Skip to main content

PDK1: The Major Transducer of PI 3-Kinase Actions

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 346))

Abstract

Most of the cellular responses to phosphatidylinositol 3-kinase activation and phosphatidylinositol 3,4,5-trisphosphate production are mediated by the activation of a group of AGC kinases comprising PKB, S6K, RSK, SGK and PKC isoforms, which play essential roles in regulating physiological processes related to cell growth, proliferation, survival and metabolism. All these growth-factor-stimulated AGC kinases possess a common upstream activator, namely PDK1, a master kinase, which, being constitutively active, is still able to phosphorylate and activate its AGC substrates in response to rises in the levels of the PtdIns(3,4,5)P3 second messenger. In this chapter, the biochemical, structural and genetic data on the mechanism of action and physiological roles of PDK1 are reviewed, and its potential as a pharmaceutical target for the design of drugs therapeutically beneficial to treat human disease such us diabetes and cancer is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmed N, Riley C, Quinn MA (2008) An immunohistochemical perspective of PPAR beta and one of its putative targets PDK1 in normal ovaries, benign and malignant ovarian tumours. Br J Cancer 98(8):1415–1424

    Article  PubMed  CAS  Google Scholar 

  • Alessi DR, Deak M, Casamayor A, Caudwell FB, Morrice N, Norman DG, Gaffney P, Reese CB, MacDougall CN, Harbison D, Ashworth A, Bownes M (1997a) 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Curr Biol 7(10):776–789

    Article  PubMed  CAS  Google Scholar 

  • Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P (1997b) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7(4):261–269

    Article  PubMed  CAS  Google Scholar 

  • Alessi DR, Kozlowski MT, Weng QP, Morrice N, Avruch J (1998) 3-Phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates and activates the p70 S6 kinase in vivo and in vitro. Curr Biol 8(2):69–81

    Article  PubMed  CAS  Google Scholar 

  • Alessi DR, Pearce LR, Garcia-Martinez JM (2009) New insights into mTOR signaling: mTORC2 and beyond. Sci Signal 2(67):e27

    Article  Google Scholar 

  • Andjelkovic M, Alessi DR, Meier R, Fernandez A, Lamb NJ, Frech M, Cron P, Cohen P, Lucocq JM, Hemmings BA (1997) Role of translocation in the activation and function of protein kinase B. J Biol Chem 272(50):31515–31524

    Article  PubMed  CAS  Google Scholar 

  • Anjum R, Blenis J (2008) The RSK family of kinases: emerging roles in cellular signalling. Nat Rev Mol Cell Biol 9(10):747–758

    Article  PubMed  CAS  Google Scholar 

  • Balendran A, Casamayor A, Deak M, Paterson A, Gaffney P, Currie R, Downes CP, and Alessi DR (1999) PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2. Curr Biol 9(8):393–404

    Article  PubMed  CAS  Google Scholar 

  • Balendran A, Biondi RM, Cheung PC, Casamayor A, Deak M, and Alessi DR (2000a) A 3-phosphoinositide-dependent protein kinase-1 (PDK1) docking site is required for the phosphorylation of protein kinase Czeta (PKCzeta) and PKC-related kinase 2 by PDK1. J Biol Chem 275(27):20806–20813

    Article  PubMed  CAS  Google Scholar 

  • Balendran A, Hare GR, Kieloch A, Williams MR, and Alessi DR (2000b) Further evidence that 3-phosphoinositide-dependent protein kinase-1 (PDK1) is required for the stability and phosphorylation of protein kinase C (PKC) isoforms. FEBS Lett 484(3):217–223

    Article  PubMed  CAS  Google Scholar 

  • Bayascas JR, Alessi DR (2005) Regulation of Akt/PKB Ser473 phosphorylation. Mol Cell 18(2):143–145

    Article  PubMed  CAS  Google Scholar 

  • Bayascas JR, Leslie NR, Parsons R, Fleming S, Alessi DR (2005) Hypomorphic mutation of PDK1 suppresses tumorigenesis in PTEN(+/−) mice. Curr Biol 15(20):1839–1846

    Article  PubMed  CAS  Google Scholar 

  • Bayascas JR, Sakamoto K, Armit L, Arthur JS, Alessi DR (2006) Evaluation of approaches to generation of tissue-specific knock-in mice. J Biol Chem 281(39):28772–28781

