Skip to main content

The Use of Anti-CD40 mAb in Cancer

  • Chapter
  • First Online:
Book cover Cancer Vaccines

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 405))

Abstract

Immunomodulatory monoclonal antibody (mAb) therapy is at the forefront of developing cancer therapeutics with numerous targeted agents proving highly effective in selective patients at stimulating protective host immunity, capable of eradicating established tumours and leading to long-term disease-free states. The cell surface marker CD40 is expressed on a range of immune cells and transformed cells in malignant states whose signalling plays a critical role in modulating adaptive immune responses. Anti-CD40 mAb therapy acts via multiple mechanisms to stimulate anti-tumour immunity across a broad range of lymphoid and solid malignancies. A wealth of preclinical research in this field has led to the successful development of multiple anti-CD40 mAb agents that have shown promise in early-phase clinical trials. Significant progress has been made to enhance the engagement of antibodies with immune effectors through their interactions with Fcγ receptors (FcγRs) by the process of Fc engineering. As more is understood about how to best optimise these agents, principally through the fine-tuning of mAb structure and choice of synergistic partnerships, our ability to generate robust, clinically beneficial anti-tumour activity will form the foundation for the next generation of cancer therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Advani R, Forero-Torres A, Furman RR, Rosenblatt JD, Younes A, Ren H, Harrop K, Whiting N, Drachman JG (2009) Phase I study of the humanized anti-CD40 monoclonal antibody dacetuzumab in refractory or recurrent non-Hodgkin’s lymphoma. J Clin Oncol 27(26):4371–4377

    Article  CAS  PubMed  Google Scholar 

  • Ahonen C, Manning E, Erickson LD, O’Connor B, Lind EF, Pullen SS, Kehry MR, Noelle RJ (2002) The CD40-TRAF6 axis controls affinity maturation and the generation of long-lived plasma cells. Nat Immunol 3(5):451–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alderson MR, Armitage RJ, Tough TW, Strockbine L, Fanslow WC, Spriggs MK (1993) CD40 expression by human monocytes: regulation by cytokines and activation of monocytes by the ligand for CD40. J Exp Med 178(2):669–674

    Article  CAS  PubMed  Google Scholar 

  • Armand P, Nagler A, Weller EA, Devine SM, Avigan DE, Chen YB, Kaminski MS, Holland HK, Winter JN, Mason JR, Fay JW, Rizzieri DA, Hosing CM, Ball ED, Uberti JP, Lazarus HM, Mapara MY, Gregory SA, Timmerman JM, Andorsky D, Or R, Waller EK, Rotem-Yehudar R, Gordon LI (2013) Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large B-cell lymphoma: results of an international phase II trial. J Clin Oncol 31(33):4199–4206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armitage RJ, Fanslow WC, Strockbine L, Sato TA, Clifford KN, Macduff BM, Anderson DM, Gimpel SD, Davis-Smith T, Maliszewski CR et al (1992) Molecular and biological characterization of a murine ligand for CD40. Nature 357(6373):80–82

    Article  CAS  PubMed  Google Scholar 

  • Arpin C, Dechanet J, Van Kooten C, Merville P, Grouard G, Briere F, Banchereau J, Liu YJ (1995) Generation of memory B cells and plasma cells in vitro. Science 268(5211):720–722

    Article  CAS  PubMed  Google Scholar 

  • Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W, Huhn RD, Song W, Li D, Sharp LL, Torigian DA, O’Dwyer PJ, Vonderheide RH (2011) CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331(6024):1612–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beatty GL, Torigian DA, Chiorean EG, Saboury B, Brothers A, Alavi A, Troxel AB, Sun W, Teitelbaum UR, Vonderheide RH, O’Dwyer PJ (2013) A phase I study of an agonist CD40 monoclonal antibody (CP-870,893) in combination with gemcitabine in patients with advanced pancreatic ductal adenocarcinoma. Clin Cancer Res 19(22):6286–6295

    Article  CAS  PubMed  Google Scholar 

  • Bedian V, Donovan C, Garder J (2006) In vitro characterization and pre-clinical pharmacokinetics of CP-870,893, a human anti-CD40 agonist antibody. J Clin Oncol 24:109s, (suppl; abstr 2539)

    Google Scholar 

  • Bensinger W, Maziarz RT, Jagannath S, Spencer A, Durrant S, Becker PS, Ewald B, Bilic S, Rediske J, Baeck J, Stadtmauer EA (2012) A phase 1 study of lucatumumab, a fully human anti-CD40 antagonist monoclonal antibody administered intravenously to patients with relapsed or refractory multiple myeloma. Br J Haematol 159(1):58–66

    Article  CAS  PubMed  Google Scholar 

  • Berberich I, Shu G, Siebelt F, Woodgett JR, Kyriakis JM, Clark EA (1996) Cross-linking CD40 on B cells preferentially induces stress-activated protein kinases rather than mitogen-activated protein kinases. EMBO j 15(1):92–101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berberich I, Shu GL, Clark EA (1994) Cross-linking CD40 on B cells rapidly activates nuclear factor-kappa B. J Immunol 153(10):4357–4366

    CAS  PubMed  Google Scholar 

  • Berner V, Liu H, Zhou Q, Alderson KL, Sun K, Weiss JM, Back TC, Longo DL, Blazar BR, Wiltrout RH, Welniak LA, Redelman D, Murphy WJ (2007) IFN-gamma mediates CD4+ T-cell loss and impairs secondary antitumor responses after successful initial immunotherapy. Nat Med 13(3):354–360

    Article  CAS  PubMed  Google Scholar 

  • Bruhns P (2012) Properties of mouse and human IgG receptors and their contribution to disease models. Blood 119(24):5640–5649

    Article  CAS  PubMed  Google Scholar 

  • Bruhns P, Iannascoli B, England P, Mancardi DA, Fernandez N, Jorieux S, Daeron M (2009) Specificity and affinity of human Fc gamma receptors and their polymorphic variants for human IgG subclasses. Blood 113(16):3716–3725

