Skip to main content

GABAB Receptor Chemistry and Pharmacology: Agonists, Antagonists, and Allosteric Modulators

  • Chapter
  • First Online:
Behavioral Neurobiology of GABAB Receptor Function

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 52))

Abstract

The GABAB receptors are metabotropic G protein-coupled receptors (GPCRs) that mediate the actions of the primary inhibitory neurotransmitter, γ-aminobutyric acid (GABA). In the CNS, GABA plays an important role in behavior, learning and memory, cognition, and stress. GABA is also located throughout the gastrointestinal (GI) tract and is involved in the autonomic control of the intestine and esophageal reflex. Consequently, dysregulated GABAB receptor signaling is associated with neurological, mental health, and gastrointestinal disorders; hence, these receptors have been identified as key therapeutic targets and are the focus of multiple drug discovery efforts for indications such as muscle spasticity disorders, schizophrenia, pain, addiction, and gastroesophageal reflex disease (GERD). Numerous agonists, antagonists, and allosteric modulators of the GABAB receptor have been described; however, Lioresal® (Baclofen; β-(4-chlorophenyl)-γ-aminobutyric acid) is the only FDA-approved drug that selectively targets GABAB receptors in clinical use; undesirable side effects, such as sedation, muscle weakness, fatigue, cognitive deficits, seizures, tolerance and potential for abuse, limit their therapeutic use. Here, we review GABAB receptor chemistry and pharmacology, presenting orthosteric agonists, antagonists, and positive and negative allosteric modulators, and highlight the therapeutic potential of targeting GABAB receptor modulation for the treatment of various CNS and peripheral disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agabio R, Colombo G (2014) GABAB receptor ligands for the treatment of alcohol use disorder: preclinical and clinical evidence. Front Neurosci 8:140

    Article  PubMed  PubMed Central  Google Scholar 

  • Agabio R, Colombo G (2015) GABAB receptor as therapeutic target for drug addiction: from baclofen to positive allosteric modulators. Psychiatr Pol 49(2):215–223

    Article  PubMed  Google Scholar 

  • Agabio R, Sinclair JM, Addolorato G, Aubin HJ, Beraha EM, Caputo F, Chick JD, de La Selle P, Franchitto N, Garbutt JC, Haber PS, Heydtmann M, Jaury P, Lingford-Hughes AR, Morley KC, Müller CA, Owens L, Pastor A, Paterson LM, Pélissier F, Rolland B, Stafford A, Thompson A, van den Brink W, de Beaurepaire R, Leggio L (2018) Baclofen for the treatment of alcohol use disorder: the Cagliari statement. Lancet Psychiatry 5(12):957–960

    Article  PubMed  Google Scholar 

  • Al-Wadei HA, Al-Wadei MH, Ullah MF, Schuller HM (2012) Celecoxib and GABA cooperatively prevent the progression of pancreatic cancer in vitro and in xenograft models of stress-free and stress-exposed mice. PLoS One 7(8):e43376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awapara J (1950) Occurrence of free gamma-aminobutyric acid in brain and its formation from L-glutamic acid. Tex Rep Biol Med 8(4):443–447

    CAS  PubMed  Google Scholar 

  • Balasubramanian S, Fam SR, Hall RA (2007) GABAB receptor association with the PDZ scaffold Mupp1 alters receptor stability and function. J Biol Chem 282(6):4162–4171

    Article  CAS  PubMed  Google Scholar 

  • Bartoi T, Rigbolt KT, Du D, Köhr G, Blagoev B, Kornau HC (2010) GABAB receptor constituents revealed by tandem affinity purification from transgenic mice. J Biol Chem 285(27):20625–20633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basmajian JV (1975) Lioresal (baclofen) treatment of spasticity in multiple sclerosis. Am J Phys Med 54(4):175–177

    CAS  PubMed  Google Scholar 

  • Bauer U, Brailsford W, Chhajlani V, Egner B, Fjellström O, Gustafsson L, Mattsson J, Nilsson K, Olsson T (2005) Imidazole variants as modulators of gaba receptor for the treatment of GI disorders. U.S. Patent 20080269216

    Google Scholar 

  • Benarroch EE (2012) GABAB receptors: structure, functions, and clinical implications. Neurology 78(8):578–584

    Article  CAS  PubMed  Google Scholar 

  • Benke D (2013) GABAB receptor trafficking and interacting proteins: targets for the development of highly specific therapeutic strategies to treat neurological disorders? Biochem Pharmacol 86(11):1525–1530

    Article  CAS  PubMed  Google Scholar 

  • Berg KA, Clarke WP (2018) Making sense of pharmacology: inverse agonism and functional selectivity. Int J Neuropsychopharmacol 21(10):962–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernasconi R, Lauber J, Marescaux C, Vergnes M, Martin P, Rubio V, Leonhardt T, Reymann N, Bittiger H (1992) Experimental absence seizures: potential role of gamma-hydroxybutyric acid and GABAB receptors. J Neural Transm Suppl 35:155–177

    CAS  PubMed  Google Scholar 

  • Berry-Kravis E, Hagerman R, Visootsak J, Budimirovic D, Kaufmann WE, Cherubini M, Zarevics P, Walton-Bowen K, Wang P, Bear MF, Carpenter RL (2017) Arbaclofen in fragile X syndrome: results of phase 3 trials. J Neurodev Disord 9:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Bertrand S, Ng GY, Purisai MG, Wolfe SE, Severidt MW, Nouel D, Robitaille R, Low MJ, O’Neill GP, Metters K, Lacaille JC, Chronwall BM, Morris SJ (2001) The anticonvulsant, antihyperalgesic agent gabapentin is an agonist at brain gamma-aminobutyric acid type B receptors negatively coupled to voltage-dependent calcium channels. J Pharmacol Exp Ther 298(1):15–24

    CAS  PubMed  Google Scholar 

  • Bettler B, Tiao JY (2006) Molecular diversity, trafficking and subcellular localization of GABAB receptors. Pharmacol Ther 110(3):533–543

    Article  CAS  PubMed  Google Scholar 

  • Bettler B, Kaupmann K, Mosbacher J, Gassmann M (2004) Molecular structure and physiological functions of GABA(B) receptors. Physiol Rev 84(3):835–867

    Article  CAS  PubMed  Google Scholar 

  • Bianchi M, Panerai AE (1993) Reversal of scopolamine-induced amnesia by the GABAB receptor antagonist CGP 35348 in the mouse. Brain Res Cogn Brain Res 1(2):135–136

    Article  CAS  PubMed  Google Scholar 

  • Billinton A, Baird VH, Thom M, Duncan JS, Upton N, Bowery NG (2001a) GABA(B) receptor autoradiography in hippocampal sclerosis associated with human temporal lobe epilepsy. Br J Pharmacol 132(2):475–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Billinton A, Ige AO, Bolam JP, White JH, Marshall FH, Emson PC (2001b) Advances in the molecular understanding of GABA(B) receptors. Trends Neurosci 24(5):277–282

    Article  CAS  PubMed  Google Scholar 

  • Binet V, Brajon C, Le Corre L, Acher F, Pin JP, Prezeau L (2004) The heptahelical domain of GABA(B2) is activated directly by CGP7930, a positive allosteric modulator of the GABA(B) receptor. J Biol Chem 279(28):29085–29091

    Article  CAS  PubMed  Google Scholar 

  • Black SW, Morairty SR, Chen TM, Leung AK, Wisor JP, Yamanaka A, Kilduff TS (2014) GABAB agonism promotes sleep and reduces cataplexy in murine narcolepsy. J Neurosci 34(19):6485–6494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blein S, Ginham R, Uhrin D, Smith BO, Soares DC, Veltel S, McIlhinney RA, White JH, Barlow PN (2004) Structural analysis of the complement control protein (CCP) modules of GABA(B) receptor 1a: only one of the two CCP modules is compactly folded. J Biol Chem 279(46):48292–48306