    Article  PubMed  CAS  Google Scholar 

  • Bayascas JR, Wullschleger S, Sakamoto K, Garcia-Martinez JM, Clacher C, Komander D, Van Aalten DM, Boini KM, Lang F, Lipina C, Logie L, Sutherland C, Chudek JA, van Diepen JA, Voshol PJ, Lucocq JM, Alessi DR (2008) Mutation of the PDK1 PH domain inhibits protein kinase B/Akt, leading to small size and insulin resistance. Mol Cell Biol 28(10):3258–3272

    Article  PubMed  CAS  Google Scholar 

  • Biddinger SB, Kahn CR (2006) From mice to men: insights into the insulin resistance syndromes. Annu Rev Physiol 68:123–158

    Article  PubMed  CAS  Google Scholar 

  • Biondi RM (2004) Phosphoinositide-dependent protein kinase 1, a sensor of protein conformation. Trends Biochem Sci 29(3):136–142

    Article  PubMed  CAS  Google Scholar 

  • Biondi RM, Cheung PC, Casamayor A, Deak M, Currie RA, Alessi DR (2000) Identification of a pocket in the PDK1 kinase domain that interacts with PIF and the C-terminal residues of PKA. EMBO J 19(5):979–988

    Article  PubMed  CAS  Google Scholar 

  • Biondi RM, Kieloch A, Currie RA, Deak M, and Alessi DR (2001) The PIF-binding pocket in PDK1 is essential for activation of S6K and SGK, but not PKB. EMBO J 20(16):4380–4390.

    Article  PubMed  CAS  Google Scholar 

  • Biondi RM, Komander D, Thomas CC, Lizcano JM, Deak M, Alessi DR, Van Aalten DM (2002) High resolution crystal structure of the human PDK1 catalytic domain defines the regulatory phosphopeptide docking site. EMBO J 21(16):4219–4228

    Article  PubMed  CAS  Google Scholar 

  • Calleja V, Alcor D, Laguerre M, Park J, Vojnovic B, Hemmings BA, Downward J, Parker PJ, Larijani B (2007) Intramolecular and intermolecular interactions of protein kinase B define its activation in vivo. PLoS Biol 5(4):e95

    Article  PubMed  CAS  Google Scholar 

  • Calleja V, Laguerre M, Parker PJ, Larijani B (2009) Role of a novel PH-kinase domain interface in PKB/Akt regulation: structural mechanism for allosteric inhibition. PLoS Biol 7(1):e17

    Article  PubMed  CAS  Google Scholar 

  • Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296(5573):1655–1657

    Article  PubMed  CAS  Google Scholar 

  • Casamayor A, Morrice NA, Alessi DR (1999) Phosphorylation of Ser-241 is essential for the activity of 3-phosphoinositide-dependent protein kinase-1: identification of five sites of phosphorylation in vivo. Biochem J 342(Pt 2):287–292

    Article  PubMed  CAS  Google Scholar 

  • Chalhoub N, Zhu G, Zhu X, Baker SJ (2009) Cell type specificity of PI3K signaling in Pdk1- and Pten-deficient brains. Genes Dev 23(14):1619–1624

    Article  PubMed  CAS  Google Scholar 

  • Chou MM, Hou W, Johnson J, Graham LK, Lee MH, Chen CS, Newton AC, Schaffhausen BS, Toker A (1998) Regulation of protein kinase C zeta by PI 3-kinase and PDK-1. Curr Biol 8(19):1069–1077

    Article  PubMed  CAS  Google Scholar 

  • Chung J, Kuo CJ, Crabtree GR, Blenis J (1992) Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70 kd S6 protein kinases. Cell 69(7):1227–1236

    Article  PubMed  CAS  Google Scholar 

  • Collins BJ, Deak M, Arthur JS, Armit LJ, Alessi DR (2003) In vivo role of the PIF-binding docking site of PDK1 defined by knock-in mutation. EMBO J 22(16):4202–4211

    Article  PubMed  CAS  Google Scholar 

  • Collins BJ, Deak M, Murray-Tait V, Storey KG, Alessi DR (2005) In vivo role of the phosphate groove of PDK1 defined by knockin mutation. J Cell Sci 118(Pt 21):5023–5034