    Article  CAS  PubMed  Google Scholar 

  • Buhtoiarov IN, Lum H, Berke G, Paulnock DM, Sondel PM, Rakhmilevich AL (2005) CD40 ligation activates murine macrophages via an IFN-gamma-dependent mechanism resulting in tumor cell destruction in vitro. J Immunol 174(10):6013–6022

    Article  CAS  PubMed  Google Scholar 

  • Burington B, Yue P, Shi X, Advani R, Lau JT, Tan J, Stinson S, Stinson J, Januario T, de Vos S, Ansell S, Forero-Torres S, Fedorowicz G, Yang TT, Elkins K, Du C, Mohan S, Yu N, Modrusan Z, Seshagiri S, Yu SF, Pandita A, Koeppen H, French D, Polson AG, Offringa R, Whiting N, Ebens A, Dornan D (2011) CD40 pathway activation status predicts response to CD40 therapy in diffuse large B cell lymphoma. Sci Transl Med 3(74):74ra22

    Article  PubMed  Google Scholar 

  • Burris HA 3rd, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, Cripps MC, Portenoy RK, Storniolo AM, Tarassoff P, Nelson R, Dorr FA, Stephens CD, Von Hoff DD (1997) Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 15(6):2403–2413

    Article  CAS  PubMed  Google Scholar 

  • Byrd JC, Kipps TJ, Flinn IW, Cooper M, Odenike O, Bendiske J, Rediske J, Bilic S, Dey J, Baeck J, O’Brien S (2012) Phase I study of the anti-CD40 humanized monoclonal antibody lucatumumab (HCD122) in relapsed chronic lymphocytic leukemia. Leuk Lymphoma 53(11):2136–2142

    Article  CAS  PubMed  Google Scholar 

  • Carpenter EL, Mick R, Ruter J, Vonderheide RH (2009) Activation of human B cells by the agonist CD40 antibody CP-870,893 and augmentation with simultaneous toll-like receptor 9 stimulation. J Transl Med 7:93

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, Watier H (2002) Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 99(3):754–758

    Article  CAS  PubMed  Google Scholar 

  • Castillo R, Mascarenhas J, Telford W, Chadburn A, Friedman SM, Schattner EJ (2000) Proliferative response of mantle cell lymphoma cells stimulated by CD40 ligation and IL-4. Leukemia 14(2):292–298

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Ashe S, Brady WA, Hellstrom I, Hellstrom KE, Ledbetter JA, McGowan P, Linsley PS (1992) Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. Cell 71(7):1093–1102

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury F, Johnson PW, Glennie MJ, Williams AP (2014) Ex vivo assays of dendritic cell activation and cytokine profiles as predictors of in vivo effects in an anti-human CD40 monoclonal antibody ChiLob 7/4 phase I trial. Cancer Immunol Res 2(3):229–240

    Article  CAS  PubMed  Google Scholar 

  • Clark EA, Ledbetter JA (1986) Activation of human B cells mediated through two distinct cell surface differentiation antigens, Bp35 and Bp50. Proc Natl Acad Sci USA 83(12):4494–4498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clynes RA, Towers TL, Presta LG, Ravetch JV (2000) Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med 6(4):443–446

    Article  CAS  PubMed  Google Scholar 

  • Cooke PW, James ND, Ganesan R, Wallace M, Burton A, Young LS (1999) CD40 expression in bladder cancer. J Pathol 188(1):38–43

    Article  CAS  PubMed  Google Scholar 

  • Corazzelli G, Capobianco G, Arcamone M, Ballerini PF, Iannitto E, Russo F, Frigeri F, Becchimanzi C, Marcacci G, De Chiara A, Pinto A (2009) Long-term results of gemcitabine plus oxaliplatin with and without rituximab as salvage treatment for transplant-ineligible patients with refractory/relapsing B-cell lymphoma. Cancer Chemother Pharmacol 64(5):907–916

    Article  CAS  PubMed  Google Scholar 

  • Costello RT, Gastaut JA, Olive D (1999) What is the real role of CD40 in cancer immunotherapy? Immunol Today 20(11):488–493

    Article  CAS  PubMed  Google Scholar 

  • Dadgostar H, Zarnegar B, Hoffmann A, Qin XF, Truong U, Rao G, Baltimore D, Cheng G (2002) Cooperation of multiple signaling pathways in CD40-regulated gene expression in B lymphocytes. Proc Natl Acad Sci USA 99(3):1497–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desjarlais JR, Lazar GA, Zhukovsky EA, Chu SY (2007) Optimizing engagement of the immune system by anti-tumor antibodies: an engineer’s perspective. Drug Discov Today 12(21–22):898–910

    Article  CAS  PubMed  Google Scholar 

  • Eliopoulos AG, Davies C, Knox PG, Gallagher NJ, Afford SC, Adams DH, Young LS (2000) CD40 induces apoptosis in carcinoma cells through activation of cytotoxic ligands of the tumor necrosis factor superfamily. Mol Cell Biol 20(15):5503–5515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falkson CI, Ibrahim J, Kirkwood JM, Coates AS, Atkins MB, Blum RH (1998) Phase III trial of dacarbazine versus dacarbazine with interferon alpha-2b versus dacarbazine with tamoxifen versus dacarbazine with interferon alpha-2b and tamoxifen in patients with metastatic malignant melanoma: an Eastern Cooperative Oncology Group study. J Clin Oncol 16(5):1743–1751

    Article  CAS  PubMed  Google Scholar 

  • Fanale M, Assouline S, Kuruvilla J, Solal-Celigny P, Heo DS, Verhoef G, Corradini P, Abramson JS, Offner F, Engert A, Dyer MJ, Carreon D, Ewald B, Baeck J, Younes A, Freedman AS (2014) Phase IA/II, multicentre, open-label study of the CD40 antagonistic monoclonal antibody lucatumumab in adult patients with advanced non-Hodgkin or Hodgkin lymphoma. Br J Haematol 164(2):258–265

