Skip to main content

Sex Differences in Psychosis: Focus on Animal Models

  • Chapter
  • First Online:
Sex Differences in Brain Function and Dysfunction

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 62))

Abstract

Most psychiatric illnesses, such as schizophrenia, show profound sex differences in incidence, clinical presentation, course, and outcome. Fortunately, more recently the literature on sex differences and (to a lesser extent) effects of sex steroid hormones is expanding, and in this review we have focused on such studies in psychosis, both from a clinical/epidemiological and preclinical/animal model perspective. We begin by briefly describing the clinical evidence for sex differences in schizophrenia epidemiology, symptomatology, and pathophysiology. We then detail sex differences and sex hormone effects in behavioral animal models of psychosis, specifically psychotropic drug-induced locomotor hyperactivity and disruption of prepulse inhibition. We expand on the preclinical data to include developmental and genetic models of psychosis, such as the maternal immune activation model and neuregulin transgenic animals, respectively. Finally, we suggest several recommendations for future studies, in order to facilitate a better understanding of sex differences in the development of psychosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel KM, Drake R, Goldstein JM (2010) Sex differences in schizophrenia. Int Rev Psychiatry 22(5):417–428

    PubMed  Google Scholar 

  • Abi-Dargham A, Gil R, Krystal J, Baldwin RM, Seibyl JP, Bowers M et al (1998) Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am J Psychiatry 155(6):761–767

    CAS  PubMed  Google Scholar 

  • Alonso J, Angermeyer MC, Bernert S, Bruffaerts R, Brugha TS, Bryson H et al (2004) Prevalence of mental disorders in Europe: results from the European study of the epidemiology of mental disorders (ESEMeD) project. Acta Psychiatr Scand Suppl 420:21–27

    Google Scholar 

  • Andine P, Widermark N, Axelsson R, Nyberg G, Olofsson U, Martensson E et al (1999) Characterization of MK-801-induced behavior as a putative rat model of psychosis. J Pharmacol Exp Ther 290(3):1393–1408

    CAS  PubMed  Google Scholar 

  • Angelucci F, Brene S, Mathe AA (2005) BDNF in schizophrenia, depression and corresponding animal models. Mol Psychiatry 10(4):345–352

    CAS  PubMed  Google Scholar 

  • APA (2013) Diagnostic and statistical manual of mental disorders, 5th edn. APA, Washington

    Google Scholar 

  • Bale TL, Epperson CN (2017) Sex as a biological variable: who, what, when, why, and how. Neuropsychopharmacology 42(2):386–396

    CAS  PubMed  Google Scholar 

  • Balu DT (2016) The NMDA receptor and schizophrenia: from pathophysiology to treatment. Adv Pharmacol 76:351–382

    CAS  PubMed  PubMed Central  Google Scholar 

  • Becker JB, Robinson TE, Lorenz KA (1982) Sex differences and estrous cycle variations in amphetamine-elicited rotational behavior. Eur J Pharmacol 80(1):65–72

    CAS  PubMed  Google Scholar 

  • Becker JB, Molenda H, Hummer DL (2001) Gender differences in the behavioral responses to cocaine and amphetamine. Implications for mechanisms mediating gender differences in drug abuse. Ann N Y Acad Sci 937:172–187

    CAS  PubMed  Google Scholar 

  • Beery AK, Zucker I (2011) Sex bias in neuroscience and biomedical research. Neurosci Biobehav Rev 35(3):565–572

    PubMed  Google Scholar 

  • Bender RA, Zhou L, Wilkars W, Fester L, Lanowski JS, Paysen D et al (2010) Roles of 17beta-estradiol involve regulation of reelin expression and synaptogenesis in the dentate gyrus. Cereb Cortex 20(12):2985–2995

    PubMed  Google Scholar 

  • Benes FM, Berretta S (2001) GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25(1):1–27

    CAS  PubMed  Google Scholar 

  • Biamonte F, Assenza G, Marino R, D'Amelio M, Panteri R, Caruso D et al (2009) Interactions between neuroactive steroids and reelin haploinsufficiency in Purkinje cell survival. Neurobiol Dis 36(1):103–115

    CAS  PubMed  Google Scholar 

  • Bosch C, Muhaisen A, Pujadas L, Soriano E, Martinez A (2016) Reelin exerts structural, biochemical and transcriptional regulation over presynaptic and postsynaptic elements in the adult hippocampus. Front Cell Neurosci 10:138

    PubMed  PubMed Central  Google Scholar 

  • Bristow GC, Bostrom JA, Haroutunian V, Sodhi MS (2015) Sex differences in GABAergic gene expression occur in the anterior cingulate cortex in schizophrenia. Schizophr Res 167(1–3):57–63

    PubMed  PubMed Central  Google Scholar 

  • Bryant NL, Buchanan RW, Vladar K, Breier A, Rothman M (1999) Gender differences in temporal lobe structures of patients with schizophrenia: a volumetric MRI study. Am J Psychiatry 156(4):603–609

    CAS  PubMed  Google Scholar 

  • Carboni L, Domenici E (2016) Proteome effects of antipsychotic drugs: learning from preclinical models. Proteomics Clin Appl 10(4):430–441

    CAS  PubMed  Google Scholar 

  • Carpiniello B, Pinna F, Tusconi M, Zaccheddu E, Fatteri F (2012) Gender differences in remission and recovery of schizophrenic and schizoaffective patients: preliminary results of a prospective cohort study. Schizophr Res Treat 2012:576369

    Google Scholar 

  • Chalkiadaki K, Velli A, Kyriazidis E, Stavroulaki V, Vouvoutsis V, Chatzaki E et al (2019) Development of the MAM model of schizophrenia in mice: sex similarities and differences of hippocampal and prefrontal cortical function. Neuropharmacology 144:193–207

    CAS  PubMed  Google Scholar 

  • Chartoff EH, Heusner CL, Palmiter RD (2005) Dopamine is not required for the hyperlocomotor response to NMDA receptor antagonists. Neuropsychopharmacology 30(7):1324–1333

    CAS  PubMed  Google Scholar 

  • Chavez C, Gogos A, Jones ME, van den Buuse M (2009) Psychotropic drug-induced locomotor hyperactivity and prepulse inhibition regulation in male and female aromatase knockout (ArKO) mice: role of dopamine D1 and D2 receptors and dopamine transporters. Psychopharmacology 206(2):267–279