    Article  PubMed  CAS  Google Scholar 

  • Currie RA, Walker KS, Gray A, Deak M, Casamayor A, Downes CP, Cohen P, Alessi DR, Lucocq J (1999) Role of phosphatidylinositol 3, 4, 5-trisphosphate in regulating the activity and localization of 3-phosphoinositide-dependent protein kinase-1. Biochem J 337(Pt 3):575–583

    Article  PubMed  CAS  Google Scholar 

  • Dalby KN, Morrice N, Caudwell FB, Avruch J, Cohen P (1998) Identification of regulatory phosphorylation sites in mitogen-activated protein kinase (MAPK)-activated protein kinase-1a/p90rsk that are inducible by MAPK. J Biol Chem 273(3):1496–1505

    Article  PubMed  CAS  Google Scholar 

  • Dann SG, Selvaraj A, Thomas G (2007) mTOR Complex1-S6K1 signaling: at the crossroads of obesity, diabetes and cancer. Trends Mol Med 13(6):252–259

    Article  PubMed  CAS  Google Scholar 

  • Dettori R, Sonzogni S, Meyer L, Lopez-Garcia LA, Morrice NA, Zeuzem S, Engel M, Piiper A, Neimanis S, Frodin M, Biondi RM (2009) Regulation of the interaction between protein kinase C-related protein kinase 2 (PRK2) and its upstream kinase, 3-phosphoinositide-dependent protein kinase 1 (PDK1). J Biol Chem 284(44):30318–30327

    Article  PubMed  CAS  Google Scholar 

  • Di CA, Pesce B, Cordon-Cardo C, Pandolfi PP (1998) Pten is essential for embryonic development and tumour suppression. Nat Genet 19(4):348–355

    Article  Google Scholar 

  • Dummler B, Hemmings BA (2007) Physiological roles of PKB/Akt isoforms in development and disease. Biochem Soc Trans 35(Pt 2):231–235

    PubMed  CAS  Google Scholar 

  • Dutil EM, Toker A, Newton AC (1998) Regulation of conventional protein kinase C isozymes by phosphoinositide-dependent kinase 1 (PDK-1). Curr Biol 8(25):1366–1375

    Article  PubMed  CAS  Google Scholar 

  • Engel M, Hindie V, Lopez-Garcia LA, Stroba A, Schaeffer F, Adrian I, Imig J, Idrissova L, Nastainczyk W, Zeuzem S, Alzari PM, Hartmann RW, Piiper A, Biondi RM (2006) Allosteric activation of the protein kinase PDK1 with low molecular weight compounds. EMBO J 25(23):5469–5480

    Article  PubMed  CAS  Google Scholar 

  • Finlay DK, Sinclair LV, Feijoo C, Waugh CM, Hagenbeek TJ, Spits H, Cantrell DA (2009) Phosphoinositide-dependent kinase 1 controls migration and malignant transformation but not cell growth and proliferation in PTEN-null lymphocytes. J Exp Med 206(11):2441–2454

    Article  PubMed  CAS  Google Scholar 

  • Foller M, Mahmud H, Koka S, Lang F (2008) Reduced Ca2+ entry and suicidal death of erythrocytes in PDK1 hypomorphic mice. Pflugers Arch 455(5):939–949

    Article  PubMed  CAS  Google Scholar 

  • Frias MA, Thoreen CC, Jaffe JD, Schroder W, Sculley T, Carr SA, Sabatini DM (2006) mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol 16(18):1865–1870

    Article  PubMed  CAS  Google Scholar 

  • Frodin M, Jensen CJ, Merienne K, Gammeltoft S (2000) A phosphoserine-regulated docking site in the protein kinase RSK2 that recruits and activates PDK1. EMBO J 19(12):2924–2934

    Article  PubMed  CAS  Google Scholar 

  • Frodin M, Antal TL, Dummler BA, Jensen CJ, Deak M, Gammeltoft S, Biondi RM (2002) A phosphoserine/threonine-binding pocket in AGC kinases and PDK1 mediates activation by hydrophobic motif phosphorylation. EMBO J 21(20):5396–5407

    Article  PubMed  Google Scholar 

  • Garcia-Martinez JM, Alessi DR (2008) mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J 416(3):375–385

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Martinez JM, Moran J, Clarke RG, Gray A, Cosulich SC, Chresta CM, Alessi DR (2009) Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochem J 421(1):29–42