    Article  CAS  PubMed  Google Scholar 

  • Fayad L, Ansell S, Advani R, Coiffier B, Bartlett NL, Stuart R, Forero-Torres A, Kuliczkowski K, Drachman JG (2011) A phase 2B trial comparing dacetuzumab + R-ICE vs placebo + R-ICE in patients with relapsed diffuse large B-cell lymphoma. Ann Oncol 22(Abstract Suppl. 4):145

    Google Scholar 

  • Fluckiger AC, Durand I, Banchereau J (1994) Interleukin 10 induces apoptotic cell death of B-chronic lymphocytic leukemia cells. J Exp Med 179(1):91–99

    Article  CAS  PubMed  Google Scholar 

  • Forero-Torres A, Bartlett N, Beaven A, Myint H, Nasta S, Northfelt DW, Whiting NC, Drachman JG, Lobuglio AF, Moskowitz CH (2013) Pilot study of dacetuzumab in combination with rituximab and gemcitabine for relapsed or refractory diffuse large B-cell lymphoma. Leuk Lymphoma 54(2):277–283

    Article  CAS  PubMed  Google Scholar 

  • Francisco JA, Donaldson KL, Chace D, Siegall CB, Wahl AF (2000) Agonistic properties and in vivo antitumor activity of the anti-CD40 antibody SGN-14. Cancer Res 60(12):3225–3231

    CAS  PubMed  Google Scholar 

  • French RR, Chan HT, Tutt AL, Glennie MJ (1999) CD40 antibody evokes a cytotoxic T-cell response that eradicates lymphoma and bypasses T-cell help. Nat Med 5(5):548–553

    Article  CAS  PubMed  Google Scholar 

  • Funakoshi S, Beckwith M, Fanslow W, Longo DL, Murphy WJ (1995) Epstein-Barr virus-induced human B-cell lymphoma arising in HuPBL-SCID chimeric mice: characterization and the role of CD40 stimulation in their treatment and prevention. Pathobiology 63(3):133–142

    Article  CAS  PubMed  Google Scholar 

  • Funakoshi S, Longo DL, Beckwith M, Conley DK, Tsarfaty G, Tsarfaty I, Armitage RJ, Fanslow WC, Spriggs MK, Murphy WJ (1994) Inhibition of human B-cell lymphoma growth by CD40 stimulation. Blood 83(10):2787–2794

    CAS  PubMed  Google Scholar 

  • Funakoshi S, Longo DL, Murphy WJ (1996) Differential in vitro and in vivo antitumor effects mediated by anti-CD40 and anti-CD20 monoclonal antibodies against human B-cell lymphomas. J Immunother Emphasis Tumor Immunol 19(2):93–101

    Article  CAS  PubMed  Google Scholar 

  • Furman RR, Forero-Torres A, Shustov A, Drachman JG (2010) A phase I study of dacetuzumab (SGN-40, a humanized anti-CD40 monoclonal antibody) in patients with chronic lymphocytic leukemia. Leuk Lymphoma 51(2):228–235

    Article  CAS  PubMed  Google Scholar 

  • Gajewski TF, Meng Y, Blank C, Brown I, Kacha A, Kline J, Harlin H (2006) Immune resistance orchestrated by the tumor microenvironment. Immunol Rev 213:131–145

    Article  CAS  PubMed  Google Scholar 

  • Gallagher NJ, Eliopoulos AG, Agathangelo A, Oates J, Crocker J, Young LS (2002) CD40 activation in epithelial ovarian carcinoma cells modulates growth, apoptosis, and cytokine secretion. Mol Pathol 55(2):110–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galy AH, Spits H (1992) CD40 is functionally expressed on human thymic epithelial cells. J Immunol 149(3):775–782

    CAS  PubMed  Google Scholar 

  • Ghamande S, Hylander BL, Oflazoglu E, Lele S, Fanslow W, Repasky EA (2001) Recombinant CD40 ligand therapy has significant antitumor effects on CD40-positive ovarian tumor xenografts grown in SCID mice and demonstrates an augmented effect with cisplatin. Cancer Res 61(20):7556–7562

    CAS  PubMed  Google Scholar 

  • Gladue R, Cole S, Donovan C (2006) In vivo efficacy of the CD40 agonist antibody CP-870,893 against a broad range of tumor types: Impact of tumor CD40 expression, dendritic cells, and chemotherapy. J Clin Oncol Abstract 24(103s):2514

    Google Scholar 

  • Grewal IS, Flavell RA (1998) CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol 16:111–135

    Article  CAS  PubMed  Google Scholar 

  • Griffith TS, Wiley SR, Kubin MZ, Sedger LM, Maliszewski CR, Fanger NA (1999) Monocyte-mediated tumoricidal activity via the tumor necrosis factor-related cytokine, TRAIL. J Exp Med 189(8):1343–1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, Wolchok JD, Hersey P, Joseph RW, Weber JS, Dronca R, Gangadhar TC, Patnaik A, Zarour H, Joshua AM, Gergich K, Elassaiss-Schaap J, Algazi A, Mateus C, Boasberg P, Tumeh PC, Chmielowski B, Ebbinghaus SW, Li XN, Kang SP, Ribas A (2013) Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 369(2):134–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hart DN, McKenzie JL (1988) Isolation and characterization of human tonsil dendritic cells. J Exp Med 168(1):157–170

    Article  CAS  PubMed  Google Scholar 

  • Heath WR, Carbone FR (1999) Cytotoxic T lymphocyte activation by cross-priming. Curr Opin Immunol 11(3):314–318

    Article  CAS  PubMed  Google Scholar 

  • Hengartner MO (2000) The biochemistry of apoptosis. Nature 407(6805):770–776

    Article  CAS  PubMed  Google Scholar 

  • Hill A, Chapel H (1993) X-linked immunodeficiency. The fruits of cooperation. Nature 361(6412):494

    Article  CAS  PubMed  Google Scholar 

  • Hirano A, Longo DL, Taub DD, Ferris DK, Young LS, Eliopoulos AG, Agathanggelou A, Cullen N, Macartney J, Fanslow WC, Murphy WJ (1999) Inhibition of human breast carcinoma growth by a soluble recombinant human CD40 ligand. Blood 93(9):2999–3007