    CAS  PubMed  Google Scholar 

  • Chavez C, Hollaus M, Scarr E, Pavey G, Gogos A, van den Buuse M (2010) The effect of estrogen on dopamine and serotonin receptor and transporter levels in the brain: an autoradiography study. Brain Res 1321:51–59

    CAS  PubMed  Google Scholar 

  • Chen J, Lipska BK, Weinberger DR (2006) Genetic mouse models of schizophrenia: from hypothesis-based to susceptibility gene-based models. Biol Psychiatry 59(12):1180–1188

    CAS  PubMed  Google Scholar 

  • Chesworth R, Rosa-Porto R, Yao S, Karl T (2021) Sex-specific sensitivity to methamphetamine-induced schizophrenia-relevant behaviours in neuregulin 1 type III overexpressing mice. J Psychopharmacol 35(1):50–64

    CAS  PubMed  Google Scholar 

  • Choudhury Z, Lennox B (2021) Maternal immune activation and schizophrenia-evidence for an immune priming disorder. Front Psychiatry 12:585742

    PubMed  PubMed Central  Google Scholar 

  • Chubb JE, Bradshaw NJ, Soares DC, Porteous DJ, Millar JK (2008) The DISC locus in psychiatric illness. Mol Psychiatry 13(1):36–64

    CAS  PubMed  Google Scholar 

  • Clayton JA, Collins FS (2014) NIH to balance sex in cell and animal studies. Nature 509(7500):282–283

    PubMed  PubMed Central  Google Scholar 

  • Cotton SM, Lambert M, Schimmelmann BG, Foley DL, Morley KI, McGorry PD et al (2009) Gender differences in premorbid, entry, treatment, and outcome characteristics in a treated epidemiological sample of 661 patients with first episode psychosis. Schizophr Res 114(1–3):17–24

    CAS  PubMed  Google Scholar 

  • Cromwell HC, Mears RP, Wan L, Boutros NN (2008) Sensory gating: a translational effort from basic to clinical science. Clin EEG Neurosci 39(2):69–72

    PubMed  PubMed Central  Google Scholar 

  • Dahoun T, Trossbach SV, Brandon NJ, Korth C, Howes OD (2017) The impact of disrupted-in-schizophrenia 1 (DISC1) on the dopaminergic system: a systematic review. Transl Psychiatry 7(1):e1015

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dalmau J, Armangue T, Planaguma J, Radosevic M, Mannara F, Leypoldt F et al (2019) An update on anti-NMDA receptor encephalitis for neurologists and psychiatrists: mechanisms and models. Lancet Neurol 18(11):1045–1057

    CAS  PubMed  Google Scholar 

  • Davies W, Wilkinson LS (2006) It is not all hormones: alternative explanations for sexual differentiation of the brain. Brain Res 1126(1):36–45

    CAS  PubMed  Google Scholar 

  • de Boer J, Prikken M, Lei WU, Begemann M, Sommer I (2018) The effect of raloxifene augmentation in men and women with a schizophrenia spectrum disorder: a systematic review and meta-analysis. NPJ Schizophr 4(1):1

    PubMed  PubMed Central  Google Scholar 

  • De Leonibus E, Mele A, Oliverio A, Pert A (2001) Locomotor activity induced by the non-competitive N-methyl-D-aspartate antagonist, MK-801: role of nucleus accumbens efferent pathways. Neuroscience 104(1):105–116

    PubMed  Google Scholar 

  • Deakin IH, Law AJ, Oliver PL, Schwab MH, Nave KA, Harrison PJ et al (2009) Behavioural characterization of neuregulin 1 type I overexpressing transgenic mice. Neuroreport 20(17):1523–1528

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dean B, Duncan C, Gibbons A (2019) Changes in levels of cortical metabotropic glutamate 2 receptors with gender and suicide but not psychiatric diagnoses. J Affect Disord 244:80–84

    CAS  PubMed  Google Scholar 

  • Dempster EL, Mill J, Craig IW, Collier DA (2006) The quantification of COMT mRNA in post mortem cerebellum tissue: diagnosis, genotype, methylation and expression. BMC Med Genet 7:10

    PubMed  PubMed Central  Google Scholar 

  • Du X, McCarthny CR, Notaras M, van den Buuse M, Hill RA (2019) Effect of adolescent androgen manipulation on psychosis-like behaviour in adulthood in BDNF heterozygous and control mice. Horm Behav 112:32–41

    CAS  PubMed  Google Scholar 

  • Eastwood SL, Harrison PJ (2006) Cellular basis of reduced cortical reelin expression in schizophrenia. Am J Psychiatry 163(3):540–542

    PubMed  Google Scholar 

  • Eranti SV, MacCabe JH, Bundy H, Murray RM (2013) Gender difference in age at onset of schizophrenia: a meta-analysis. Psychol Med 43(1):155–167

    CAS  PubMed  Google Scholar 

  • Fabbri C, Serretti A (2017) Role of 108 schizophrenia-associated loci in modulating psychopathological dimensions in schizophrenia and bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 174(7):757–764

    CAS  PubMed  Google Scholar 

  • Gattaz WF, Vogel P, Riecher-Rossler A, Soddu G (1994) Influence of the menstrual cycle phase on the therapeutic response in schizophrenia. Biol Psychiatry 36(2):137–139

    CAS  PubMed  Google Scholar 

  • Georgiou P, Zanos P, Jenne CE, Gould TD (2019) Sex-specific involvement of estrogen receptors in behavioral responses to stress and psychomotor activation. Front Psychiatry 10:81

    PubMed  PubMed Central  Google Scholar 

  • Geyer MA (2006) The family of sensorimotor gating disorders: comorbidities or diagnostic overlaps? Neurotox Res 10(3–4):211–220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gogos A, Van den Buuse M (2004) Estrogen and progesterone prevent disruption of prepulse inhibition by the serotonin-1A receptor agonist 8-hydroxy-2-dipropylaminotetralin. J Pharmacol Exp Ther 309(1):267–274

    CAS  PubMed  Google Scholar 

  • Gogos A, van den Buuse M (2015) Comparing the effects of 17beta-oestradiol and the selective oestrogen receptor modulators, raloxifene and tamoxifen, on prepulse inhibition in female rats. Schizophr Res 168(3):634–639

    PubMed  Google Scholar 

  • Gogos A, Nathan PJ, Guille V, Croft RJ, van den Buuse M (2006) Estrogen prevents 5-HT1A receptor-induced disruptions of prepulse inhibition in healthy women. Neuropsychopharmacology 31(4):885–889