    Article  PubMed  CAS  Google Scholar 

  • Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12(1):9–22

    Article  PubMed  CAS  Google Scholar 

  • Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J, Brown M, Fitzgerald KJ, Sabatini DM (2006) Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell 11(6):859–871

    Article  PubMed  CAS  Google Scholar 

  • Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, Tokunaga C, Avruch J, Yonezawa K (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110(2):177–189

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto N, Kido Y, Uchida T, Asahara S, Shigeyama Y, Matsuda T, Takeda A, Tsuchihashi D, Nishizawa A, Ogawa W, Fujimoto Y, Okamura H, Arden KC, Herrera PL, Noda T, Kasuga M (2006) Ablation of PDK1 in pancreatic beta cells induces diabetes as a result of loss of beta cell mass. Nat Genet 38(5):589–593

    Article  PubMed  CAS  Google Scholar 

  • Hauge C, Frodin M (2006) RSK and MSK in MAP kinase signalling. J Cell Sci 119(Pt 15):3021–3023

    Article  PubMed  CAS  Google Scholar 

  • Hauge C, Antal TL, Hirschberg D, Doehn U, Thorup K, Idrissova L, Hansen K, Jensen ON, Jorgensen TJ, Biondi RM, Frodin M (2007) Mechanism for activation of the growth factor-activated AGC kinases by turn motif phosphorylation. EMBO J 26(9):2251–2261

    Article  PubMed  CAS  Google Scholar 

  • Hindie V, Stroba A, Zhang H, Lopez-Garcia LA, Idrissova L, Zeuzem S, Hirschberg D, Schaeffer F, Jorgensen TJ, Engel M, Alzari PM, Biondi RM (2009) Structure and allosteric effects of low-molecular-weight activators on the protein kinase PDK1. Nat Chem Biol 5(10):758–764

    Article  PubMed  CAS  Google Scholar 

  • Hinton HJ, Alessi DR, Cantrell DA (2004) The serine kinase phosphoinositide-dependent kinase 1 (PDK1) regulates T cell development. Nat Immunol 5(5):539–545

    Article  PubMed  CAS  Google Scholar 

  • Iorns E, Lord CJ, Ashworth A (2009) Parallel RNAi and compound screens identify the PDK1 pathway as a target for tamoxifen sensitization. Biochem J 417(1):361–370

    Article  PubMed  CAS  Google Scholar 

  • Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY, Huang Q, Qin J, Su B (2006) SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127(1):125–137

    Article  PubMed  CAS  Google Scholar 

  • Jensen CJ, Buch MB, Krag TO, Hemmings BA, Gammeltoft S, Frodin M (1999) 90-kDa ribosomal S6 kinase is phosphorylated and activated by 3-phosphoinositide-dependent protein kinase-1. J Biol Chem 274(38):27168–27176

    Article  PubMed  CAS  Google Scholar 

  • Kelly AP, Hinton HJ, Clarke RG, Cantrell DA (2006) Phosphoinositide-dependent kinase l (PDK1) haplo-insufficiency inhibits production of alpha/beta (alpha/beta) but not gamma delta (gamma/delta) T lymphocytes. FEBS Lett 580(8):2135–2140

    Article  PubMed  CAS  Google Scholar 

  • Kelly AP, Finlay DK, Hinton HJ, Clarke RG, Fiorini E, Radtke F, Cantrell DA (2007) Notch-induced T cell development requires phosphoinositide-dependent kinase 1. EMBO J 26(14):3441–3450

    Article  PubMed  CAS  Google Scholar 

  • Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110(2):163–175

    Article  PubMed  CAS  Google Scholar 

  • Kim DH, Sarbassov DD, Ali SM, Latek RR, Guntur KV, Erdjument-Bromage H, Tempst P, Sabatini DM (2003) GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 11(4):895–904

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Cohen P (1999) Activation of serum- and glucocorticoid-regulated protein kinase by agonists that activate phosphatidylinositide 3-kinase is mediated by 3-phosphoinositide-dependent protein kinase-1 (PDK1) and PDK2. Biochem J 339(Pt 2):319–328

    Article  PubMed  CAS  Google Scholar 

  • Komander D, Fairservice A, Deak M, Kular GS, Prescott AR, Peter DC, Safrany ST, Alessi DR, van Aalten DM (2004) Structural insights into the regulation of PDK1 by phosphoinositides and inositol phosphates. EMBO J 23(20):3918–3928