    CAS  PubMed  Google Scholar 

  • Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homig-Holzel C, Hojer C, Rastelli J, Casola S, Strobl LJ, Muller W, Quintanilla-Martinez L, Gewies A, Ruland J, Rajewsky K, Zimber-Strobl U (2008) Constitutive CD40 signaling in B cells selectively activates the noncanonical NF-kappaB pathway and promotes lymphomagenesis. J Exp Med 205(6):1317–1329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Horton HM, Bernett MJ, Peipp M, Pong E, Karki S, Chu SY, Richards JO, Chen H, Repp R, Desjarlais JR, Zhukovsky EA (2010) Fc-engineered anti-CD40 antibody enhances multiple effector functions and exhibits potent in vitro and in vivo antitumor activity against hematologic malignancies. Blood 116(16):3004–3012

    Article  CAS  PubMed  Google Scholar 

  • Horton HM, Bernett MJ, Pong E, Peipp M, Karki S, Chu SY, Richards JO, Vostiar I, Joyce PF, Repp R, Desjarlais JR, Zhukovsky EA (2008) Potent in vitro and in vivo activity of an Fc-engineered anti-CD19 monoclonal antibody against lymphoma and leukemia. Cancer Res 68(19):8049–8057

    Article  CAS  PubMed  Google Scholar 

  • Hu BT, Lee SC, Marin E, Ryan DH, Insel RA (1997) Telomerase is up-regulated in human germinal center B cells in vivo and can be re-expressed in memory B cells activated in vitro. J Immunol 159(3):1068–1071

    CAS  PubMed  Google Scholar 

  • Hussein M, Berenson JR, Niesvizky R, Munshi N, Matous J, Sobecks R, Harrop K, Drachman JG, Whiting N (2010) A phase I multidose study of dacetuzumab (SGN-40; humanized anti-CD40 monoclonal antibody) in patients with multiple myeloma. Haematologica 95(5):845–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackaman C, Cornwall S, Graham PT, Nelson DJ (2011) CD40-activated B cells contribute to mesothelioma tumor regression. Immunol Cell Biol 89(2):255–267

    Article  PubMed  Google Scholar 

  • Johnson PW, Challis R, Chowdhury F, Chan, Smith A, Steven NM, Edwards C, Ashton-Key M, Hodges E, Tutt AL, Ottensmeier CH, Williams A, Glennie M (2013) A trial of agonistic anti-CD40 antibody: biological effects in a cancer research UK phase I study. Presented at AACR 104th annual meeting 2013 on cancer research, vol 73 (Issue 8, Suppl 1), Washington, 6–10 Apr 2013

    Google Scholar 

  • Johnson PW, Steven NM, Chowdhury F, Dobbyn J, Hall E, Ashton-Key M, Hodges E, Ottensmeier CH, Williams A, Glennie M (2010) A Cancer Research UK phase I study evaluating safety, tolerability, and biological effects of chimeric anti-CD40 monoclonal antibody (MAb), Chi Lob 7/4. J Clin Oncol 2010 ASCO Annu Meet (Abstract 2507) 28:15s

    Google Scholar 

  • Kalbasi A, Fonsatti E, Natali PG, Altomonte M, Bertocci E, Cutaia O, Calabro L, Chiou M, Tap W, Chmielowski B, Maio M, Ribas A (2010) CD40 expression by human melanocytic lesions and melanoma cell lines and direct CD40 targeting with the therapeutic anti-CD40 antibody CP-870,893. J Immunother 33(8):810–816

    Article  CAS  PubMed  Google Scholar 

  • Kawabe T, Naka T, Yoshida K, Tanaka T, Fujiwara H, Suematsu S, Yoshida N, Kishimoto T, Kikutani H (1994) The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1(3):167–178

    Article  CAS  PubMed  Google Scholar 

  • Kedl RM, Jordan M, Potter T, Kappler J, Marrack P, Dow S (2001) CD40 stimulation accelerates deletion of tumor-specific CD8(+) T cells in the absence of tumor-antigen vaccination. Proc Natl Acad Sci USA 98(19):10811–10816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klaus SJ, Berberich I, Shu G, Clark EA (1994) CD40 and its ligand in the regulation of humoral immunity. Semin Immunol 6(5):279–286

    Article  CAS  PubMed  Google Scholar 

  • Klimp AH, de Vries EG, Scherphof GL, Daemen T (2002) A potential role of macrophage activation in the treatment of cancer. Crit Rev Oncol Hematol 44(2):143–161

    Article  CAS  PubMed  Google Scholar 

  • Kurts C, Robinson BW, Knolle PA (2010) Cross-priming in health and disease. Nat Rev Immunol 10(6):403–414

    Article  CAS  PubMed  Google Scholar 

  • Kusam S, Munugalavadla V, Sawant D, Dent A (2009) BCL6 cooperates with CD40 stimulation and loss of p53 function to rapidly transform primary B cells. Int J Cancer 125(4):977–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lake RA, Robinson BW (2005) Immunotherapy and chemotherapy–a practical partnership. Nat Rev Cancer 5(5):397–405

    Article  CAS  PubMed  Google Scholar 

  • Lapalombella R, Gowda A, Joshi T, Mehter N, Cheney C, Lehman A, Chen CS, Johnson AJ, Caligiuri MA, Tridandapani S, Muthusamy N, Byrd JC (2009) The humanized CD40 antibody SGN-40 demonstrates pre-clinical activity that is enhanced by lenalidomide in chronic lymphocytic leukaemia. Br J Haematol 144(6):848–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Law CL, Gordon KA, Collier J, Klussman K, McEarchern JA, Cerveny CG, Mixan BJ, Lee WP, Lin Z, Valdez P, Wahl AF, Grewal IS (2005) Preclinical antilymphoma activity of a humanized anti-CD40 monoclonal antibody, SGN-40. Cancer Res 65(18):8331–8338