    CAS  PubMed  Google Scholar 

  • Gogos A, van den Buuse M, Rossell S (2009) Gender differences in prepulse inhibition (PPI) in bipolar disorder: men have reduced PPI, women have increased PPI. Int J Neuropsychopharmacol 12(9):1249–1259

    PubMed  Google Scholar 

  • Gogos A, Joshua N, Rossell SL (2010a) Use of the repeatable battery for the assessment of neuropsychological status (RBANS) to investigate group and gender differences in schizophrenia and bipolar disorder. Aust N Z J Psychiatry 44(3):220–229

    PubMed  Google Scholar 

  • Gogos A, Kwek P, Chavez C, van den Buuse M (2010b) Estrogen treatment blocks 8-hydroxy-2-dipropylaminotetralin- and apomorphine-induced disruptions of prepulse inhibition: involvement of dopamine D1 or D2 or serotonin 5-HT1A, 5-HT2A, or 5-HT7 receptors. J Pharmacol Exp Ther 333(1):218–227

    CAS  PubMed  Google Scholar 

  • Gogos A, Kwek P, van den Buuse M (2012) The role of estrogen and testosterone in female rats in behavioral models of relevance to schizophrenia. Psychopharmacology 219(1):213–224

    CAS  PubMed  Google Scholar 

  • Gogos A, Sbisa AM, Sun J, Gibbons A, Udawela M, Dean B (2015) A role for estrogen in schizophrenia: clinical and preclinical findings. Int J Endocrinol 2015:615356

    PubMed  PubMed Central  Google Scholar 

  • Gogos A, Kusljic S, Thwaites SJ, van den Buuse M (2017) Sex differences in psychotomimetic-induced behaviours in rats. Behav Brain Res 322(Pt A):157–166

    CAS  PubMed  Google Scholar 

  • Gogos A, Ney LJ, Seymour N, Van Rheenen TE, Felmingham KL (2019) Sex differences in schizophrenia, bipolar disorder, and post-traumatic stress disorder: are gonadal hormones the link? Br J Pharmacol 176(21):4119–4135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gogos A, Sbisa A, Witkamp D, van den Buuse M (2020) Sex differences in the effect of maternal immune activation on cognitive and psychosis-like behaviour in Long Evans rats. Eur J Neurosci 52(1):2614–2626

    PubMed  Google Scholar 

  • Goldstein JM, Link BG (1988) Gender and the expression of schizophrenia. J Psychiatr Res 22(2):141–155

    CAS  PubMed  Google Scholar 

  • Green MJ, Matheson SL, Shepherd A, Weickert CS, Carr VJ (2011) Brain-derived neurotrophic factor levels in schizophrenia: a systematic review with meta-analysis. Mol Psychiatry 16(9):960–972

    CAS  PubMed  Google Scholar 

  • Greening DW, Notaras M, Chen M, Xu R, Smith JD, Cheng L et al (2021) Chronic methamphetamine interacts with BDNF Val66Met to remodel psychosis pathways in the mesocorticolimbic proteome. Mol Psychiatry 26(8):4431–4447

    PubMed  Google Scholar 

  • Grossman LS, Harrow M, Rosen C, Faull R, Strauss GP (2008) Sex differences in schizophrenia and other psychotic disorders: a 20-year longitudinal study of psychosis and recovery. Compr Psychiatry 49(6):523–529

    PubMed  PubMed Central  Google Scholar 

  • Gururajan A, Hill RA, van den Buuse M (2015) Brain-derived neurotrophic factor heterozygous mutant rats show selective cognitive changes and vulnerability to chronic corticosterone treatment. Neuroscience 284:297–310

    CAS  PubMed  Google Scholar 

  • Hafner H (2003) Gender differences in schizophrenia. Psychoneuroendocrinology 28(Suppl 2):17–54

    PubMed  Google Scholar 

  • Hambrecht M, Maurer K, Hafner H, Sartorius N (1992) Transnational stability of gender differences in schizophrenia? An analysis based on the WHO study on determinants of outcome of severe mental disorders. Eur Arch Psychiatry Clin Neurosci 242(1):6–12

    CAS  PubMed  Google Scholar 

  • Han M, Huang XF, Chen DC, Xiu MH, Hui L, Liu H et al (2012) Gender differences in cognitive function of patients with chronic schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 39(2):358–363

    Google Scholar 

  • Hashimoto T, Bergen SE, Nguyen QL, Xu B, Monteggia LM, Pierri JN et al (2005) Relationship of brain-derived neurotrophic factor and its receptor TrkB to altered inhibitory prefrontal circuitry in schizophrenia. J Neurosci 25(2):372–383

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hill RA (2016) Sex differences in animal models of schizophrenia shed light on the underlying pathophysiology. Neurosci Biobehav Rev 67:41–56

    CAS  PubMed  Google Scholar 

  • Hill RA, Wu YW, Gogos A, van den Buuse M (2013) Sex-dependent alterations in BDNF-TrkB signaling in the hippocampus of reelin heterozygous mice: a role for sex steroid hormones. J Neurochem 126(3):389–399

    CAS  PubMed  Google Scholar 

  • Hoffman GE, Ma Y, Montgomery KS, Bendl J, Jaiswal MK, Kozlenkov A et al (2022) Sex differences in the human brain transcriptome of cases with schizophrenia. Biol Psychiatry 91(1):92–101

    CAS  PubMed  Google Scholar 

  • Honack D, Loscher W (1993) Sex differences in NMDA receptor mediated responses in rats. Brain Res 620(1):167–170

    CAS  PubMed  Google Scholar 

  • Howes OD, Kapur S (2009) The dopamine hypothesis of schizophrenia: version III--the final common pathway. Schizophr Bull 35(3):549–562

    PubMed  PubMed Central  Google Scholar 

  • Howland JG, Cazakoff BN, Zhang Y (2012) Altered object-in-place recognition memory, prepulse inhibition, and locomotor activity in the offspring of rats exposed to a viral mimetic during pregnancy. Neuroscience 201:184–198

    CAS  PubMed  Google Scholar 

  • Hu M, Becker JB (2003) Effects of sex and estrogen on behavioral sensitization to cocaine in rats. J Neurosci 23(2):693–699

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hume C, Massey S, van den Buuse M (2020) The effect of chronic methamphetamine treatment on schizophrenia endophenotypes in heterozygous reelin mice: implications for schizophrenia. Biomol Ther 10(6):940

    CAS  Google Scholar 

  • Humphreys GI, Ziegler YS, Nardulli AM (2014) 17beta-estradiol modulates gene expression in the female mouse cerebral cortex. PLoS One 9(11):e111975