    Article  PubMed  CAS  Google Scholar 

  • Komander D, Kular G, Deak M, Alessi DR, Van Aalten DM (2005) Role of T-loop phosphorylation in PDK1 activation, stability, and substrate binding. J Biol Chem 280(19):18797–18802

    Article  PubMed  CAS  Google Scholar 

  • Lang F, Bohmer C, Palmada M, Seebohm G, Strutz-Seebohm N, Vallon V (2006) (Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms. Physiol Rev 86(4):1151–1178

    Article  PubMed  CAS  Google Scholar 

  • Lawlor MA, Mora A, Ashby PR, Williams MR, Murray-Tait V, Malone L, Prescott AR, Lucocq JM, Alessi DR (2002) Essential role of PDK1 in regulating cell size and development in mice. EMBO J 21(14):3728–3738

    Article  PubMed  CAS  Google Scholar 

  • Le Good JA, Ziegler WH, Parekh DB, Alessi DR, Cohen P, Parker PJ (1998) Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK1. Science 281(5385):2042–2045

    Article  PubMed  Google Scholar 

  • Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275(5308):1943–1947

    Article  PubMed  CAS  Google Scholar 

  • Lindsley CW, Barnett SF, Yaroschak M, Bilodeau MT, Layton ME (2007) Recent progress in the development of ATP-competitive and allosteric Akt kinase inhibitors. Curr Top Med Chem 7(14):1349–1363

    Article  PubMed  CAS  Google Scholar 

  • Lizcano JM, Alessi DR (2002) The insulin signalling pathway. Curr Biol 12(7):R236–R238

    Article  PubMed  CAS  Google Scholar 

  • Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129(7):1261–1274

    Article  PubMed  CAS  Google Scholar 

  • Maurer M, Su T, Saal LH, Koujak S, Hopkins BD, Barkley CR, Wu J, Nandula S, Dutta B, Xie Y, Chin YR, Kim DI, Ferris JS, Gruvberger-Saal SK, Laakso M, Wang X, Memeo L, Rojtman A, Matos T, Yu JS, Cordon-Cardo C, Isola J, Terry MB, Toker A, Mills GB, Zhao JJ, Murty VV, Hibshoosh H, Parsons R (2009) 3-Phosphoinositide-dependent kinase 1 potentiates upstream lesions on the phosphatidylinositol 3-kinase pathway in breast carcinoma. Cancer Res 69(15):6299–6306

    Article  PubMed  CAS  Google Scholar 

  • McManus EJ, Collins BJ, Ashby PR, Prescott AR, Murray-Tait V, Armit LJ, Arthur JS, Alessi DR (2004) The in vivo role of PtdIns(3, 4, 5)P3 binding to PDK1 PH domain defined by knockin mutation. EMBO J 23(10):2071–2082

    Article  PubMed  CAS  Google Scholar 

  • Mellor H, Parker PJ (1998) The extended protein kinase C superfamily. Biochem J 332(Pt 2):281–292

    PubMed  CAS  Google Scholar 

  • Milburn CC, Deak M, Kelly SM, Price NC, Alessi DR, Van Aalten DM (2003) Binding of phosphatidylinositol 3, 4, 5-trisphosphate to the pleckstrin homology domain of protein kinase B induces a conformational change. Biochem J 375(Pt 3):531–538

    Article  PubMed  CAS  Google Scholar 

  • Mora A, Davies AM, Bertrand L, Sharif I, Budas GR, Jovanovic S, Mouton V, Kahn CR, Lucocq JM, Gray GA, Jovanovic A, Alessi DR (2003) Deficiency of PDK1 in cardiac muscle results in heart failure and increased sensitivity to hypoxia. EMBO J 22(18):4666–4676

    Article  PubMed  CAS  Google Scholar 

  • Mora A, Komander D, Van Aalten DM, Alessi DR (2004) PDK1, the master regulator of AGC kinase signal transduction. Semin Cell Dev Biol 15(2):161–170

    Article  PubMed  CAS  Google Scholar 

  • Mora A, Lipina C, Tronche F, Sutherland C, Alessi DR (2005) Deficiency of PDK1 in liver results in glucose intolerance, impairment of insulin-regulated gene expression and liver failure. Biochem J 385(Pt 3):639–648