    Article  CAS  PubMed  Google Scholar 

  • Lazar GA, Dang W, Karki S, Vafa O, Peng JS, Hyun L, Chan C, Chung HS, Eivazi A, Yoder SC, Vielmetter J, Carmichael DF, Hayes RJ, Dahiyat BI (2006) Engineered antibody Fc variants with enhanced effector function. Proc Natl Acad Sci USA 103(11):4005–4010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CS, Cragg M, Glennie M, Johnson P (2013) Novel antibodies targeting immune regulatory checkpoints for cancer therapy. Br J Clin Pharmacol 76(2):233–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis TS, McCormick RS, McEarchern JA et al (2008a) Preclinical analysis of the combined activity of SGN-40, anti-CD40 monoclonal antibody, with rituximab in non-Hodgkin lymphoma. Blood (Abstract 1583) 112:561–562

    Google Scholar 

  • Lewis TS, McCormick RS, Emmerton K, Lau JT, Yu SF, McEarchern JA, Grewal IS, Law CL (2011) Distinct apoptotic signaling characteristics of the anti-CD40 monoclonal antibody dacetuzumab and rituximab produce enhanced antitumor activity in non-Hodgkin lymphoma. Clin Cancer Res 17(14):4672–4681

    Article  CAS  PubMed  Google Scholar 

  • Lewis TS, McCormick RS, Kissler K, Stone IJ, Jonas M, Sutherland MSK, Gerber H-P, Drachman JG, Grewal IS, Law C-L (2007) The humanized anti-cd40 monoclonal antibody, SGN-40, potentiates chemotherapy regimens in NHL xenograft models via pro-apoptotic signaling. ASH Annu Meet Abs 110(11):2342

    Google Scholar 

  • Lewis TS, McCormick RS, McEarchern JA, Kissler K, Stone IJ, Gerber H-P, Drachman JG, Grewal I, Law C-L (2008b) Preclinical analysis of the combined activity of SGN-40, anti-CD40 monoclonal antibody, with rituximab in non-hodgkin lymphoma. ASH Annu Meet Abs 112(11):1583

    Google Scholar 

  • Li F, Ravetch JV (2011) Inhibitory Fcgamma receptor engagement drives adjuvant and anti-tumor activities of agonistic CD40 antibodies. Science 333(6045):1030–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Ravetch JV (2012) Apoptotic and antitumor activity of death receptor antibodies require inhibitory Fcgamma receptor engagement. Proc Natl Acad Sci USA 109(27):10966–10971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Ravetch JV (2013) Antitumor activities of agonistic anti-TNFR antibodies require differential FcgammaRIIB coengagement in vivo. Proc Natl Acad Sci USA 110(48):19501–19506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YY, Baccam M, Waters SB, Pessin JE, Bishop GA, Koretzky GA (1996) CD40 ligation results in protein kinase C-independent activation of ERK and JNK in resting murine splenic B cells. J Immunol 157(4):1440–1447

    CAS  PubMed  Google Scholar 

  • Long L, Tong X, Patawaran M, Aukerman SL, Jallal B, Luqman M (2005) Antagonist anti-CD40 antibody, CHIR-12.12, induces ADCC, inhibits tumor growth, and prolongs survival in a human multiple myeloma xenograft model. ASH Annu Meet Abs 106(11):3470

    Google Scholar 

  • Lopez A, Gutierrez A, Palacios A, Blancas I, Navarrete M, Morey M, Perello A, Alarcon J, Martinez J, Rodriguez J (2008) GEMOX-R regimen is a highly effective salvage regimen in patients with refractory/relapsing diffuse large-cell lymphoma: a phase II study. Eur J Haematol 80(2):127–132

    Article  CAS  PubMed  Google Scholar 

  • Luqman M, Klabunde S, Lin K, Georgakis GV, Cherukuri A, Holash J, Goldbeck C, Xu X, Kadel EE 3rd, Lee SH, Aukerman SL, Jallal B, Aziz N, Weng WK, Wierda W, O’Brien S, Younes A (2008) The antileukemia activity of a human anti-CD40 antagonist antibody, HCD122, on human chronic lymphocytic leukemia cells. Blood 112(3):711–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauri C, Mars LT, Londei M (2000) Therapeutic activity of agonistic monoclonal antibodies against CD40 in a chronic autoimmune inflammatory process. Nat Med 6(6):673–679

    Article  CAS  PubMed  Google Scholar 

  • McWhirter SM, Pullen SS, Holton JM, Crute JJ, Kehry MR, Alber T (1999) Crystallographic analysis of CD40 recognition and signaling by human TRAF2. Proc Natl Acad Sci USA 96(15):8408–8413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melero I, Hervas-Stubbs S, Glennie M, Pardoll DM, Chen L (2007) Immunostimulatory monoclonal antibodies for cancer therapy. Nat Rev Cancer 7(2):95–106

    Article  CAS  PubMed  Google Scholar 

  • Middleton MR, Grob JJ, Aaronson N, Fierlbeck G, Tilgen W, Seiter S, Gore M, Aamdal S, Cebon J, Coates A, Dreno B, Henz M, Schadendorf D, Kapp A, Weiss J, Fraass U, Statkevich P, Muller M, Thatcher N (2000) Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J Clin Oncol 18(1):158–166

    Article  CAS  PubMed  Google Scholar 

  • Miga AJ, Masters SR, Durell BG, Gonzalez M, Jenkins MK, Maliszewski C, Kikutani H, Wade WF, Noelle RJ (2001) Dendritic cell longevity and T cell persistence is controlled by CD154-CD40 interactions. Eur J Immunol 31(3):959–965

    Article  CAS  PubMed  Google Scholar 

  • Murphy WJ, Funakoshi S, Fanslow WC, Rager HC, Taub DD, Longo DL (1999) CD40 stimulation promotes human secondary immunoglobulin responses in HuPBL-SCID chimeras. Clin Immunol 90(1):22–27

    Article  CAS  PubMed  Google Scholar 

  • Nimmerjahn F, Ravetch JV (2005) Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science 310(5753):1510–1512