    PubMed  PubMed Central  Google Scholar 

  • Huo C, Liu X, Zhao J, Zhao T, Huang H, Ye H (2018) Abnormalities in behaviour, histology and prefrontal cortical gene expression profiles relevant to schizophrenia in embryonic day 17 MAM-exposed C57BL/6 mice. Neuropharmacology 140:287–301

    CAS  PubMed  Google Scholar 

  • Ishii K, Kubo KI, Nakajima K (2016) Reelin and neuropsychiatric disorders. Front Cell Neurosci 10:229

    PubMed  PubMed Central  Google Scholar 

  • Ishizuka K, Paek M, Kamiya A, Sawa A (2006) A review of disrupted-in-schizophrenia-1 (DISC1): neurodevelopment, cognition, and mental conditions. Biol Psychiatry 59(12):1189–1197

    CAS  PubMed  Google Scholar 

  • Joel D, McCarthy MM (2017) Incorporating sex as a biological variable in neuropsychiatric research: where are we now and where should we be? Neuropsychopharmacology 42(2):379–385

    PubMed  Google Scholar 

  • Jones CA, Watson DJ, Fone KC (2011) Animal models of schizophrenia. Br J Pharmacol 164(4):1162–1194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanaan RA, Allin M, Picchioni M, Barker GJ, Daly E, Shergill SS et al (2012) Gender differences in white matter microstructure. PLoS One 7(6):e38272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kapur S, Mamo D (2003) Half a century of antipsychotics and still a central role for dopamine D2 receptors. Prog Neuro-Psychopharmacol Biol Psychiatry 27(7):1081–1090

    CAS  Google Scholar 

  • Kelly PH, Iversen SD (1976) Selective 6OHDA-induced destruction of mesolimbic dopamine neurons: abolition of psychostimulant-induced locomotor activity in rats. Eur J Pharmacol 40(1):45–56

    CAS  PubMed  Google Scholar 

  • Kelly S, Jahanshad N, Zalesky A, Kochunov P, Agartz I, Alloza C et al (2018) Widespread white matter microstructural differences in schizophrenia across 4322 individuals: results from the ENIGMA Schizophrenia DTI Working Group. Mol Psychiatry 23(5):1261–1269

    CAS  PubMed  Google Scholar 

  • Kentner AC, Bilbo SD, Brown AS, Hsiao EY, McAllister AK, Meyer U et al (2019) Maternal immune activation: reporting guidelines to improve the rigor, reproducibility, and transparency of the model. Neuropsychopharmacology 44(2):245–258

    PubMed  Google Scholar 

  • Kilic FS, Kulluk D, Musmul A (2014) Effects of dehydroepiandrosterone in amphetamine-induced schizophrenia models in mice. Neurosciences (Riyadh) 19(2):100–105

    PubMed  Google Scholar 

  • Klug M, Hill RA, Choy KH, Kyrios M, Hannan AJ, van den Buuse M (2012) Long-term behavioral and NMDA receptor effects of young-adult corticosterone treatment in BDNF heterozygous mice. Neurobiol Dis 46(3):722–731

    CAS  PubMed  Google Scholar 

  • Koch M (1998) Sensorimotor gating changes across the estrous cycle in female rats. Physiol Behav 64(5):625–628

    CAS  PubMed  Google Scholar 

  • Koster A, Lajer M, Lindhardt A, Rosenbaum B (2008) Gender differences in first episode psychosis. Soc Psychiatry Psychiatr Epidemiol 43(12):940–946

    PubMed  Google Scholar 

  • Kulkarni J, Gavrilidis E, Worsley R, Hayes E (2012) Role of estrogen treatment in the management of schizophrenia. CNS Drugs 26(7):549–557

    CAS  PubMed  Google Scholar 

  • Kulkarni J, Butler S, Riecher-Rossler A (2019) Estrogens and SERMS as adjunctive treatments for schizophrenia. Front Neuroendocrinol 53:100743

    CAS  PubMed  Google Scholar 

  • Kumari V, Aasen I, Sharma T (2004) Sex differences in prepulse inhibition deficits in chronic schizophrenia. Schizophr Res 69(2–3):219–235

    PubMed  Google Scholar 

  • Labouesse MA, Langhans W, Meyer U (2015) Effects of selective estrogen receptor alpha and beta modulators on prepulse inhibition in male mice. Psychopharmacology 232(16):2981–2994

    CAS  PubMed  Google Scholar 

  • Laruelle M, Abi-Dargham A (1999) Dopamine as the wind of the psychotic fire: new evidence from brain imaging studies. J Psychopharmacol 13(4):358–371

    CAS  PubMed  Google Scholar 

  • Laruelle M, Abi-Dargham A, Gil R, Kegeles L, Innis R (1999) Increased dopamine transmission in schizophrenia: relationship to illness phases. Biol Psychiatry 46(1):56–72

    CAS  PubMed  Google Scholar 

  • Law AJ (2014) Genetic mouse models of neuregulin 1: gene dosage effects, isoform-specific functions, and relevance to schizophrenia. Biol Psychiatry 76(2):89–90

    CAS  PubMed  Google Scholar 

  • Light GA, Braff DL (1999) Human and animal studies of schizophrenia-related gating deficits. Curr Psychiatry Rep 1(1):31–40

    CAS  PubMed  Google Scholar 

  • Lins BR, Hurtubise JL, Roebuck AJ, Marks WN, Zabder NK, Scott GA et al (2018) Prospective analysis of the effects of maternal immune activation on rat cytokines during pregnancy and behavior of the male offspring relevant to schizophrenia. eNeuro 5(4). https://doi.org/10.1523/ENEURO.0249-18.2018

  • Lins BR, Marks WN, Zabder NK, Greba Q, Howland JG (2019) Maternal immune activation during pregnancy alters the behavior profile of female offspring of Sprague Dawley rats. eNeuro 6(2). https://doi.org/10.1523/ENEURO.0437-18.2019

  • Lipina TV, Roder JC (2014) Disrupted-In-Schizophrenia-1 (DISC1) interactome and mental disorders: impact of mouse models. Neurosci Biobehav Rev 45:271–294

    CAS  PubMed  Google Scholar 

  • Lodge DJ, Grace AA (2009) Gestational methylazoxymethanol acetate administration: a developmental disruption model of schizophrenia. Behav Brain Res 204(2):306–312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manning EE, van den Buuse M (2013) BDNF deficiency and young-adult methamphetamine induce sex-specific effects on prepulse inhibition regulation. Front Cell Neurosci 7:92