    PubMed  CAS  Google Scholar 

  • Newton AC (2001) Protein kinase C: structural and spatial regulation by phosphorylation, cofactors, and macromolecular interactions. Chem Rev 101(8):2353–2364

    Article  PubMed  CAS  Google Scholar 

  • Newton AC (2003) Regulation of the ABC kinases by phosphorylation: protein kinase C as a paradigm. Biochem J 370(Pt 2):361–371

    Article  PubMed  CAS  Google Scholar 

  • Newton AC (2010) Protein kinase C: poised to signal. Am J Physiol Endocrinol Metab 298(3):E395–E402

    Article  PubMed  CAS  Google Scholar 

  • Okamoto Y, Ogawa W, Nishizawa A, Inoue H, Teshigawara K, Kinoshita S, Matsuki Y, Watanabe E, Hiramatsu R, Sakaue H, Noda T, Kasuga M (2007) Restoration of glucokinase expression in the liver normalizes postprandial glucose disposal in mice with hepatic deficiency of PDK1. Diabetes 56(4):1000–1009

    Article  PubMed  CAS  Google Scholar 

  • Parekh D, Ziegler W, Yonezawa K, Hara K, Parker PJ (1999) Mammalian TOR controls one of two kinase pathways acting upon nPKCdelta and nPKCepsilon. J Biol Chem 274(49):34758–34764

    Article  PubMed  CAS  Google Scholar 

  • Park J, Leong ML, Buse P, Maiyar AC, Firestone GL, Hemmings BA (1999) Serum and glucocorticoid-inducible kinase (SGK) is a target of the PI 3-kinase-stimulated signaling pathway. EMBO J 18(11):3024–3033

    Article  PubMed  CAS  Google Scholar 

  • Pearce LR, Huang X, Boudeau J, Pawlowski R, Wullschleger S, Deak M, Ibrahim AF, Gourlay R, Magnuson MA, Alessi DR (2007) Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem J 405(3):513–522

    Article  PubMed  CAS  Google Scholar 

  • Pearce LR, Komander D, Alessi DR (2010) The nuts and bolts of AGC protein kinases. Nat Rev Mol Cell Biol 11(1):9–22

    Article  PubMed  CAS  Google Scholar 

  • Pearn L, Fisher J, Burnett AK, Darley RL (2007) The role of PKC and PDK1 in monocyte lineage specification by Ras. Blood 109(10):4461–4469

    Article  PubMed  CAS  Google Scholar 

  • Peifer C, Alessi DR (2008) Small-molecule inhibitors of PDK1. ChemMedChem 3(12):1810–1838

    Article  PubMed  CAS  Google Scholar 

  • Podsypanina K, Ellenson LH, Nemes A, Gu J, Tamura M, Yamada KM, Cordon-Cardo C, Catoretti G, Fisher PE, Parsons R (1999) Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci U S A 96(4):1563–1568

    Article  PubMed  CAS  Google Scholar 

  • Price DJ, Grove JR, Calvo V, Avruch J, Bierer BE (1992) Rapamycin-induced inhibition of the 70-kilodalton S6 protein kinase. Science 257(5072):973–977

    Article  PubMed  CAS  Google Scholar 

  • Pullen N, Dennis PB, Andjelkovic M, Dufner A, Kozma SC, Hemmings BA, Thomas G (1998) Phosphorylation and activation of p70s6k by PDK1. Science 279(5351):707–710

    Article  PubMed  CAS  Google Scholar 

  • Rexhepaj R, Grahammer F, Volkl H, Remy C, Wagner CA, Sandulache D, Artunc F, Henke G, Nammi S, Capasso G, Alessi DR, Lang F (2006) Reduced intestinal and renal amino acid transport in PDK1 hypomorphic mice. FASEB J 20(13):2214–2222

    Article  PubMed  CAS  Google Scholar 

  • Richards SA, Fu J, Romanelli A, Shimamura A, Blenis J (1999) Ribosomal S6 kinase 1 (RSK1) activation requires signals dependent on and independent of the MAP kinase ERK. Curr Biol 9(15):810–820