    Article  CAS  PubMed  Google Scholar 

  • Nimmerjahn F, Ravetch JV (2006) Fcgamma receptors: old friends and new family members. Immunity 24(1):19–28

    Article  CAS  PubMed  Google Scholar 

  • Nimmerjahn F, Ravetch JV (2008) Fcgamma receptors as regulators of immune responses. Nat Rev Immunol 8(1):34–47

    Article  CAS  PubMed  Google Scholar 

  • Noelle RJ, Roy M, Shepherd DM, Stamenkovic I, Ledbetter JA, Aruffo A (1992) A 39-kDa protein on activated helper T cells binds CD40 and transduces the signal for cognate activation of B cells. Proc Natl Acad Sci USA 89(14):6550–6554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowak AK, Robinson BW, Lake RA (2003) Synergy between chemotherapy and immunotherapy in the treatment of established murine solid tumors. Cancer Res 63(15):4490–4496

    CAS  PubMed  Google Scholar 

  • Oflazoglu E, Stone IJ, Brown L, Gordon KA, van Rooijen N, Jonas M, Law CL, Grewal IS, Gerber HP (2009) Macrophages and Fc-receptor interactions contribute to the antitumour activities of the anti-CD40 antibody SGN-40. Br J Cancer 100(1):113–117

    Article  CAS  PubMed  Google Scholar 

  • Paulie S, Ehlin-Henriksson B, Mellstedt H, Koho H, Ben-Aissa H, Perlmann P (1985) A p50 surface antigen restricted to human urinary bladder carcinomas and B lymphocytes. Cancer Immunol Immunother 20(1):23–28

    Article  CAS  PubMed  Google Scholar 

  • Pellat-Deceunynck C, Amiot M, Robillard N, Wijdenes J, Bataille R (1996) CD11a-CD18 and CD102 interactions mediate human myeloma cell growth arrest induced by CD40 stimulation. Cancer Res 56(8):1909–1916

    CAS  PubMed  Google Scholar 

  • Pellat-Deceunynck C, Bataille R, Robillard N, Harousseau JL, Rapp MJ, Juge-Morineau N, Wijdenes J, Amiot M (1994) Expression of CD28 and CD40 in human myeloma cells: a comparative study with normal plasma cells. Blood 84(8):2597–2603

    CAS  PubMed  Google Scholar 

  • Pham LV, Tamayo AT, Yoshimura LC, Lo P, Terry N, Reid PS, Ford RJ (2002) A CD40 Signalosome anchored in lipid rafts leads to constitutive activation of NF-kappaB and autonomous cell growth in B cell lymphomas. Immunity 16(1):37–50

    Article  CAS  PubMed  Google Scholar 

  • Planken EV, Dijkstra NH, Willemze R, Kluin-Nelemans JC (1996) Proliferation of B cell malignancies in all stages of differentiation upon stimulation in the ‘CD40 system’. Leukemia 10(3):488–493

    CAS  PubMed  Google Scholar 

  • Quezada SA, Jarvinen LZ, Lind EF, Noelle RJ (2004) CD40/CD154 interactions at the interface of tolerance and immunity. Annu Rev Immunol 22:307–328

    Article  CAS  PubMed  Google Scholar 

  • Rakhmilevich AL, Alderson KL, Sondel PM (2012) T-cell-independent antitumor effects of CD40 ligation. Int Rev Immunol 31(4):267–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren CL, Morio T, Fu SM, Geha RS (1994) Signal transduction via CD40 involves activation of lyn kinase and phosphatidylinositol-3-kinase, and phosphorylation of phospholipase C gamma 2. J Exp Med 179(2):673–680

    Article  CAS  PubMed  Google Scholar 

  • Restifo NP, Kawakami Y, Marincola F, Shamamian P, Taggarse A, Esquivel F, Rosenberg SA (1993) Molecular mechanisms used by tumors to escape immune recognition: immunogenetherapy and the cell biology of major histocompatibility complex class I. J Immunother Emphasis Tumor Immunol 14(3):182–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richman LP, Vonderheide RH (2014) Role of crosslinking for agonistic CD40 monoclonal antibodies as immune therapy of cancer. Cancer Immunol Res 2(1):19–26

    Article  CAS  PubMed  Google Scholar 

  • Ridge JP, Di Rosa F, Matzinger P (1998) A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393(6684):474–478

    Article  CAS  PubMed  Google Scholar 

  • Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C, Lebbe C, Baurain JF, Testori A, Grob JJ, Davidson N, Richards J, Maio M, Hauschild A, Miller WH Jr, Gascon P, Lotem M, Harmankaya K, Ibrahim R, Francis S, Chen TT, Humphrey R, Hoos A, Wolchok JD (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364(26):2517–2526

    Article  CAS  PubMed  Google Scholar 

  • Ruter J, Antonia SJ, Burris HA, Huhn RD, Vonderheide RH (2010) Immune modulation with weekly dosing of an agonist CD40 antibody in a phase I study of patients with advanced solid tumors. Cancer Biol Ther 10(10):983–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabel MS, Yamada M, Kawaguchi Y, Chen FA, Takita H, Bankert RB (2000) CD40 expression on human lung cancer correlates with metastatic spread. Cancer Immunol Immunother 49(2):101–108

    Article  CAS  PubMed  Google Scholar 

  • Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ (1998) T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393(6684):480–483

    Article  CAS  PubMed  Google Scholar 

  • Schriever F, Freedman AS, Freeman G, Messner E, Lee G, Daley J, Nadler LM (1989) Isolated human follicular dendritic cells display a unique antigenic phenotype. J Exp Med 169(6):2043–2058

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Dornan D (2012) To respond or not to respond to CD40 agonism: that is the prediction. Oncoimmunology 1(1):83–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slobodova Z, Ehrmann J, Krejci V, Zapletalova J, Melichar B (2011) Analysis of CD40 expression in breast cancer and its relation to clinicopathological characteristics. Neoplasma 58(3):189–197

    Article  CAS  PubMed  Google Scholar 

  • Smith CA, Farrah T, Goodwin RG (1994) The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 76(6):959–962