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manning EE, Halberstadt AL, van den Buuse M (2016) BDNF-deficient mice show reduced psychosis-related behaviors following chronic methamphetamine. Int J Neuropsychopharmacol 19(4):pyv116

    PubMed  Google Scholar 

  • Markham JA (2012) Sex steroids and schizophrenia. Rev Endocr Metab Disord 13(3):187–207

    CAS  PubMed  Google Scholar 

  • McCutcheon RA, Abi-Dargham A, Howes OD (2019) Schizophrenia, dopamine and the striatum: from biology to symptoms. Trends Neurosci 42(3):205–220

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGrath J, Saha S, Welham J, El Saadi O, MacCauley C, Chant D (2004) A systematic review of the incidence of schizophrenia: the distribution of rates and the influence of sex, urbanicity, migrant status and methodology. BMC Med 2:13

    PubMed  PubMed Central  Google Scholar 

  • McGrath J, Saha S, Chant D, Welham J (2008) Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev 30:67–76

    PubMed  Google Scholar 

  • McGregor C, Riordan A, Thornton J (2017) Estrogens and the cognitive symptoms of schizophrenia: possible neuroprotective mechanisms. Front Neuroendocrinol 47:19–33

    CAS  PubMed  Google Scholar 

  • Meehan C, Harms L, Frost JD, Barreto R, Todd J, Schall U et al (2017) Effects of immune activation during early or late gestation on schizophrenia-related behaviour in adult rat offspring. Brain Behav Immun 63:8–20

    CAS  PubMed  Google Scholar 

  • Menniti FS, Baum MJ (1981) Differential effects of estrogen and androgen on locomotor activity induced in castrated male rats by amphetamine, a novel environment, or apomorphine. Brain Res 216(1):89–107

    CAS  PubMed  Google Scholar 

  • Meyer U, Feldon J (2012) To poly(I:C) or not to poly(I:C): advancing preclinical schizophrenia research through the use of prenatal immune activation models. Neuropharmacology 62(3):1308–1321

    CAS  PubMed  Google Scholar 

  • Meyer U, Feldon J, Fatemi SH (2009) In-vivo rodent models for the experimental investigation of prenatal immune activation effects in neurodevelopmental brain disorders. Neurosci Biobehav Rev 33(7):1061–1079

    CAS  PubMed  Google Scholar 

  • Milesi-Halle A, Hendrickson HP, Laurenzana EM, Gentry WB, Owens SM (2005) Sex- and dose-dependency in the pharmacokinetics and pharmacodynamics of (+)-methamphetamine and its metabolite (+)-amphetamine in rats. Toxicol Appl Pharmacol 209(3):203–213

    CAS  PubMed  Google Scholar 

  • Milesi-Halle A, McMillan DE, Laurenzana EM, Byrnes-Blake KA, Owens SM (2007) Sex differences in (+)-amphetamine- and (+)-methamphetamine-induced behavioral response in male and female Sprague-Dawley rats. Pharmacol Biochem Behav 86(1):140–149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moghaddam B, Javitt D (2012) From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology 37(1):4–15

    CAS  PubMed  Google Scholar 

  • Mueser KT, McGurk SR (2004) Schizophrenia. Lancet 363(9426):2063–2072

    PubMed  Google Scholar 

  • Munro CA, McCaul ME, Wong DF, Oswald LM, Zhou Y, Brasic J et al (2006) Sex differences in striatal dopamine release in healthy adults. Biol Psychiatry 59(10):966–974

    CAS  PubMed  Google Scholar 

  • Narr KL, Thompson PM, Sharma T, Moussai J, Blanton R, Anvar B et al (2001) Three-dimensional mapping of temporo-limbic regions and the lateral ventricles in schizophrenia: gender effects. Biol Psychiatry 50(2):84–97

    CAS  PubMed  Google Scholar 

  • Nieto R, Kukuljan M, Silva H (2013) BDNF and schizophrenia: from neurodevelopment to neuronal plasticity, learning, and memory. Front Psychiatry 4:45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nopoulos P, Flaum M, Andreasen NC (1997) Sex differences in brain morphology in schizophrenia. Am J Psychiatry 154(12):1648–1654

    CAS  PubMed  Google Scholar 

  • Notaras M, van den Buuse M (2019) Brain-derived neurotrophic factor (BDNF): novel insights into regulation and genetic variation. Neuroscientist 25(5):434–454

    CAS  PubMed  Google Scholar 

  • Notaras M, Hill R, van den Buuse M (2015) A role for the BDNF gene Val66Met polymorphism in schizophrenia? A comprehensive review. Neurosci Biobehav Rev 51:15–30

    CAS  PubMed  Google Scholar 

  • Notaras MJ, Hill RA, Gogos JA, van den Buuse M (2017) BDNF Val66Met genotype interacts with a history of simulated stress exposure to regulate sensorimotor gating and startle reactivity. Schizophr Bull 43(3):665–672

    PubMed  Google Scholar 

  • Notaras MJ, Vivian B, Wilson C, van den Buuse M (2020) Interaction of reelin and stress on immobility in the forced swim test but not dopamine-mediated locomotor hyperactivity or prepulse inhibition disruption: relevance to psychotic and mood disorders. Schizophr Res 215:485–492

    PubMed  Google Scholar 

  • Ochoa S, Usall J, Cobo J, Labad X, Kulkarni J (2012) Gender differences in schizophrenia and first-episode psychosis: a comprehensive literature review. Schizophr Res Treat 2012:916198

    Google Scholar 

  • Olaya JC, Heusner CL, Matsumoto M, Shannon Weickert C, Karl T (2018a) Schizophrenia-relevant behaviours of female mice overexpressing neuregulin 1 type III. Behav Brain Res 353:227–235

    CAS  PubMed  Google Scholar 

  • Olaya JC, Heusner CL, Matsumoto M, Sinclair D, Kondo MA, Karl T et al (2018b) Overexpression of neuregulin 1 type III confers hippocampal mRNA alterations and schizophrenia-like behaviors in mice. Schizophr Bull 44(4):865–875

    PubMed  Google Scholar 

  • O'Neill MF, Shaw G (1999) Comparison of dopamine receptor antagonists on hyperlocomotion induced by cocaine, amphetamine, MK-801 and the dopamine D1 agonist C-APB in mice. Psychopharmacology 145(3):237–250