    Article  CAS  PubMed  Google Scholar 

  • Bolser DC, Blythin DJ, Chapman RW, Egan RW, Hey JA, Rizzo C, Kuo SC, Kreutner W (1995) The pharmacology of SCH 50911: a novel, orally-active GABA-beta receptor antagonist. J Pharmacol Exp Ther 274(3):1393–1398

    CAS  PubMed  Google Scholar 

  • Bon C, Galvan M (1996) Electrophysiological actions of GABAB agonists and antagonists in rat dorso-lateral septal neurones in vitro. Br J Pharmacol 118(4):961–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonaventura MM, Catalano PN, Chamson-Reig A, Arany E, Hill D, Bettler B, Saravia F, Libertun C, Lux-Lantos VA (2008) GABAB receptors and glucose homeostasis: evaluation in GABAB receptor knockout mice. Am J Physiol Endocrinol Metab 294(1):E157–E167

    Article  CAS  PubMed  Google Scholar 

  • Bonaventura MM, Crivello M, Ferreira ML, Repetto M, Cymeryng C, Libertun C, Lux-Lantos VA (2012) Effects of GABAB receptor agonists and antagonists on glycemia regulation in mice. Eur J Pharmacol 677(1–3):188–196

    Article  CAS  PubMed  Google Scholar 

  • Borza I, Román V, Éles J, Hadady Z, Huszár J (2018) Pharmacologically active aryl-substituted pyrazolo[1,5-a]pyrimidine derivatives. W.O. Patent 2018167629

    Google Scholar 

  • Bowery NG (1993) GABAB receptor pharmacology. Annu Rev Pharmacol Toxicol 33:109–147

    Article  CAS  PubMed  Google Scholar 

  • Bowery NG, Doble A, Hill DR, Hudson AL, Shaw JS, Turnbull MJ (1979) Baclofen: a selective agonist for a novel type of GABA receptor proceedings. Br J Pharmacol 67(3):444p–445p

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bowery NG, Hill DR, Hudson AL, Doble A, Middlemiss DN, Shaw J, Turnbull M (1980) (−)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature 283(5742):92–94

    Article  CAS  PubMed  Google Scholar 

  • Bowery NG, Doble A, Hill DR, Hudson AL, Shaw JS, Turnbull MJ, Warrington R (1981) Bicuculline-insensitive GABA receptors on peripheral autonomic nerve terminals. Eur J Pharmacol 71(1):53–70

    Article  CAS  PubMed  Google Scholar 

  • Bowery NG, Bettler B, Froestl W, Gallagher JP, Marshall F, Raiteri M, Bonner TI, Enna SJ (2002) International Union of Pharmacology. XXXIII. Mammalian gamma-aminobutyric acid(B) receptors: structure and function. Pharmacol Rev 54(2):247–264

    Article  CAS  PubMed  Google Scholar 

  • Bowery N, Enna SJ, Olsen RW (2004) Six decades of GABA. Biochem Pharmacol 68(8):1477–1478

    Article  CAS  PubMed  Google Scholar 

  • Braun M, Wendt A, Buschard K, Salehi A, Sewing S, Gromada J, Rorsman P (2004) GABAB receptor activation inhibits exocytosis in rat pancreatic beta-cells by G-protein-dependent activation of calcineurin. J Physiol 559(Pt 2):397–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bredenoord AJ (2009) Lesogaberan, a GABA(B) agonist for the potential treatment of gastroesophageal reflux disease. IDrugs 12(9):576–584

    CAS  PubMed  Google Scholar 

  • Broft AI, Spanos A, Corwin RL, Mayer L, Steinglass J, Devlin MJ, Attia E, Walsh BT (2007) Baclofen for binge eating: an open-label trial. Int J Eat Disord 40(8):687–691

    Article  PubMed  Google Scholar 

  • Bullock R (2005) SGS-742 Novartis. Curr Opin Investig Drugs 6(1):108–113

    CAS  PubMed  Google Scholar 

  • Burford NT, Clark MJ, Wehrman TS, Gerritz SW, Banks M, O’Connell J, Traynor JR, Alt A (2013) Discovery of positive allosteric modulators and silent allosteric modulators of the μ-opioid receptor. Proc Natl Acad Sci U S A 110(26):10830–10835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busardò FP, Jones AW (2015) GHB pharmacology and toxicology: acute intoxication, concentrations in blood and urine in forensic cases and treatment of the withdrawal syndrome. Curr Neuropharmacol 13(1):47–70

    Article  PubMed  PubMed Central  Google Scholar 

  • Calebiro D, Rieken F, Wagner J, Sungkaworn T, Zabel U, Borzi A, Cocucci E, Zürn A, Lohse MJ (2013) Single-molecule analysis of fluorescently labeled G-protein-coupled receptors reveals complexes with distinct dynamics and organization. Proc Natl Acad Sci U S A 110(2):743–748

    Article  CAS  PubMed  Google Scholar 

  • Cao W, Zhang R (2020) Research advance of underlying pathogenesis and target therapies in Charcot-Marie-tooth disease type 1A. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 37(5):578–583

    PubMed  Google Scholar 

  • Castelli MP, Casu A, Casti P, Lobina C, Carai MA, Colombo G, Solinas M, Giunta D, Mugnaini C, Pasquini S, Tafi A, Brogi S, Gessa GL, Corelli F (2012) Characterization of COR627 and COR628, two novel positive allosteric modulators of the GABA(B) receptor. J Pharmacol Exp Ther 340(3):529–538

    Article  CAS  PubMed  Google Scholar 

  • Chapman RW, Danko G, del Prado M, Egan RW, Kreutner W, Rizzo CA, Hey JA (1993) Further evidence for prejunctional GABA-B inhibition of cholinergic and peptidergic bronchoconstriction in guinea pigs: studies with new agonists and antagonists. Pharmacology 46(6):315–323

    Article  CAS  PubMed  Google Scholar 

  • CHEMBL (n.d.) Database Release 27. https://www.ebi.ac.uk/chembl/

  • Chen LH, Sun B, Zhang Y, Xu TJ, Xia ZX, Liu JF, Nan FJ (2014) Discovery of a negative allosteric modulator of GABAB receptors. ACS Med Chem Lett 5(7):742–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng L, Karle M (2008) Quinoline compounds having an activity against the gabab receptor. W.O. Patent 2009041904A1

    Google Scholar 

  • Cheng L, Holmqvist S, Raubacher F, Schell P (2008a) Xanthine compounds having a positive allosteric gabab receptor modulator effect. W.O. Patent 2008130314A1

    Google Scholar 

  • Cheng L, Jonforsen M, Schell P (2008b) Pteridine compounds having activity on the gaba-receptors. W.O. Patent 2009041905

    Google Scholar 

  • Chung KF (2015) NMDA and GABA receptors as potential targets in cough hypersensitivity syndrome. Curr Opin Pharmacol 22:29–36

    Article  CAS  PubMed  Google Scholar 

  • Clarke JO, Fernandez-Becker NQ, Regalia KA, Triadafilopoulos G (2018) Baclofen and gastroesophageal reflux disease: seeing the forest through the trees. Clin Transl Gastroenterol 9(3):137–137

    Article  PubMed  PubMed Central  Google Scholar 

  • Coffey JR, Cahill D, Steers W, Park TS, Ordia J, Meythaler J, Herman R, Shetter AG, Levy R, Gill B et al (1993) Intrathecal baclofen for intractable spasticity of spinal origin: results of a long-term multicenter study. J Neurosurg 78(2):226–232