    Article  PubMed  CAS  Google Scholar 

  • Riojas RA, Kikani CK, Wang C, Mao X, Zhou L, Langlais PR, Hu D, Roberts JL, Dong LQ, Liu F (2006) Fine tuning PDK1 activity by phosphorylation at Ser163. J Biol Chem 281(31):21588–21593

    Article  PubMed  CAS  Google Scholar 

  • Rotte A, Bhandaru M, Ackermann TF, Boini KM, Lang F (2008) Role of PDK1 in regulation of gastric acid secretion. Cell Physiol Biochem 22(5–6):725–734

    Article  PubMed  CAS  Google Scholar 

  • Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH (1994) RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78(1):35–43

    Article  PubMed  CAS  Google Scholar 

  • Sandu C, Artunc F, Palmada M, Rexhepaj R, Grahammer F, Hussain A, Yun C, Alessi DR, Lang F (2006) Impaired intestinal NHE3 activity in the PDK1 hypomorphic mouse. Am J Physiol Gastrointest Liver Physiol 291(5):G868–G876

    Article  PubMed  CAS  Google Scholar 

  • Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14(14):1296–1302

    Article  PubMed  CAS  Google Scholar 

  • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307(5712):1098–1101

    Article  PubMed  CAS  Google Scholar 

  • Stephens L, Anderson K, Stokoe D, Erdjument-Bromage H, Painter GF, Holmes AB, Gaffney PR, Reese CB, McCormick F, Tempst P, Coadwell J, Hawkins PT (1998) Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B. Science 279(5351):710–714

    Article  PubMed  CAS  Google Scholar 

  • Stokoe D, Stephens LR, Copeland T, Gaffney PR, Reese CB, Painter GF, Holmes AB, McCormick F, Hawkins PT (1997) Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science 277(5325):567–570

    Article  PubMed  CAS  Google Scholar 

  • Stroba A, Schaeffer F, Hindie V, Lopez-Garcia L, Adrian I, Frohner W, Hartmann RW, Biondi RM, Engel M (2009) 3,5-Diphenylpent-2-enoic acids as allosteric activators of the protein kinase PDK1: structure-activity relationships and thermodynamic characterization of binding as paradigms for PIF-binding pocket-targeting compounds. J Med Chem 52(15):4683–4693

    Article  PubMed  CAS  Google Scholar 

  • Suzuki A, de la Pompa JL, Stambolic V, Elia AJ, Sasaki T, del BB I, Ho A, Wakeham A, Itie A, Khoo W, Fukumoto M, Mak TW (1998) High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr Biol 8(21):1169–1178

    Article  PubMed  CAS  Google Scholar 

  • Thomas CC, Deak M, Alessi DR, Van Aalten DM (2002) High-resolution structure of the pleckstrin homology domain of protein kinase b/akt bound to phosphatidylinositol (3,4,5)-trisphosphate. Curr Biol 12(14):1256–1262

    Article  PubMed  CAS  Google Scholar 

  • Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M, Fumagalli S, Allegrini PR, Kozma SC, Auwerx J, Thomas G (2004) Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431(7005):200–205

    Article  PubMed  CAS  Google Scholar 

  • Vanhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R, Driscoll PC, Woscholski R, Parker PJ, Waterfield MD (2001) Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 70:535–602

    Article  PubMed  CAS  Google Scholar 

  • Vasudevan KM, Barbie DA, Davies MA, Rabinovsky R, McNear CJ, Kim JJ, Hennessy BT, Tseng H, Pochanard P, Kim SY, Dunn IF, Schinzel AC, Sandy P, Hoersch S, Sheng Q, Gupta PB, Boehm JS, Reiling JH, Silver S, Lu Y, Stemke-Hale K, Dutta B, Joy C, Sahin AA, Gonzalez-Angulo AM, Lluch A, Rameh LE, Jacks T, Root DE, Lander ES, Mills GB, Hahn WC, Sellers WR, Garraway LA (2009) AKT-independent signaling downstream of oncogenic PIK3CA mutations in human cancer. Cancer Cell 16(1):21–32

    Article  PubMed  CAS  Google Scholar 

  • Waugh C, Sinclair L, Finlay D, Bayascas JR, Cantrell D (2009) Phosphoinositide (3,4,5)-triphosphate binding to phosphoinositide-dependent kinase 1 regulates a protein kinase B/Akt signaling threshold that dictates T-cell migration, not proliferation. Mol Cell Biol 29(21):5952–5962