    CAS  PubMed  Google Scholar 

  • O'Tuathaigh CM, O'Sullivan GJ, Kinsella A, Harvey RP, Tighe O, Croke DT et al (2006) Sexually dimorphic changes in the exploratory and habituation profiles of heterozygous neuregulin-1 knockout mice. Neuroreport 17(1):79–83

    CAS  PubMed  Google Scholar 

  • O'Tuathaigh CM, Harte M, O'Leary C, O'Sullivan GJ, Blau C, Lai D et al (2010) Schizophrenia-related endophenotypes in heterozygous neuregulin-1 ‘knockout’ mice. Eur J Neurosci 31(2):349–358

    CAS  PubMed  Google Scholar 

  • Ouagazzal A, Nieoullon A, Amalric M (1994) Locomotor activation induced by MK-801 in the rat: postsynaptic interactions with dopamine receptors in the ventral striatum. Eur J Pharmacol 251(2–3):229–236

    CAS  PubMed  Google Scholar 

  • Pei JC, Liu CM, Lai WS (2014) Distinct phenotypes of new transmembrane-domain neuregulin 1 mutant mice and the rescue effects of valproate on the observed schizophrenia-related cognitive deficits. Front Behav Neurosci 8:126

    PubMed  PubMed Central  Google Scholar 

  • Perez SM, Chen L, Lodge DJ (2014) Alterations in dopamine system function across the estrous cycle of the MAM rodent model of schizophrenia. Psychoneuroendocrinology 47:88–97

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perez SM, Donegan JJ, Lodge DJ (2019) Effect of estrous cycle on schizophrenia-like behaviors in MAM exposed rats. Behav Brain Res 362:258–265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Plappert CF, Rodenbucher AM, Pilz PK (2005) Effects of sex and estrous cycle on modulation of the acoustic startle response in mice. Physiol Behav 84(4):585–594

    CAS  PubMed  Google Scholar 

  • Pompili M, Lester D, Grispini A, Innamorati M, Calandro F, Iliceto P et al (2009) Completed suicide in schizophrenia: evidence from a case-control study. Psychiatry Res 167(3):251–257

    PubMed  Google Scholar 

  • Powell SB, Zhou X, Geyer MA (2009) Prepulse inhibition and genetic mouse models of schizophrenia. Behav Brain Res 204(2):282–294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Purves-Tyson TD, Boerrigter D, Allen K, Zavitsanou K, Karl T, Djunaidi V et al (2015) Testosterone attenuates and the selective estrogen receptor modulator, raloxifene, potentiates amphetamine-induced locomotion in male rats. Horm Behav 70:73–84

    CAS  PubMed  Google Scholar 

  • Qin W, Liu C, Sodhi M, Lu H (2016) Meta-analysis of sex differences in gene expression in schizophrenia. BMC Syst Biol 10(Suppl 1):9

    PubMed  PubMed Central  Google Scholar 

  • Raedler TJ, Bymaster FP, Tandon R, Copolov D, Dean B (2007) Towards a muscarinic hypothesis of schizophrenia. Mol Psychiatry 12(3):232–246

    CAS  PubMed  Google Scholar 

  • Ragan C, Patel K, Edson J, Zhang ZH, Gratten J, Mowry B (2017) Small non-coding RNA expression from anterior cingulate cortex in schizophrenia shows sex specific regulation. Schizophr Res 183:82–87

    PubMed  Google Scholar 

  • Ram Murthy A, Purushottam M, Kiran Kumar HB, ValliKiran M, Krishna N, Jayramu Sriharsha K et al (2012) Gender-specific association of TSNAX/DISC1 locus for schizophrenia and bipolar affective disorder in South Indian population. J Hum Genet 57(8):523–530

    CAS  PubMed  Google Scholar 

  • Ratnayake U, Quinn T, LaRosa DA, Dickinson H, Walker DW (2014) Prenatal exposure to the viral mimetic poly I:C alters fetal brain cytokine expression and postnatal behaviour. Dev Neurosci 36(2):83–94

    CAS  PubMed  Google Scholar 

  • Reisinger S, Khan D, Kong E, Berger A, Pollak A, Pollak DD (2015) The poly(I:C)-induced maternal immune activation model in preclinical neuropsychiatric drug discovery. Pharmacol Ther 149:213–226

    CAS  PubMed  Google Scholar 

  • Riccardi P, Zald D, Li R, Park S, Ansari MS, Dawant B et al (2006) Sex differences in amphetamine-induced displacement of [(18)F]fallypride in striatal and extrastriatal regions: a PET study. Am J Psychiatry 163(9):1639–1641

    PubMed  Google Scholar 

  • Richtand NM, Ahlbrand R, Horn P, Stanford K, Bronson SL, McNamara RK (2011) Effects of risperidone and paliperidone pre-treatment on locomotor response following prenatal immune activation. J Psychiatr Res 45(9):1194–1201

    PubMed  PubMed Central  Google Scholar 

  • Risch NJ (2000) Searching for genetic determinants in the new millennium. Nature 405(6788):847–856

    CAS  PubMed  Google Scholar 

  • Rivera-Garcia MT, McCane AM, Chowdhury TG, Wallin-Miller KG, Moghaddam B (2020) Sex and strain differences in dynamic and static properties of the mesolimbic dopamine system. Neuropsychopharmacology 45(12):2079–2086

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saylor AJ, McGinty JF (2008) Amphetamine-induced locomotion and gene expression are altered in BDNF heterozygous mice. Genes Brain Behav 7(8):906–914

    CAS  PubMed  Google Scholar 

  • Sbisa A (2017) The effect of sex hormones on cognition and psychosis-like behaviour with relevance to schizophrenia. University of Melbourne, Melbourne

    Google Scholar 

  • Sbisa AM, van den Buuse M, Gogos A (2017) The effect of estradiol and its analogues on cognition in preclinical and clinical research: relevance to schizophrenia. In: Gargiulo PA, Mesones-Arroyo HL (eds) Psychiatry and neuroscience update: bridging the divide, vol 2. Springer, pp 355–374

    Google Scholar 

  • Sbisa A, van den Buuse M, Gogos A (2018) The effect of estrogenic compounds on psychosis-like behaviour in female rats. PLoS One 13(3):e0193853

    PubMed  PubMed Central  Google Scholar 

  • Sbisa A, Kusljic S, Zethoven D, van den Buuse M, Gogos A (2020) The effect of 17beta-estradiol on maternal immune activation-induced changes in prepulse inhibition and dopamine receptor and transporter binding in female rats. Schizophr Res 223:249–257