    Article  CAS  PubMed  Google Scholar 

  • Comps-Agrar L, Kniazeff J, Nørskov-Lauritsen L, Maurel D, Gassmann M, Gregor N, Prézeau L, Bettler B, Durroux T, Trinquet E, Pin JP (2011) The oligomeric state sets GABA(B) receptor signalling efficacy. EMBO J 30(12):2336–2349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comps-Agrar L, Kniazeff J, Brock C, Trinquet E, Pin JP (2012) Stability of GABAB receptor oligomers revealed by dual TR-FRET and drug-induced cell surface targeting. FASEB J 26(8):3430–3439

    Article  CAS  PubMed  Google Scholar 

  • Cortez MA, Wu Y, Gibson KM, Snead OC 3rd (2004) Absence seizures in succinic semialdehyde dehydrogenase deficient mice: a model of juvenile absence epilepsy. Pharmacol Biochem Behav 79(3):547–553

    Article  CAS  PubMed  Google Scholar 

  • Costantino G, Macchiarulo A, Entrena Guadix A, Pellicciari R (2001) QSAR and molecular modeling studies of baclofen analogues as GABA(B) agonists. Insights into the role of the aromatic moiety in GABA(B) binding and activation. J Med Chem 44(11):1827–1832

    Article  CAS  PubMed  Google Scholar 

  • Couve A, Filippov AK, Connolly CN, Bettler B, Brown DA, Moss SJ (1998) Intracellular retention of recombinant GABAB receptors. J Biol Chem 273(41):26361–26367

    Article  CAS  PubMed  Google Scholar 

  • Couve A, Kittler JT, Uren JM, Calver AR, Pangalos MN, Walsh FS, Moss SJ (2001) Association of GABA(B) receptors and members of the 14-3-3 family of signaling proteins. Mol Cell Neurosci 17(2):317–328

    Article  CAS  PubMed  Google Scholar 

  • Cryan JF, Kaupmann K (2005) Don’t worry ‘B’ happy!: a role for GABA(B) receptors in anxiety and depression. Trends Pharmacol Sci 26(1):36–43

    Article  CAS  PubMed  Google Scholar 

  • Cryan JF, Slattery DA (2010) GABAB receptors and depression: current status. Adv Pharmacol 58:427–451

    Article  CAS  PubMed  Google Scholar 

  • Curtis DR, Duggan AW, Felix D, Johnston GA (1970) GABA, bicuculline and central inhibition. Nature 226(5252):1222–1224

    Article  CAS  PubMed  Google Scholar 

  • de Miguel E, Vekovischeva O, Kuokkanen K, Vesajoki M, Paasikoski N, Kaskinoro J, Myllymaki M, Lainiola M, Janhunen SK, Hyytia P, Linden AM, Korpi ER (2019) GABAB receptor positive allosteric modulators with different efficacies affect neuroadaptation to and self-administration of alcohol and cocaine. Addict Biol 24(6):1191–1203

    Article  PubMed  Google Scholar 

  • Didiášová M, Banning A, Brennenstuhl H, Jung-Klawitter S, Cinquemani C, Opladen T, Tikkanen R (2020) Succinic semialdehyde dehydrogenase deficiency: an update. Cell 9(2):477

    Article  Google Scholar 

  • Dinamarca MC, Raveh A, Schneider A, Fritzius T, Früh S, Rem PD, Stawarski M, Lalanne T, Turecek R, Choo M, Besseyrias V, Bildl W, Bentrop D, Staufenbiel M, Gassmann M, Fakler B, Schwenk J, Bettler B (2019) Complex formation of APP with GABA(B) receptors links axonal trafficking to amyloidogenic processing. Nat Commun 10(1):1331

    Article  PubMed  PubMed Central  Google Scholar 

  • Drake RG, Davis LL, Cates ME, Jewell ME, Ambrose SM, Lowe JS (2003) Baclofen treatment for chronic posttraumatic stress disorder. Ann Pharmacother 37(9):1177–1181

    Article  CAS  PubMed  Google Scholar 

  • Dreifuss JJ, Kelly JS, Krnjević K (1969) Cortical inhibition and gamma-aminobutyric acid. Exp Brain Res 9(2):137–154

    Article  CAS  PubMed  Google Scholar 

  • Dupuis DS, Relkovic D, Lhuillier L, Mosbacher J, Kaupmann K (2006) Point mutations in the transmembrane region of GABAB2 facilitate activation by the positive modulator N,N′-dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine (GS39783) in the absence of the GABAB1 subunit. Mol Pharmacol 70(6):2027–2036

    Article  CAS  PubMed  Google Scholar 

  • Dutar P, Nicoll RA (1988) A physiological role for GABAB receptors in the central nervous system. Nature 332(6160):156–158

    Article  CAS  PubMed  Google Scholar 

  • Duthey B, Caudron S, Perroy J, Bettler B, Fagni L, Pin JP, Prézeau L (2002) A single subunit (GB2) is required for G-protein activation by the heterodimeric GABA(B) receptor. J Biol Chem 277(5):3236–3241

    Article  CAS  PubMed  Google Scholar 

  • Dyer T (2013) Addex announces positive data with ADX71441 in a pre-clinical transgenic model of charcot-marie-tooth 1A disease. Addex Therapeutics, Geneva

    Google Scholar 

  • Enna SJ, McCarson KE (2006) The role of GABA in the mediation and perception of pain. Adv Pharmacol 54:1–27

    Article  CAS  PubMed  Google Scholar 

  • Evenseth LM, Warszycki D, Bojarski AJ, Gabrielsen M, Sylte I (2019) In silico methods for the discovery of orthosteric GABAB receptor compounds. Molecules 24(5):935

    Article  PubMed Central  Google Scholar 

  • Faghih R, Moeller A, Ochse M, Pohlki F, Schmidt M, Sippy K, Turner S, van der Kam EL (2016) Substituted pyrazolopyrimidines and method of use. U.S. Patent 9828381B2

    Google Scholar 

  • Felice D, O’Leary OF, Pizzo RC, Cryan JF (2012) Blockade of the GABA(B) receptor increases neurogenesis in the ventral but not dorsal adult hippocampus: relevance to antidepressant action. Neuropharmacology 63(8):1380–1388

    Article  CAS  PubMed  Google Scholar 

  • Floersheim P, Froestl W, Guery S, Kaupmann K, Koller M (2006) Pyrimidine derivatives for the treatment of Gaba B mediated nervous system disorders. U.S Pantent 20100179127A1

    Google Scholar 

  • Francisco GE, Kothari S, Huls C (2001) GABA agonists and gabapentin for spastic hypertonia. Phys Med Rehabil Clin N Am 12(4):875–888, viii

    Article  CAS  PubMed  Google Scholar 

  • Frankowska M, Filip M, Przegalinski E (2007) Effects of GABAB receptor ligands in animal tests of depression and anxiety. Pharmacol Rep 59(6):645–655

    CAS  PubMed  Google Scholar 

  • Fritzius T, Bettler B (2020) The organizing principle of GABA(B) receptor complexes: physiological and pharmacological implications. Basic Clin Pharmacol Toxicol 126(Suppl 6):25–34

    Article  CAS  PubMed  Google Scholar 

  • Froestl W (2010) Chemistry and pharmacology of GABAB receptor ligands. In: GABAB receptor pharmacology – a tribute to Norman Bowery, pp 19–62

    Chapter  Google Scholar 

  • Froestl W, Mickel SJ, Hall RG, von Sprecher G, Strub D, Baumann PA, Brugger F, Gentsch C, Jaekel J, Olpe HR et al (1995a) Phosphinic acid analogues of GABA. 1. New potent and selective GABAB agonists. J Med Chem 38(17):3297–3312

    Article  CAS  PubMed  Google Scholar 

  • Froestl W, Mickel SJ, von Sprecher G, Diel PJ, Hall RG, Maier L, Strub D, Melillo V, Baumann PA, Bernasconi R et al (1995b) Phosphinic acid analogues of GABA. 2. Selective, orally active GABAB antagonists. J Med Chem 38(17):3313–3331