    Article  PubMed  CAS  Google Scholar 

  • Whiteman EL, Cho H, Birnbaum MJ (2002) Role of Akt/protein kinase B in metabolism. Trends Endocrinol Metab 13(10):444–451

    Article  PubMed  CAS  Google Scholar 

  • Wick MJ, Ramos FJ, Chen H, Quon MJ, Dong LQ, Liu F (2003) Mouse 3-phosphoinositide-dependent protein kinase-1 undergoes dimerization and trans-phosphorylation in the activation loop. J Biol Chem 278(44):42913–42919

    Article  PubMed  CAS  Google Scholar 

  • Williams MR, Arthur JS, Balendran A, van der KJ, Poli V, Cohen P, Alessi DR (2000) The role of 3-phosphoinositide-dependent protein kinase 1 in activating AGC kinases defined in embryonic stem cells. Curr Biol 10(8):439–448

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Zeng X, Waldman T, Glazer RI (2003) Transformation of mammary epithelial cells by 3-phosphoinositide- dependent protein kinase-1 activates beta-catenin and c-Myc, and down-regulates caveolin-1. Cancer Res 63(17):5370–5375

    PubMed  CAS  Google Scholar 

  • Xie Z, Yuan H, Yin Y, Zeng X, Bai R, Glazer RI (2006) 3-phosphoinositide-dependent protein kinase-1 (PDK1) promotes invasion and activation of matrix metalloproteinases. BMC Cancer 6:77

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Cron P, Good VM, Thompson V, Hemmings BA, Barford D (2002a) Crystal structure of an activated Akt/protein kinase B ternary complex with GSK3-peptide and AMP-PNP. Nat Struct Biol 9(12):940–944

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Cron P, Thompson V, Good VM, Hess D, Hemmings BA, Barford D (2002b) Molecular mechanism for the regulation of protein kinase B/Akt by hydrophobic motif phosphorylation. Mol Cell 9(6):1227–1240

    Article  PubMed  CAS  Google Scholar 

  • Yang Q, Inoki K, Ikenoue T, Guan KL (2006) Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity. Genes Dev 20(20):2820–2832

    Article  PubMed  CAS  Google Scholar 

  • Yang KJ, Shin S, Piao L, Shin E, Li Y, Park KA, Byun HS, Won M, Hong J, Kweon GR, Hur GM, Seok JH, Chun T, Brazil DP, Hemmings BA, Park J (2008) Regulation of 3-phosphoinositide-dependent protein kinase-1 (PDK1) by Src involves tyrosine phosphorylation of PDK1 and Src homology 2 domain binding. J Biol Chem 283(3):1480–1491

    Article  PubMed  CAS  Google Scholar 

  • Yuan TL, Cantley LC (2008) PI3K pathway alterations in cancer: variations on a theme. Oncogene 27(41):5497–5510

    Article  PubMed  CAS  Google Scholar 

  • Zaru R, Mollahan P, Watts C (2008) 3-phosphoinositide-dependent kinase 1 deficiency perturbs Toll-like receptor signaling events and actin cytoskeleton dynamics in dendritic cells. J Biol Chem 283(2):929–939

    Article  PubMed  CAS  Google Scholar 

  • Zeng X, Xu H, Glazer RI (2002) Transformation of mammary epithelial cells by 3-phosphoinositide-dependent protein kinase-1 (PDK1) is associated with the induction of protein kinase Calpha. Cancer Res 62(12):3538–3543

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I am grateful to all the scientists and supporting staff members of the MRC Protein Phosphorylation Unit at the University of Dundee in Scotland, and especially to Professor Dario Alessi, for their help, advice, and all the knowledge and training I received during the 5 years I spent in such a world leading centre. I also thank the Spanish Government Ministerio de Educación y Ciencia (Ramon y Cajal Programme-2006) and Ministerio de Sanidad y Consumo (Project FIS PI070701) for current financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Ramón Bayascas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bayascas, J.R. (2010). PDK1: The Major Transducer of PI 3-Kinase Actions. In: Rommel, C., Vanhaesebroeck, B., Vogt, P. (eds) Phosphoinositide 3-kinase in Health and Disease. Current Topics in Microbiology and Immunology, vol 346. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2010_43

Download citation

Publish with us

Policies and ethics