    PubMed  Google Scholar 

  • Scharfman HE, Maclusky NJ (2005) Similarities between actions of estrogen and BDNF in the hippocampus: coincidence or clue? Trends Neurosci 28(2):79–85

    CAS  PubMed  Google Scholar 

  • Schroeder A, Buret L, Hill RA, van den Buuse M (2015) Gene-environment interaction of reelin and stress in cognitive behaviours in mice: implications for schizophrenia. Behav Brain Res 287:304–314

    CAS  PubMed  Google Scholar 

  • Schroeder A, van den Buuse M, Hill RA (2018) Reelin haploinsufficiency and late-adolescent corticosterone treatment induce long-lasting and female-specific molecular changes in the dorsal hippocampus. Brain Sci 8(7):118

    PubMed  PubMed Central  Google Scholar 

  • Schroeder A, Nakamura JP, Hudson M, Jones NC, Du X, Sundram S et al (2019) Raloxifene recovers effects of prenatal immune activation on cognitive task-induced gamma power. Psychoneuroendocrinology 110:104448

    CAS  PubMed  Google Scholar 

  • Seeman MV (2004) Gender differences in the prescribing of antipsychotic drugs. Am J Psychiatry 161(8):1324–1333

    PubMed  Google Scholar 

  • Sell SL, Scalzitti JM, Thomas ML, Cunningham KA (2000) Influence of ovarian hormones and estrous cycle on the behavioral response to cocaine in female rats. J Pharmacol Exp Ther 293(3):879–886

    CAS  PubMed  Google Scholar 

  • Shelnutt SR, Gunnell M, Owens SM (1999) Sexual dimorphism in phencyclidine in vitro metabolism and pharmacokinetics in rats. J Pharmacol Exp Ther 290(3):1292–1298

    CAS  PubMed  Google Scholar 

  • Shifman S, Johannesson M, Bronstein M, Chen SX, Collier DA, Craddock NJ et al (2008) Genome-wide association identifies a common variant in the reelin gene that increases the risk of schizophrenia only in women. PLoS Genet 4(2):e28

    PubMed  PubMed Central  Google Scholar 

  • Smith S (2010) Gender differences in antipsychotic prescribing. Int Rev Psychiatry 22(5):472–484

    PubMed  Google Scholar 

  • Smith CT, Dang LC, Burgess LL, Perkins SF, San Juan MD, Smith DK et al (2019) Lack of consistent sex differences in D-amphetamine-induced dopamine release measured with [(18)F]fallypride PET. Psychopharmacology 236(2):581–590

    CAS  PubMed  Google Scholar 

  • Sotiropoulos MG, Poulogiannopoulou E, Delis F, Dalla C, Antoniou K, Kokras N (2021) Innovative screening models for the discovery of new schizophrenia drug therapies: an integrated approach. Expert Opin Drug Discov 16(7):791–806

    CAS  PubMed  Google Scholar 

  • Sun J, Walker AJ, Dean B, van den Buuse M, Gogos A (2016) Progesterone: the neglected hormone in schizophrenia? A focus on progesterone-dopamine interactions. Psychoneuroendocrinology 74:126–140

    CAS  PubMed  Google Scholar 

  • Swerdlow NR, Caine SB, Braff DL, Geyer MA (1992) The neural substrates of sensorimotor gating of the startle reflex: a review of recent findings and their implications. J Psychopharmacol 6(2):176–190

    CAS  PubMed  Google Scholar 

  • Swerdlow NR, Hartman PL, Auerbach PP (1997) Changes in sensorimotor inhibition across the menstrual cycle: implications for neuropsychiatric disorders. Biol Psychiatry 41(4):452–460

    CAS  PubMed  Google Scholar 

  • Swerdlow NR, Braff DL, Geyer MA (2016) Sensorimotor gating of the startle reflex: what we said 25 years ago, what has happened since then, and what comes next. J Psychopharmacol 30(11):1072–1081

    PubMed  PubMed Central  Google Scholar 

  • Szymanski S, Lieberman JA, Alvir JM, Mayerhoff D, Loebel A, Geisler S et al (1995) Gender differences in onset of illness, treatment response, course, and biologic indexes in first-episode schizophrenic patients. Am J Psychiatry 152(5):698–703

    CAS  PubMed  Google Scholar 

  • Taylor SB, Markham JA, Taylor AR, Kanaskie BZ, Koenig JI (2011) Sex-specific neuroendocrine and behavioral phenotypes in hypomorphic type II neuregulin 1 rats. Behav Brain Res 224(2):223–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thorup A, Petersen L, Jeppesen P, Ohlenschlaeger J, Christensen T, Krarup G et al (2007a) Gender differences in young adults with first-episode schizophrenia spectrum disorders at baseline in the Danish OPUS study. J Nerv Ment Dis 195(5):396–405

    PubMed  Google Scholar 

  • Thorup A, Waltoft BL, Pedersen CB, Mortensen PB, Nordentoft M (2007b) Young males have a higher risk of developing schizophrenia: a Danish register study. Psychol Med 37(4):479–484

    PubMed  Google Scholar 

  • Tomoda T, Sumitomo A, Jaaro-Peled H, Sawa A (2016) Utility and validity of DISC1 mouse models in biological psychiatry. Neuroscience 321:99–107

    CAS  PubMed  Google Scholar 

  • Usall J, Ochoa S, Araya S, Marquez M, Group N (2003) Gender differences and outcome in schizophrenia: a 2-year follow-up study in a large community sample. Eur Psychiatry 18(6):282–284

    CAS  PubMed  Google Scholar 

  • Uzuneser TC, Speidel J, Kogias G, Wang AL, de Souza Silva MA, Huston JP et al (2019) Disrupted-in-schizophrenia 1 (DISC1) overexpression and juvenile immune activation cause sex-specific schizophrenia-related psychopathology in rats. Front Psychiatry 10:222

    PubMed  PubMed Central  Google Scholar 

  • van den Buuse M (2010) Modeling the positive symptoms of schizophrenia in genetically modified mice: pharmacology and methodology aspects. Schizophr Bull 36(2):246–270

    PubMed  Google Scholar 

  • Van den Buuse M, Eikelis N (2001) Estrogen increases prepulse inhibition of acoustic startle in rats. Eur J Pharmacol 425(1):33–41

    PubMed  Google Scholar 

  • van den Buuse M, Garner B, Gogos A, Kusljic S (2005) Importance of animal models in schizophrenia research. Aust N Z J Psychiatry 39(7):550–557