    Article  CAS  PubMed  Google Scholar 

  • Froestl W, Gallagher M, Jenkins H, Madrid A, Melcher T, Teichman S, Mondadori CG, Pearlman R (2004) SGS742: the first GABA(B) receptor antagonist in clinical trials. Biochem Pharmacol 68(8):1479–1487

    Article  CAS  PubMed  Google Scholar 

  • Frye RE (2014) Clinical potential, safety, and tolerability of arbaclofen in the treatment of autism spectrum disorder. Drug Healthc Patient Saf 6:69–76

    Article  PubMed  PubMed Central  Google Scholar 

  • Galvez T, Parmentier ML, Joly C, Malitschek B, Kaupmann K, Kuhn R, Bittiger H, Froestl W, Bettler B, Pin JP (1999) Mutagenesis and modeling of the GABAB receptor extracellular domain support a venus flytrap mechanism for ligand binding. J Biol Chem 274(19):13362–13369

    Article  CAS  PubMed  Google Scholar 

  • Galvez T, Prezeau L, Milioti G, Franek M, Joly C, Froestl W, Bettler B, Bertrand HO, Blahos J, Pin JP (2000) Mapping the agonist-binding site of GABAB type 1 subunit sheds light on the activation process of GABAB receptors. J Biol Chem 275(52):41166–41174

    Article  CAS  PubMed  Google Scholar 

  • Galvez T, Duthey B, Kniazeff J, Blahos J, Rovelli G, Bettler B, Prézeau L, Pin JP (2001) Allosteric interactions between GB1 and GB2 subunits are required for optimal GABA(B) receptor function. EMBO J 20(9):2152–2159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gemignani A, Paudice P, Bonanno G, Raiteri M (1994) Pharmacological discrimination between gamma-aminobutyric acid type B receptors regulating cholecystokinin and somatostatin release from rat neocortex synaptosomes. Mol Pharmacol 46(3):558–562

    CAS  PubMed  Google Scholar 

  • Geng Y, Bush M, Mosyak L, Wang F, Fan QR (2013) Structural mechanism of ligand activation in human GABA(B) receptor. Nature 504(7479):254–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Getova DP, Dimitrova DD (2007) Effects of GABAB receptor antagonists CGP63360, CGP76290A and CGP76291A on learning and memory processes in rodents. Cent Eur J Med 2:280–293

    Google Scholar 

  • Gjoni T, Urwyler S (2009) Changes in the properties of allosteric and orthosteric GABAB receptor ligands after a continuous, desensitizing agonist pretreatment. Eur J Pharmacol 603(1–3):37–41

    Article  CAS  PubMed  Google Scholar 

  • Glausier JR, Lewis DA (2017) GABA and schizophrenia: where we stand and where we need to go. Schizophr Res 181:2–3

    Article  PubMed  PubMed Central  Google Scholar 

  • Grunewald S, Schupp BJ, Ikeda SR, Kuner R, Steigerwald F, Kornau HC, Kohr G (2002) Importance of the gamma-aminobutyric acid(B) receptor C-termini for G-protein coupling. Mol Pharmacol 61(5):1070–1080

    Article  CAS  PubMed  Google Scholar 

  • Han C, Salyer AE, Kim EH, Jiang X, Jarrard RE, Powers MS, Kirchhoff AM, Salvador TK, Chester JA, Hockerman GH, Colby DA (2013) Evaluation of difluoromethyl ketones as agonists of the γ-aminobutyric acid type B (GABAB) receptor. J Med Chem 56(6):2456–2465

    Article  CAS  PubMed  Google Scholar 

  • Hannan S, Wilkins ME, Smart TG (2012) Sushi domains confer distinct trafficking profiles on GABAB receptors. Proc Natl Acad Sci U S A 109(30):12171–12176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawrot E, Xiao Y, Shi QL, Norman D, Kirkitadze M, Barlow PN (1998) Demonstration of a tandem pair of complement protein modules in GABA(B) receptor 1a. FEBS Lett 432(3):103–108

    Article  CAS  PubMed  Google Scholar 

  • Helm KA, Haberman RP, Dean SL, Hoyt EC, Melcher T, Lund PK, Gallagher M (2005) GABAB receptor antagonist SGS742 improves spatial memory and reduces protein binding to the cAMP response element (CRE) in the hippocampus. Neuropharmacology 48(7):956–964

    Article  CAS  PubMed  Google Scholar 

  • Hinton T, Chebib M, Johnston GA (2008) Enantioselective actions of 4-amino-3-hydroxybutanoic acid and (3-amino-2-hydroxypropyl)methylphosphinic acid at recombinant GABA(C) receptors. Bioorg Med Chem Lett 18(1):402–404

    Article  CAS  PubMed  Google Scholar 

  • Hirst WD, Babbs AJ, Green A, Minton JA, Shaw TE, Wise A, Rice SQ, Pangalos MN, Price GW (2003) Pharmacological characterisation of a cell line expressing GABA B1b and GABA B2 receptor subunits. Biochem Pharmacol 65(7):1103–1113

    Article  CAS  PubMed  Google Scholar 

  • Hudgson P, Weightman D (1971) Baclofen in the treatment of spasticity. Br Med J 4(5778):15–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobson LH, Vlachou S, Slattery DA, Li X, Cryan JF (2018) The gamma-aminobutyric acid b receptor in depression and reward. Biol Psychiatry 83(11):963–976

    Article  CAS  PubMed  Google Scholar 

  • Jensen AA, Mosbacher J, Elg S, Lingenhoehl K, Lohmann T, Johansen TN, Abrahamsen B, Mattsson JP, Lehmann A, Bettler B, Bräuner-Osborne H (2002) The anticonvulsant gabapentin (neurontin) does not act through gamma-aminobutyric acid-B receptors. Mol Pharmacol 61(6):1377–1384

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Su L, Zhang Q, He C, Zhang Z, Yi P, Liu J (2012) GABAB receptor complex as a potential target for tumor therapy. J Histochem Cytochem 60(4):269–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston GA (1986) Multiplicity of GABA receptors. In: Benzodiazepine/GABA receptors and chloride channels. Receptor biochemistry and methodology. A.R. Liss

    Google Scholar 

  • Jones KA, Borowsky B, Tamm JA, Craig DA, Durkin MM, Dai M, Yao WJ, Johnson M, Gunwaldsen C, Huang LY, Tang C, Shen Q, Salon JA, Morse K, Laz T, Smith KE, Nagarathnam D, Noble SA, Branchek TA, Gerald C (1998) GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature 396(6712):674–679

    Article  CAS  PubMed  Google Scholar 

  • Jouney EA (2019) Phenibut (β-phenyl-γ-aminobutyric acid): an easily obtainable “dietary supplement” with propensities for physical dependence and addiction. Curr Psychiatry Rep 21(4):23

    Article  PubMed  Google Scholar 

  • Kalinichev M, Girard F, Haddouk H, Rouillier M, Riguet E, Royer-Urios I, Mutel V, Lütjens R, Poli S (2017) The drug candidate, ADX71441, is a novel, potent and selective positive allosteric modulator of the GABA(B) receptor with a potential for treatment of anxiety, pain and spasticity. Neuropharmacology 114:34–47

    Article  CAS  PubMed  Google Scholar 

  • Kaupmann K, Huggel K, Heid J, Flor PJ, Bischoff S, Mickel SJ, McMaster G, Angst C, Bittiger H, Froestl W, Bettler B (1997) Expression cloning of GABA(B) receptors uncovers similarity to metabotropic glutamate receptors. Nature 386(6622):239–246

    Article  CAS  PubMed  Google Scholar 

  • Kaupmann K, Malitschek B, Schuler V, Heid J, Froestl W, Beck P, Mosbacher J, Bischoff S, Kulik A, Shigemoto R, Karschin A, Bettler B (1998) GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature 396(6712):683–687

