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wendt CH, Hertz MI (1995) Respiratory syncytial virus and parainfluenza virus infections in the immunocompromised host. Semin Respir Infect 10:224–231

    CAS  PubMed  Google Scholar 

  • Vento S, Cainelli F, Temesgen Z (2008) Lung infections after cancer chemotherapy. Lancet Oncol 9:982–992

    Article  PubMed  Google Scholar 

  • Hall CB (2001) Respiratory syncytial virus and parainfluenza virus. N Engl J Med 344:1917–1928

    Article  CAS  PubMed  Google Scholar 

  • Culley FJ (2009) Natural killer cells in infection and inflammation of the lung. Immunology 128:151–163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schultz-Cherry S (2015) Role of NK cells in influenza infection. Curr Top Microbiol Immunol 386:109–120

    PubMed  Google Scholar 

  • Herfst S, Imai M, Kawaoka Y, Fouchier RAM (2014) Avian influenza virus transmission to mammals. Curr Top Microbiol Immunol 385:137–155

    CAS  PubMed  Google Scholar 

  • O’Donnell CD, Subbarao K (2011) The contribution of animal models to the understanding of the host range and virulence of influenza A viruses. Microbes Infect Inst Pasteur 13:502–515

    Article  Google Scholar 

  • Van den Brand JMA, Haagmans BL, van Riel D, Osterhaus ADME, Kuiken T (2014) The pathology and pathogenesis of experimental severe acute respiratory syndrome and influenza in animal models. J Comp Pathol 151:83–112

    Article  PubMed  Google Scholar 

  • Bouvier NM, Lowen AC (2010) Animal models for influenza virus pathogenesis and transmission. Viruses 2:1530–1563

    Article  PubMed Central  PubMed  Google Scholar 

  • Buchweitz JP, Harkema JR, Kaminski NE (2007) Time-dependent airway epithelial and inflammatory cell responses induced by influenza virus A/PR/8/34 in C57BL/6 mice. Toxicol Pathol 35:424–435

    Article  CAS  PubMed  Google Scholar 

  • Jost S, Altfeld M (2013) Control of human viral infections by natural killer cells. Annu Rev Immunol 31:163–194

    Article  CAS  PubMed  Google Scholar 

  • Faísca P, Desmecht D (2007) Sendai virus, the mouse parainfluenza type 1: a longstanding pathogen that remains up-to-date. Res Vet Sci 82:115–125

    Article  PubMed  Google Scholar 

  • Gorman WL, Gill DS, Scroggs RA, Portner A (1990) The hemagglutinin-neuraminidase glycoproteins of human parainfluenza virus type 1 and Sendai virus have high structure-function similarity with limited antigenic cross-reactivity. Virology 175:211–221

    Article  CAS  PubMed  Google Scholar 

  • Barao I, Alvarez M, Ames E, Orr MT, Stefanski HE, Blazar BR, Lanier LL, Anderson SK, Redelman D, Murphy WJ (2011) Mouse Ly49G2+ NK cells dominate early responses during both immune reconstitution and activation independently of MHC. Blood 117:7032–7041

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ku CC, Murakami M, Sakamoto A, Kappler J, Marrack P (2000) Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science 288:675–678

    Article  CAS  PubMed  Google Scholar 

  • Purton JF, Tan JT, Rubinstein MP, Kim DM, Sprent J, Surh CD (2007) Antiviral CD4+ memory T cells are IL-15 dependent. J Exp Med 204:951–961

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

L.L.L. is an American Cancer Society Professor and funded by US National Institutes of Health grants AI066897 and AI068129. G. M-O was a Bisby Fellow of the Canadian Institutes of Health Research. An American Lung Association Senior Research Training Fellowship and University of California President’s Postdoctoral Fellowship funded D.W.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lewis L. Lanier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hendricks, D.W., Min-Oo, G., Lanier, L.L. (2015). Sweet Is the Memory of Past Troubles: NK Cells Remember. In: Vivier, E., Di Santo, J., Moretta, A. (eds) Natural Killer Cells. Current Topics in Microbiology and Immunology, vol 395. Springer, Cham. https://doi.org/10.1007/82_2015_447

Download citation

Publish with us

Policies and ethics