    PubMed  Google Scholar 

  • van den Buuse M, Wischhof L, Lee RX, Martin S, Karl T (2009) Neuregulin 1 hypomorphic mutant mice: enhanced baseline locomotor activity but normal psychotropic drug-induced hyperlocomotion and prepulse inhibition regulation. Int J Neuropsychopharmacol 12(10):1383–1393

    PubMed  Google Scholar 

  • van den Buuse M, Halley P, Hill R, Labots M, Martin S (2012) Altered N-methyl-D-aspartate receptor function in reelin heterozygous mice: male-female differences and comparison with dopaminergic activity. Prog Neuro-Psychopharmacol Biol Psychiatry 37(2):237–246

    Google Scholar 

  • van den Buuse M, Mingon RL, Gogos A (2015) Chronic estrogen and progesterone treatment inhibits ketamine-induced disruption of prepulse inhibition in rats. Neurosci Lett 607:72–76

    PubMed  Google Scholar 

  • van den Buuse M, Low JK, Kwek P, Martin S, Gogos A (2017a) Selective enhancement of NMDA receptor-mediated locomotor hyperactivity by male sex hormones in mice. Psychopharmacology 234(18):2727–2735

    PubMed  Google Scholar 

  • van den Buuse M, Biel D, Radscheit K (2017b) Does genetic BDNF deficiency in rats interact with neurotransmitter control of prepulse inhibition? Implications for schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 75:192–198

    Google Scholar 

  • van der Werf M, Hanssen M, Kohler S, Verkaaik M, Verhey FR, Investigators R et al (2014) Systematic review and collaborative recalculation of 133,693 incident cases of schizophrenia. Psychol Med 44(1):9–16

    PubMed  Google Scholar 

  • Vila-Rodriguez F, Ochoa S, Autonell J, Usall J, Haro JM (2011) Complex interaction between symptoms, social factors, and gender in social functioning in a community-dwelling sample of schizophrenia. Psychiatry Q 82(4):261–274

    CAS  Google Scholar 

  • Volkow ND, Fowler JS, Wang GJ, Shumay E, Telang F, Thanos PK et al (2010) Distribution and pharmacokinetics of methamphetamine in the human body: clinical implications. PLoS One 5(12):e15269

    PubMed  PubMed Central  Google Scholar 

  • Vorhees CV, Graham DL, Braun AA, Schaefer TL, Skelton MR, Richtand NM et al (2015) Prenatal immune challenge in rats: effects of polyinosinic-polycytidylic acid on spatial learning, prepulse inhibition, conditioned fear, and responses to MK-801 and amphetamine. Neurotoxicol Teratol 47:54–65

    CAS  PubMed  Google Scholar 

  • Weickert CS, Hyde TM, Lipska BK, Herman MM, Weinberger DR, Kleinman JE (2003) Reduced brain-derived neurotrophic factor in prefrontal cortex of patients with schizophrenia. Mol Psychiatry 8(6):592–610

    CAS  PubMed  Google Scholar 

  • Weickert CS, Fung SJ, Catts VS, Schofield PR, Allen KM, Moore LT et al (2013) Molecular evidence of N-methyl-D-aspartate receptor hypofunction in schizophrenia. Mol Psychiatry 18(11):1185–1192

    CAS  PubMed  Google Scholar 

  • Weickert TW, Weinberg D, Lenroot R, Catts SV, Wells R, Vercammen A et al (2015) Adjunctive raloxifene treatment improves attention and memory in men and women with schizophrenia. Mol Psychiatry 20(6):685–694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weidenauer A, Bauer M, Sauerzopf U, Bartova L, Praschak-Rieder N, Sitte HH et al (2017) Making sense of: sensitization in schizophrenia. Int J Neuropsychopharmacol 20(1):1–10

    CAS  PubMed  Google Scholar 

  • Wesseling H, Chan MK, Tsang TM, Ernst A, Peters F, Guest PC et al (2013) A combined metabonomic and proteomic approach identifies frontal cortex changes in a chronic phencyclidine rat model in relation to human schizophrenia brain pathology. Neuropsychopharmacology 38(12):2532–2544

    CAS  PubMed  PubMed Central  Google Scholar 

  • White TL, Justice AJ, de Wit H (2002) Differential subjective effects of D-amphetamine by gender, hormone levels and menstrual cycle phase. Pharmacol Biochem Behav 73(4):729–741

    CAS  PubMed  Google Scholar 

  • Wickens MM, Bangasser DA, Briand LA (2018) Sex differences in psychiatric disease: a focus on the glutamate system. Front Mol Neurosci 11:197

    PubMed  PubMed Central  Google Scholar 

  • Willner P (1986) Validation criteria for animal models of human mental disorders: learned helplessness as a paradigm case. Prog Neuro-Psychopharmacol Biol Psychiatry 10(6):677–690

    CAS  Google Scholar 

  • Wu YC, Hill RA, Gogos A, van den Buuse M (2013) Sex differences and the role of estrogen in animal models of schizophrenia: interaction with BDNF. Neuroscience 239:67–83

    CAS  PubMed  Google Scholar 

  • Wu YW, Du X, van den Buuse M, Hill RA (2015) Analyzing the influence of BDNF heterozygosity on spatial memory response to 17beta-estradiol. Transl Psychiatry 5:e498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zachry JE, Nolan SO, Brady LJ, Kelly SJ, Siciliano CA, Calipari ES (2021) Sex differences in dopamine release regulation in the striatum. Neuropsychopharmacology 46(3):491–499

    PubMed  Google Scholar 

  • Zhang XY, Chen DC, Xiu MH, Yang FD, Haile CN, Kosten TA et al (2012) Gender differences in never-medicated first-episode schizophrenia and medicated chronic schizophrenia patients. J Clin Psychiatry 73(7):1025–1033

    PubMed  Google Scholar 

Download references

Acknowledgements

This research was part-funded by the National Health and Medical Research Council of Australia (AG CDF 1108098). The Florey Institute of Neuroscience and Mental Health acknowledges the funding from the Victorian Government’s Operational Infrastructure Support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Gogos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gogos, A., van den Buuse, M. (2022). Sex Differences in Psychosis: Focus on Animal Models. In: Gibson, C., Galea, L.A.M. (eds) Sex Differences in Brain Function and Dysfunction. Current Topics in Behavioral Neurosciences, vol 62. Springer, Cham. https://doi.org/10.1007/7854_2022_305

Download citation

Publish with us

Policies and ethics