    Article  CAS  PubMed  Google Scholar 

  • Keating GM (2014) Sodium oxybate: a review of its use in alcohol withdrawal syndrome and in the maintenance of abstinence in alcohol dependence. Clin Drug Investig 34(1):63–80

    Article  CAS  PubMed  Google Scholar 

  • Keberle H, Faigle JW, Wilhelm M (1964) Gamma-amino-beta-(para-halophenyl)-butyric acids and their esters. U.S. Patent 3471548A

    Google Scholar 

  • Keberle H, Faigle JW, Wilhelm M (1969) Gamma-amino-beta-(para-halophenyl)-butyric acids and their esters. Google Patents

    Google Scholar 

  • Kenakin T (2004) Efficacy as a vector: the relative prevalence and paucity of inverse agonism. Mol Pharmacol 65(1):2–11

    Article  CAS  PubMed  Google Scholar 

  • Kenakin T (2005) New concepts in drug discovery: collateral efficacy and permissive antagonism. Nat Rev Drug Discov 4(11):919–927

    Article  CAS  PubMed  Google Scholar 

  • Kenakin T (2017) Signaling bias in drug discovery. Expert Opin Drug Discovery 12(4):321–333

    Article  CAS  Google Scholar 

  • Kenakin T, Miller LJ (2010) Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol Rev 62(2):265–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kent CN, Park C, Lindsley CW (2020) Classics in chemical neuroscience: baclofen. ACS Chem Neurosci 11(12):1740–1755

    Article  CAS  PubMed  Google Scholar 

  • Keov P, Sexton PM, Christopoulos A (2011) Allosteric modulation of G protein-coupled receptors: a pharmacological perspective. Neuropharmacology 60(1):24–35

    Article  CAS  PubMed  Google Scholar 

  • Kerr DI, Ong J, Prager RH, Gynther BD, Curtis DR (1987) Phaclofen: a peripheral and central baclofen antagonist. Brain Res 405(1):150–154

    Article  CAS  PubMed  Google Scholar 

  • Kerr DI, Ong J, Johnston GA, Abbenante J, Prager RH (1988) 2-Hydroxy-saclofen: an improved antagonist at central and peripheral GABAB receptors. Neurosci Lett 92(1):92–96

    Article  CAS  PubMed  Google Scholar 

  • Kerr DI, Ong J, Puspawati NM, Prager RH (2002) Arylalkylamines are a novel class of positive allosteric modulators at GABA(B) receptors in rat neocortex. Eur J Pharmacol 451(1):69–77

    Article  CAS  PubMed  Google Scholar 

  • Kerr DIB, Khalafy J, Ong J, Perkins MV, Prager RH, Puspawati NM, Rimaz M (2006) Synthesis and biological activity of allosteric modulators of GABAB receptors, part 2. 3-(2,6-Bis-tert-butyl-4-hydroxyphenyl)propanols. Aust J Chem 59(7):457–462

    Article  CAS  Google Scholar 

  • Kim W, Seo H (2014) Baclofen, a GABAB receptor agonist, enhances ubiquitin-proteasome system functioning and neuronal survival in Huntington’s disease model mice. Biochem Biophys Res Commun 443(2):706–711

    Article  CAS  PubMed  Google Scholar 

  • Kleppner SR, Tobin AJ (2001) GABA signalling: therapeutic targets for epilepsy, Parkinson’s disease and Huntington’s disease. Emerg Thera Targets 5(2):219–239

    Article  CAS  Google Scholar 

  • Kniazeff J, Galvez T, Labesse G, Pin JP (2002) No ligand binding in the GB2 subunit of the GABA(B) receptor is required for activation and allosteric interaction between the subunits. J Neurosci 22(17):7352–7361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koek W, Cheng K, Rice KC (2013) Discriminative stimulus effects of the GABAB receptor-positive modulator rac-BHFF: comparison with GABAB receptor agonists and drugs of abuse. J Pharmacol Exp Ther 344(3):553–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korsgaard S (1976) Baclofen (Lioresal) in the treatment ofneuroleptic-induced tardive dyskinesia. Acta Psychiatr Scand 54(1):17–24

    Article  CAS  PubMed  Google Scholar 

  • Krnjević K, Schwartz S (1966) Is gamma-aminobutyric acid an inhibitory transmitter? Nature 211(5056):1372–1374

    Article  PubMed  Google Scholar 

  • Lanneau C, Green A, Hirst WD, Wise A, Brown JT, Donnier E, Charles KJ, Wood M, Davies CH, Pangalos MN (2001) Gabapentin is not a GABAB receptor agonist. Neuropharmacology 41(8):965–975

    Article  CAS  PubMed  Google Scholar 

  • Lapin I (2001) Phenibut (beta-phenyl-GABA): a tranquilizer and nootropic drug. CNS Drug Rev 7(4):471–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lasarge CL, Banuelos C, Mayse JD, Bizon JL (2009) Blockade of GABA(B) receptors completely reverses age-related learning impairment. Neuroscience 164(3):941–947

    Article  CAS  PubMed  Google Scholar 

  • Lehmann A (2009) GABAB receptors as drug targets to treat gastroesophageal reflux disease. Pharmacol Ther 122(3):239–245

    Article  CAS  PubMed  Google Scholar 

  • Lehmann A, Jensen JM, Boeckxstaens GE (2010) GABAB receptor agonism as a novel therapeutic modality in the treatment of gastroesophageal reflux disease. Adv Pharmacol 58:287–313

    Article  CAS  PubMed  Google Scholar 

  • Li X, Kaczanowska K, Finn MG, Markou A, Risbrough VB (2015) The GABA(B) receptor positive modulator BHF177 attenuated anxiety, but not conditioned fear, in rats. Neuropharmacology 97:357–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Sturchler E, Kaczanowska K, Cameron M, Finn MG, Griffin P, McDonald P, Markou A (2017) KK-92A, a novel GABAB receptor positive allosteric modulator, attenuates nicotine self-administration and cue-induced nicotine seeking in rats. Psychopharmacology 234(9–10):1633–1644

    Article  CAS  PubMed  Google Scholar 

  • Lingenhoehl K, Brom R, Heid J, Beck P, Froestl W, Kaupmann K, Bettler B, Mosbacher J (1999) Gamma-hydroxybutyrate is a weak agonist at recombinant GABA(B) receptors. Neuropharmacology 38(11):1667–1673

    Article  CAS  PubMed  Google Scholar 

  • Maccioni P, Colombo G (2019) Potential of GABA(B) receptor positive allosteric modulators in the treatment of alcohol use disorder. CNS Drugs 33(2):107–123

    Article  CAS  PubMed  Google Scholar 

  • Maccioni P, Zaru A, Loi B, Lobina C, Carai MA, Gessa GL, Capra A, Mugnaini C, Pasquini S, Corelli F, Hyytia P, Lumeng L, Colombo G (2012) Comparison of the effect of the GABABeta receptor agonist, baclofen, and the positive allosteric modulator of the GABAB receptor, GS39783, on alcohol self-administration in 3 different lines of alcohol-preferring rats. Alcohol Clin Exp Res 36(10):1748–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maccioni P, Vargiolu D, Thomas AW, Malherbe P, Mugnaini C, Corelli F, Leite-Morris KA, Gessa GL, Colombo G (2015) Inhibition of alcohol self-administration by positive allosteric modulators of the GABAB receptor in rats: lack of tolerance and potentiation of baclofen. Psychopharmacology 232(10):1831–1841

    Article  CAS  PubMed  Google Scholar 

  • Malherbe P, Masciadri R, Norcross RD, Prinssen E (2006) 3-methanesulfonylquinolines as GABAB enhancers. U.S. Patent 7728142B2