    Article  CAS  PubMed  Google Scholar 

  • Stavenhagen JB, Gorlatov S, Tuaillon N, Rankin CT, Li H, Burke S, Huang L, Vijh S, Johnson S, Bonvini E, Koenig S (2007) Fc optimization of therapeutic antibodies enhances their ability to kill tumor cells in vitro and controls tumor expansion in vivo via low-affinity activating Fcgamma receptors. Cancer Res 67(18):8882–8890

    Article  CAS  PubMed  Google Scholar 

  • Sznol M, Kluger HM, Wolchok JD (2014) Survival, response duration, and activity by BRAF mutation (MT) status of nivolumab (NIVO, anti-PD-1, BMS-936558, ONO-4538) and ipilimumab (IPI) concurrent therapy in advanced melanoma (MEL). J Clin Oncol 2014 ASCO Annu Meet (LBA9003^) 32:35s

    Google Scholar 

  • Szocinski JL, Khaled AR, Hixon J, Halverson D, Funakoshi S, Fanslow WC, Boyd A, Taub DD, Durum SK, Siegall CB, Longo DL, Murphy WJ (2002) Activation-induced cell death of aggressive histology lymphomas by CD40 stimulation: induction of bax. Blood 100(1):217–223

    Article  CAS  PubMed  Google Scholar 

  • Tai YT, Catley LP, Mitsiades CS, Burger R, Podar K, Shringpaure R, Hideshima T, Chauhan D, Hamasaki M, Ishitsuka K, Richardson P, Treon SP, Munshi NC, Anderson KC (2004) Mechanisms by which SGN-40, a humanized anti-CD40 antibody, induces cytotoxicity in human multiple myeloma cells: clinical implications. Cancer Res 64(8):2846–2852

    Article  CAS  PubMed  Google Scholar 

  • Tai YT, Li X, Tong X, Santos D, Otsuki T, Catley L, Tournilhac O, Podar K, Hideshima T, Schlossman R, Richardson P, Munshi NC, Luqman M, Anderson KC (2005a) Human anti-CD40 antagonist antibody triggers significant antitumor activity against human multiple myeloma. Cancer Res 65(13):5898–5906

    Article  CAS  PubMed  Google Scholar 

  • Tai YT, Li XF, Catley L, Coffey R, Breitkreutz I, Bae J, Song W, Podar K, Hideshima T, Chauhan D, Schlossman R, Richardson P, Treon SP, Grewal IS, Munshi NC, Anderson KC (2005b) Immunomodulatory drug lenalidomide (CC-5013, IMiD3) augments anti-CD40 SGN-40-induced cytotoxicity in human multiple myeloma: clinical implications. Cancer Res 65(24):11712–11720

    Article  CAS  PubMed  Google Scholar 

  • Teoh G, Tai YT, Urashima M, Shirahama S, Matsuzaki M, Chauhan D, Treon SP, Raje N, Hideshima T, Shima Y, Anderson KC (2000) CD40 activation mediates p53-dependent cell cycle regulation in human multiple myeloma cell lines. Blood 95(3):1039–1046

    CAS  PubMed  Google Scholar 

  • Thomas WD, Smith MJ, Si Z, Hersey P (1996) Expression of the co-stimulatory molecule CD40 on melanoma cells. Int J Cancer 68(6):795–801

    Article  CAS  PubMed  Google Scholar 

  • Tobinai K, Takahashi T, Akinaga S (2012) Targeting chemokine receptor CCR4 in adult T-cell leukemia-lymphoma and other T-cell lymphomas. Curr Hematol Malig Rep 7(3):235–240

    Article  PubMed  PubMed Central  Google Scholar 

  • Todryk SM, Tutt AL, Green MH, Smallwood JA, Halanek N, Dalgleish AG, Glennie MJ (2001) CD40 ligation for immunotherapy of solid tumours. J Immunol Methods 248(1–2):139–147

    Article  CAS  PubMed  Google Scholar 

  • Topalian SL, Sznol M, McDermott DF, Kluger HM, Carvajal RD, Sharfman WH, Brahmer JR, Lawrence DP, Atkins MB, Powderly JD, Leming PD, Lipson EJ, Puzanov I, Smith DC, Taube JM, Wigginton JM, Kollia GD, Gupta A, Pardoll DM, Sosman JA, Hodi FS (2014) Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol 32(10):1020–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsubata T, Wu J, Honjo T (1993) B-cell apoptosis induced by antigen receptor crosslinking is blocked by a T-cell signal through CD40. Nature 364(6438):645–648

    Article  CAS  PubMed  Google Scholar 

  • Turner JG, Rakhmilevich AL, Burdelya L, Neal Z, Imboden M, Sondel PM, Yu H (2001) Anti-CD40 antibody induces antitumor and antimetastatic effects: the role of NK cells. J Immunol 166(1):89–94

    Article  CAS  PubMed  Google Scholar 

  • Tutt AL, O’Brien L, Hussain A, Crowther GR, French RR, Glennie MJ (2002) T cell immunity to lymphoma following treatment with anti-CD40 monoclonal antibody. J Immunol 168(6):2720–2728

    Article  CAS  PubMed  Google Scholar 

  • Urashima M, Chauhan D, Uchiyama H, Freeman GJ, Anderson KC (1995) CD40 ligand triggered interleukin-6 secretion in multiple myeloma. Blood 85(7):1903–1912

    CAS  PubMed  Google Scholar 

  • van Kooten C, Banchereau J (1997) Functions of CD40 on B cells, dendritic cells and other cells. Curr Opin Immunol 9(3):330–337

    Article  PubMed  Google Scholar 

  • van Kooten C, Banchereau J (2000) CD40-CD40 ligand. J Leukoc Biol 67(1):2–17

    PubMed  Google Scholar 

  • van Mierlo GJ, den Boer AT, Medema JP, van der Voort EI, Fransen MF, Offringa R, Melief CJ, Toes RE (2002) CD40 stimulation leads to effective therapy of CD40(-) tumors through induction of strong systemic cytotoxic T lymphocyte immunity. Proc Natl Acad Sci U S A 99(8):5561–5566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • von Leoprechting A, van der Bruggen P, Pahl HL, Aruffo A, Simon JC (1999) Stimulation of CD40 on immunogenic human malignant melanomas augments their cytotoxic T lymphocyte-mediated lysis and induces apoptosis. Cancer Res 59(6):1287–1294