    Google Scholar 

  • Malherbe P, Masciadri R, Norcross RD, Ratni H, Thomas AW (2007) Thieno-pyridine derivatives as gaba-b allosteric enhancers. E.P.O. Patent 1828199

    Google Scholar 

  • Malherbe P, Masciadri R, Norcross RD, Knoflach F, Kratzeisen C, Zenner MT, Kolb Y, Marcuz A, Huwyler J, Nakagawa T, Porter RH, Thomas AW, Wettstein JG, Sleight AJ, Spooren W, Prinssen EP (2008) Characterization of (R,S)-5,7-di-tert-butyl-3-hydroxy-3-trifluoromethyl-3H-benzofuran-2-one as a positive allosteric modulator of GABAB receptors. Br J Pharmacol 154(4):797–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao C, Shen C, Li C, Shen DD, Xu C, Zhang S, Zhou R, Shen Q, Chen LN, Jiang Z, Liu J, Zhang Y (2020) Cryo-EM structures of inactive and active GABA(B) receptor. Cell Res 30(7):564–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcoli M, Scarrone S, Maura G, Bonanno G, Raiteri M (2000) A subtype of the gamma-aminobutyric acid(B) receptor regulates cholinergic twitch response in the guinea pig ileum. J Pharmacol Exp Ther 293(1):42–47

    CAS  PubMed  Google Scholar 

  • Mares P, Kubova H (2008) What is the role of neurotransmitter systems in cortical seizures? Physiol Res 57(Suppl 3):S111–S120

    Article  CAS  PubMed  Google Scholar 

  • Marescaux C, Vergnes M, Bernasconi R (1992) GABAB receptor antagonists: potential new anti-absence drugs. J Neural Transm Suppl 35:179–188

    CAS  PubMed  Google Scholar 

  • Margeta-Mitrovic M, Jan YN, Jan LY (2001) Ligand-induced signal transduction within heterodimeric GABA(B) receptor. Proc Natl Acad Sci U S A 98(25):14643–14648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markou A, Hauger RL, Koob GF (1992) Desmethylimipramine attenuates cocaine withdrawal in rats. Psychopharmacology 109(3):305–314

    Article  CAS  PubMed  Google Scholar 

  • Markou A, Kosten TR, Koob GF (1998) Neurobiological similarities in depression and drug dependence: a self-medication hypothesis. Neuropsychopharmacology 18(3):135–174

    Article  CAS  PubMed  Google Scholar 

  • Marshall FH, White J, Main M, Green A, Wise A (1999) GABA(B) receptors function as heterodimers. Biochem Soc Trans 27(4):530–535

    Article  CAS  PubMed  Google Scholar 

  • Martvon L, Kotmanova Z, Dobrolubov B, Babalova L, Simera M, Veternik M, Pitts T, Jakus J, Poliacek I (2020) Modulation of cough reflex by Gaba-ergic inhibition in medullary raphé of the cat. Physiol Res 69(Suppl 1):S151–s161

    Article  CAS  PubMed  Google Scholar 

  • Mathivet P, Bernasconi R, De Barry J, Marescaux C, Bittiger H (1997) Binding characteristics of gamma-hydroxybutyric acid as a weak but selective GABAB receptor agonist. Eur J Pharmacol 321(1):67–75

    Article  CAS  PubMed  Google Scholar 

  • Maurel D, Comps-Agrar L, Brock C, Rives ML, Bourrier E, Ayoub MA, Bazin H, Tinel N, Durroux T, Prézeau L, Trinquet E, Pin JP (2008) Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nat Methods 5(6):561–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May LT, Avlani VA, Sexton PM, Christopoulos A (2004) Allosteric modulation of G protein-coupled receptors. Curr Pharm Des 10(17):2003–2013

    Article  CAS  PubMed  Google Scholar 

  • Meier SD, Kafitz KW, Rose CR (2008) Developmental profile and mechanisms of GABA-induced calcium signaling in hippocampal astrocytes. Glia 56(10):1127–1137

    Article  PubMed  Google Scholar 

  • Mendez D, Gaulton A, Bento AP, Chambers J, De Veij M, Félix E, Magariños MP, Mosquera JF, Mutowo P, Nowotka M, Gordillo-Marañón M, Hunter F, Junco L, Mugumbate G, Rodriguez-Lopez M, Atkinson F, Bosc N, Radoux CJ, Segura-Cabrera A, Hersey A, Leach AR (2019) ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res 47(D1):D930–d940

    Article  CAS  PubMed  Google Scholar 

  • Modaberi S, Heysieattalab S, Shahbazi M, Naghdi N (2019) Combination effects of forced mild exercise and GABA(B) receptor agonist on spatial learning, memory, and motor activity in striatum lesion rats. J Mot Behav 51(4):438–450

    Article  PubMed  Google Scholar 

  • Mombereau C, Kaupmann K, Froestl W, Sansig G, van der Putten H, Cryan JF (2004) Genetic and pharmacological evidence of a role for GABA(B) receptors in the modulation of anxiety- and antidepressant-like behavior. Neuropsychopharmacology 29(6):1050–1062

    Article  CAS  PubMed  Google Scholar 

  • Mondadori C, Jaekel J, Preiswerk G (1993) CGP 36742: the first orally active GABAB blocker improves the cognitive performance of mice, rats, and rhesus monkeys. Behav Neural Biol 60(1):62–68

    Article  CAS  PubMed  Google Scholar 

  • Morishita R, Kato K, Asano T (1990) GABAB receptors couple to G proteins Go, Go* and Gi1 but not to Gi2. FEBS Lett 271(1–2):231–235

    Article  CAS  PubMed  Google Scholar 

  • Mugnaini C, Pedani V, Casu A, Lobina C, Casti A, Maccioni P, Porcu A, Giunta D, Lamponi S, Solinas M, Dragoni S, Valoti M, Colombo G, Castelli MP, Gessa GL, Corelli F (2013) Synthesis and pharmacological characterization of 2-(acylamino)thiophene derivatives as metabolically stable, orally effective, positive allosteric modulators of the GABAB receptor. J Med Chem 56(9):3620–3635

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee RS, McBride EW, Beinborn M, Dunlap K, Kopin AS (2006) Point mutations in either subunit of the GABAB receptor confer constitutive activity to the heterodimer. Mol Pharmacol 70(4):1406–1413

    Article  CAS  PubMed  Google Scholar 

  • Murai N, Kondo Y, Akuzawa S, Mihara T, Shiraishi N, Kakimoto S, Matsumoto M (2019) A novel GABA(B) receptor positive allosteric modulator, ASP8062, exerts analgesic effects in a rat model of fibromyalgia. Eur J Pharmacol 865:172750

    Article  CAS  PubMed  Google Scholar 

  • Naffaa MM, Hung S, Chebib M, Johnston GAR, Hanrahan JR (2017) GABA-ρ receptors: distinctive functions and molecular pharmacology. Br J Pharmacol 174(13):1881–1894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair PC, McKinnon RA, Miners JO, Bastiampillai T (2020) Binding of clozapine to the GABA(B) receptor: clinical and structural insights. Mol Psychiatry 25:1910–1919

    Article  PubMed  Google Scholar 

  • Nambu A (2012) GABA-B receptor: possible target for Parkinson’s disease therapy. Exp Neurol 233(1):121–122

    Article  CAS  PubMed  Google Scholar 

  • Nehring RB, Horikawa HP, El Far O, Kneussel M, Brandstätter JH, Stamm S, Wischmeyer E, Betz H, Karschin A (2000) The metabotropic GABAB receptor directly interacts with the activating transcription factor 4. J Biol Chem 275(45):35185–35191

    Article  CAS  PubMed  Google Scholar 

  • Nemeth EF, Steffey ME, Hammerland LG, Hung BCP, Van Wagenen BC, DelMar EG, Balandrin MF (1998) Calcimimetics with potent and selective activity on the parathyroid calcium receptor. Proc Natl Acad Sci 95(7):4040–4045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neto FL, Ferreira-Gomes J, Castro-Lopes JM (2006) Distribution of GABA receptors in the thalamus and their involvement in nociception. Adv Pharmacol 54:29–51

    Article  CAS  PubMed  Google Scholar 

  • New DC, An H, Ip NY, Wong YH (2006) GABAB heterodimeric receptors promote Ca2+ influx via store-operated channels in rat cortical neurons and transfected Chinese hamster ovary cells. Neuroscience 137(4):1347–1358

    Article  CAS  PubMed  Google Scholar 

  • Ng GY, Bertrand S, Sullivan R, Ethier N, Wang J, Yergey J, Belley M, Trimble L, Bateman K, Alder L, Smith A, McKernan R, Metters K, O’Neill GP, Lacaille JC, Hébert TE (2001) Gamma-aminobutyric acid type B receptors with specific heterodimer composition and postsynaptic actions in hippocampal neurons are targets of anticonvulsant gabapentin action. Mol Pharmacol 59(1):144–152

    Article  CAS  PubMed  Google Scholar 

  • Niazi M, Skrtic S, Ruth M, Holmberg AA (2011) Pharmacokinetic profile of lesogaberan (AZD3355) in healthy subjects: a novel GABA(B)-receptor agonist reflux inhibitor. Drugs R&D 11(1):77–83

    Article  Google Scholar 

  • Nishikawa M, Hirouchi M, Kuriyama K (1997) Functional coupling of Gi subtype with GABAB receptor/adenylyl cyclase system: analysis using a reconstituted system with purified GTP-binding protein from bovine cerebral cortex. Neurochem Int 31(1):21–25

    Article  CAS  PubMed  Google Scholar 

  • Niswender CM, Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 50:295–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowak G, Partyka A, Palucha A, Szewczyk B, Wieronska JM, Dybala M, Metz M, Librowski T, Froestl W, Papp M, Pilc A (2006) Antidepressant-like activity of CGP 36742 and CGP 51176, selective GABAB receptor antagonists, in rodents. Br J Pharmacol 149(5):581–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohtsuki S, Asaba H, Takanaga H, Deguchi T, Hosoya K, Otagiri M, Terasaki T (2002) Role of blood-brain barrier organic anion transporter 3 (OAT3) in the efflux of indoxyl sulfate, a uremic toxin: its involvement in neurotransmitter metabolite clearance from the brain. J Neurochem 83(1):57–66

    Article  CAS  PubMed  Google Scholar 

  • Olpe HR, Demiéville H, Baltzer V, Bencze WL, Koella WP, Wolf P, Haas HL (1978) The biological activity of d- and l-baclofen (Lioresal). Eur J Pharmacol 52(1):133–136

    Article  CAS  PubMed  Google Scholar 

  • Ong J, Kerr DI (1984) Evidence for a physiological role of GABA in the control of guinea-pig intestinal motility. Neurosci Lett 50(1–3):339–343

    Article  CAS  PubMed  Google Scholar 

  • Ong J, Parker DA, Marino V, Kerr DI, Puspawati NM, Prager RH (2005) 3-Chloro,4-methoxyfendiline is a potent GABA(B) receptor potentiator in rat neocortical slices. Eur J Pharmacol 507(1–3):35–42

    Article  CAS  PubMed  Google Scholar 

  • Ostojić ZS, Ilić TV, Vesković SM, Andjus PR (2013) GABAB receptors as a common target for hypothermia and spike and wave seizures: intersecting mechanisms of thermoregulation and absence epilepsy. Neuroscience 238:39–58

    Article  PubMed  Google Scholar 

  • Pagano A, Rovelli G, Mosbacher J, Lohmann T, Duthey B, Stauffer D, Ristig D, Schuler V, Meigel I, Lampert C, Stein T, Prezeau L, Blahos J, Pin J, Froestl W, Kuhn R, Heid J, Kaupmann K, Bettler B (2001) C-terminal interaction is essential for surface trafficking but not for heteromeric assembly of GABA(b) receptors. J Neurosci 21(4):1189–1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel S, Naeem S, Kesingland A, Froestl W, Capogna M, Urban L, Fox A (2001) The effects of GABA(B) agonists and gabapentin on mechanical hyperalgesia in models of neuropathic and inflammatory pain in the rat. Pain 90(3):217–226

    Article  CAS  PubMed  Google Scholar 

  • Perdona E, Costantini VJ, Tessari M, Martinelli P, Carignani C, Valerio E, Mok MH, Zonzini L, Visentini F, Gianotti M, Gordon L, Rocheville M, Corsi M, Capelli AM (2011) In vitro and in vivo characterization of the novel GABAB receptor positive allosteric modulator, 2-{1-[2-(4-chlorophenyl)-5-methylpyrazolo[1,5-a]pyrimidin-7-yl]-2-piperidinyl}eth anol (CMPPE). Neuropharmacology 61(5–6):957–966

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Garci E, Gassmann M, Bettler B, Larkum ME (2006) The GABAB1b isoform mediates long-lasting inhibition of dendritic Ca2+ spikes in layer 5 somatosensory pyramidal neurons. Neuron 50(4):603–616

    Article  PubMed  Google Scholar 

  • Pinard A, Seddik R, Bettler B (2010) GABAB receptors: physiological functions and mechanisms of diversity. Adv Pharmacol 58:231–255

    Article  CAS  PubMed  Google Scholar 

  • Pirard B, Carrupt PA, Testa B, Tsai RS, Berthelot P, Vaccher C, Debaert M, Durant F (1995) Structure-affinity relationships of baclofen and 3-heteroaromatic analogues. Bioorg Med Chem 3(11):1537–1545

    Article  CAS  PubMed  Google Scholar 

  • Polenzani L, Woodward RM, Miledi R (1991) Expression of mammalian gamma-aminobutyric acid receptors with distinct pharmacology in Xenopus oocytes. Proc Natl Acad Sci U S A 88(10):4318–4322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pontier SM, Lahaie N, Ginham R, St-Gelais F, Bonin H, Bell DJ, Flynn H, Trudeau LE, McIlhinney J, White JH, Bouvier M (2006) Coordinated action of NSF and PKC regulates GABAB receptor signaling efficacy. EMBO J 25(12):2698–2709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porcu A, Lobina C, Giunta D, Solinas M, Mugnaini C, Castelli MP (2016) In vitro and in vivo pharmacological characterization of SSD114, a novel GABAB positive allosteric modulator. Eur J Pharmacol 791:115–123

    Article  CAS  PubMed  Google Scholar 

  • Prusis P, Höglund L, Törmakangas O, Hietanen A, Arvela R, Vesalainen A, Heikkinen T (2015) Pharmacologically active quinazolinedione derivatives. W.O. Patent 2015169999-A1

    Google Scholar 

  • Ranson DC, Ayoub SS, Corcoran O, Casalotti SO (2020) Pharmacological targeting of the GABA(B) receptor alters Drosophila’s behavioural responses to alcohol. Addict Biol 25(2):e12725

    Article  PubMed  Google Scholar 

  • Rice HC, de Malmazet D, Schreurs A, Frere S, Van Molle I, Volkov AN, Creemers E, Vertkin I, Nys J, Ranaivoson FM, Comoletti D, Savas JN, Remaut H, Balschun D, Wierda KD, Slutsky I, Farrow K, De Strooper B, de Wit J (2019) Secreted amyloid-β precursor protein functions as a GABA(B)R1a ligand to modulate synaptic transmission. Science 363(6423):eaao4827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riguet E, Campo B, Gibelin A, Mhalla K (2007) Triazinedione derivatives as GABAB receptor modulators. U.S. Patent 8344138B2