    Google Scholar 

  • Vonderheide RH (2007) Prospect of targeting the CD40 pathway for cancer therapy. Clin Cancer Res 13(4):1083–1088

    Article  CAS  PubMed  Google Scholar 

  • Vonderheide RH, Burg JM, Mick R, Trosko JA, Li D, Shaik MN, Tolcher AW, Hamid O (2013) Phase I study of the CD40 agonist antibody CP-870,893 combined with carboplatin and paclitaxel in patients with advanced solid tumors. Oncoimmunology 2(1):e23033

    Article  PubMed  PubMed Central  Google Scholar 

  • Vonderheide RH, Flaherty KT, Khalil M, Stumacher MS, Bajor DL, Hutnick NA, Sullivan P, Mahany JJ, Gallagher M, Kramer A, Green SJ, O’Dwyer PJ, Running KL, Huhn RD, Antonia SJ (2007) Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody. J Clin Oncol 25(7):876–883

    Article  CAS  PubMed  Google Scholar 

  • Vonderheide RH, Glennie MJ (2013) Agonistic CD40 antibodies and cancer therapy. Clin Cancer Res 19(5):1035–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voorzanger-Rousselot N, Favrot M, Blay JY (1998) Resistance to cytotoxic chemotherapy induced by CD40 ligand in lymphoma cells. Blood 92(9):3381–3387

    CAS  PubMed  Google Scholar 

  • Vosters O, Beuneu C, Nagy N, Movahedi B, Aksoy E, Salmon I, Pipeleers D, Goldman M, Verhasselt V (2004) CD40 expression on human pancreatic duct cells: role in nuclear factor-kappa B activation and production of pro-inflammatory cytokines. Diabetologia 47(4):660–668

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Freeman GJ, Levine H, Ritz J, Robertson MJ (1997) Role of the CD40 and CD95 (APO-1/Fas) antigens in the apoptosis of human B-cell malignancies. Br J Haematol 97(2):409–417

    Article  CAS  PubMed  Google Scholar 

  • White AL, Chan HT, Roghanian A, French RR, Mockridge CI, Tutt AL, Dixon SV, Ajona D, Verbeek JS, Al-Shamkhani A, Cragg MS, Beers SA, Glennie MJ (2011) Interaction with FcgammaRIIB is critical for the agonistic activity of anti-CD40 monoclonal antibody. J Immunol 187(4):1754–1763

    Article  CAS  PubMed  Google Scholar 

  • White AL, Dou L, Chan HT, Field VL, Mockridge CI, Moss K, Williams EL, Booth SG, French RR, Potter EA, Butts C, Al-Shamkhani A, Cragg MS, Verbeek JS, Johnson PW, Glennie MJ, Beers SA (2014) Fcgamma receptor dependency of agonistic CD40 antibody in lymphoma therapy can be overcome through antibody multimerization. J Immunol 193(4):1828–1835

    Article  CAS  PubMed  Google Scholar 

  • Williams EL, Tutt AL, Beers SA, French RR, Chan CH, Cox KL, Roghanian A, Penfold CA, Butts CL, Boross P, Verbeek JS, Cragg MS, Glennie MJ (2013) Immunotherapy targeting inhibitory Fcgamma receptor IIB (CD32b) in the mouse is limited by monoclonal antibody consumption and receptor internalization. J Immunol 191(8):4130–4140

    Article  CAS  PubMed  Google Scholar 

  • Williams EL, Tutt AL, French RR, Chan HT, Lau B, Penfold CA, Mockridge CI, Roghanian A, Cox KL, Verbeek JS, Glennie MJ, Cragg MS (2012) Development and characterisation of monoclonal antibodies specific for the murine inhibitory FcgammaRIIB (CD32B). Eur J Immunol 42(8):2109–2120

    Article  CAS  PubMed  Google Scholar 

  • Wingett DG, Vestal RE, Forcier K, Hadjokas N, Nielson CP (1998) CD40 is functionally expressed on human breast carcinomas: variable inducibility by cytokines and enhancement of Fas-mediated apoptosis. Breast Cancer Res Treat 50(1):27–36

    Article  CAS  PubMed  Google Scholar 

  • Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon RA, Reed K, Burke MM, Caldwell A, Kronenberg SA, Agunwamba BU, Zhang X, Lowy I, Inzunza HD, Feely W, Horak CE, Hong Q, Korman AJ, Wigginton JM, Gupta A, Sznol M (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369(2):122–133

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Foy TM, Laman JD, Elliott EA, Dunn JJ, Waldschmidt TJ, Elsemore J, Noelle RJ, Flavell RA (1994) Mice deficient for the CD40 ligand. Immunity 1(5):423–431

    Article  CAS  PubMed  Google Scholar 

  • Yellin MJ, Brett J, Baum D, Matsushima A, Szabolcs M, Stern D, Chess L (1995) Functional interactions of T cells with endothelial cells: the role of CD40L-CD40-mediated signals. J Exp Med 182(6):1857–1864

    Article  CAS  PubMed  Google Scholar 

  • Ziebold JL, Hixon J, Boyd A, Murphy WJ (2000) Differential effects of CD40 stimulation on normal and neoplastic cell growth. Arch Immunol Ther Exp (Warsz) 48(4):225–233

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Remer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Remer, M., White, A., Glennie, M., Al-Shamkhani, A., Johnson, P. (2014). The Use of Anti-CD40 mAb in Cancer. In: Savelyeva, N., Ottensmeier, C. (eds) Cancer Vaccines. Current Topics in Microbiology and Immunology, vol 405. Springer, Cham. https://doi.org/10.1007/82_2014_427

Download citation

Publish with us

Policies and ethics