    Google Scholar 

  • Ritter B, Zschüntsch J, Kvachnina E, Zhang W, Ponimaskin EG (2004) The GABA(B) receptor subunits R1 and R2 interact differentially with the activation transcription factor ATF4 in mouse brain during the postnatal development. Brain Res Dev Brain Res 149(1):73–77

    Article  CAS  PubMed  Google Scholar 

  • Robbins MJ, Calver AR, Filippov AK, Hirst WD, Russell RB, Wood MD, Nasir S, Couve A, Brown DA, Moss SJ, Pangalos MN (2001) GABA(B2) is essential for g-protein coupling of the GABA(B) receptor heterodimer. J Neurosci 21(20):8043–8052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts E, Frankel S (1950) Gamma-aminobutyric acid in brain: its formation from glutamic acid. J Biol Chem 187(1):55–63

    Article  CAS  PubMed  Google Scholar 

  • Sahraei H, Askaripour M, Esmaeilpour K, Shahsavari F, Rajabi S, Moradi-Kor N (2019) GABA(B) receptor activation ameliorates spatial memory impairments in stress-exposed rats. Neuropsychiatr Dis Treat 15:1497–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauter K, Grampp T, Fritschy JM, Kaupmann K, Bettler B, Mohler H, Benke D (2005) Subtype-selective interaction with the transcription factor CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) regulates cell surface expression of GABA(B) receptors. J Biol Chem 280(39):33566–33572

    Article  CAS  PubMed  Google Scholar 

  • Schofield PR, Darlison MG, Fujita N, Burt DR, Stephenson FA, Rodriguez H, Rhee LM, Ramachandran J, Reale V, Glencorse TA et al (1987) Sequence and functional expression of the GABA A receptor shows a ligand-gated receptor super-family. Nature 328(6127):221–227

    Article  CAS  PubMed  Google Scholar 

  • Schuller HM (2018) Regulatory role of G protein-coupled receptors in pancreatic cancer development and progression. Curr Med Chem 25(22):2566–2575

    Article  CAS  PubMed  Google Scholar 

  • Schuller HM, Al-Wadei HA, Majidi M (2008) GABA B receptor is a novel drug target for pancreatic cancer. Cancer 112(4):767–778

    Article  CAS  PubMed  Google Scholar 

  • Schwenk J, Metz M, Zolles G, Turecek R, Fritzius T, Bildl W, Tarusawa E, Kulik A, Unger A, Ivankova K, Seddik R, Tiao JY, Rajalu M, Trojanova J, Rohde V, Gassmann M, Schulte U, Fakler B, Bettler B (2010) Native GABA(B) receptors are heteromultimers with a family of auxiliary subunits. Nature 465(7295):231–235

    Article  CAS  PubMed  Google Scholar 

  • Schwenk J, Pérez-Garci E, Schneider A, Kollewe A, Gauthier-Kemper A, Fritzius T, Raveh A, Dinamarca MC, Hanuschkin A, Bildl W, Klingauf J, Gassmann M, Schulte U, Bettler B, Fakler B (2016) Modular composition and dynamics of native GABAB receptors identified by high-resolution proteomics. Nat Neurosci 19(2):233–242

    Article  CAS  PubMed  Google Scholar 

  • Seabrook GR, Howson W, Lacey MG (1990) Electrophysiological characterization of potent agonists and antagonists at pre- and postsynaptic GABAB receptors on neurones in rat brain slices. Br J Pharmacol 101(4):949–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiraishi N, Hoshii H, Hamaguchi W, Honjo E, Takuwa T, Kondo Y, Goto T (2014) Sulfur-Containing Bicyclic Compound. W.O. Patent 2015056771

    Google Scholar 

  • Sigel E, Steinmann ME (2012) Structure, function, and modulation of GABA(A) receptors. J Biol Chem 287(48):40224–40231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith JS, Lefkowitz RJ, Rajagopal S (2018) Biased signalling: from simple switches to allosteric microprocessors. Nat Rev Drug Discov 17(4):243–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snead OC 3rd (1992) Evidence for GABAB-mediated mechanisms in experimental generalized absence seizures. Eur J Pharmacol 213(3):343–349

    Article  CAS  PubMed  Google Scholar 

  • Sowaileh MF, Salyer AE, Roy KK, John JP, Woods JR, Doerksen RJ, Hockerman GH, Colby DA (2018) Agonists of the γ-aminobutyric acid type B (GABA(B)) receptor derived from β-hydroxy and β-amino difluoromethyl ketones. Bioorg Med Chem Lett 28(16):2697–2700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spangler S, Bruchas MR (2017) Tuning biased GPCR signaling for physiological gain. Cell 171(5):989–991

    Article  CAS  PubMed  Google Scholar 

  • Stewart LS, Wu Y, Eubanks JH, Han H, Leschenko Y, Perez Velazquez JL, Cortez MA, Snead OC 3rd (2009) Severity of atypical absence phenotype in GABAB transgenic mice is subunit specific. Epilepsy Behav 14(4):577–581

    Article  PubMed  Google Scholar 

  • Stewart GD, Comps-Agrar L, Nørskov-Lauritsen LB, Pin JP, Kniazeff J (2018) Allosteric interactions between GABA(B1) subunits control orthosteric binding sites occupancy within GABA(B) oligomers. Neuropharmacology 136(Pt A):92–101

    Article  CAS  PubMed  Google Scholar 

  • Sturchler E, Li X, de Lourdes Ladino M, Kaczanowska K, Cameron M, Griffin PR, Finn MG, Markou A, McDonald P (2017) GABA(B) receptor allosteric modulators exhibit pathway-dependent and species-selective activity. Pharmacol Res Perspect 5(2):e00288

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun B, Chen L, Liu L, Xia Z, Pin JP, Nan F, Liu J (2016) A negative allosteric modulator modulates GABAB-receptor signalling through GB2 subunits. Biochem J 473(6):779–787

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Sun L, Tu L (2020) GABAB receptor-mediated PI3K/Akt signaling pathway alleviates oxidative stress and neuronal cell injury in a rat model of Alzheimer’s disease. J Alzheimers Dis 76(4):1513–1526

    Article  CAS  PubMed  Google Scholar 

  • Symonds E, Butler R, Omari T (2003) The effect of the GABAB receptor agonist baclofen on liquid and solid gastric emptying in mice. Eur J Pharmacol 470(1–2):95–97

    Article  CAS  PubMed  Google Scholar 

  • Szabadi E (2015) GHB for cataplexy: possible mode of action. J Psychopharmacol 29(6):744–749

    Article  CAS  PubMed  Google Scholar 

  • Tabata T, Araishi K, Hashimoto K, Hashimotodani Y, van der Putten H, Bettler B, Kano M (2004) Ca2+ activity at GABAB receptors constitutively promotes metabotropic glutamate signaling in the absence of GABA. Proc Natl Acad Sci U S A 101(48):16952–16957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teichgräber LA, Lehmann TN, Meencke HJ, Weiss T, Nitsch R, Deisz RA (2009) Impaired function of GABA(B) receptors in tissues from pharmacoresistant epilepsy patients. Epilepsia 50(7):1697–1716

    Article  PubMed  Google Scholar 

  • Tian J, Dang H, Hu A, Xu W, Kaufman DL (2017) Repurposing lesogaberan to promote human islet cell survival and β-cell replication. J Diabetes Res 2017:6403539

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsunekawa T, Banno R, Yaginuma H, Taki K, Mizoguchi A, Sugiyama M, Onoue T, Takagi H, Hagiwara D, Ito Y, Iwama S, Goto M, Suga H, Bettler B, Arima H (2019) GABA(B) receptor signaling in the mesolimbic system suppresses binge-like consumption of a high-fat diet. IScience 20:337–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu H, Rondard P, Xu C, Bertaso F, Cao F, Zhang X, Pin JP, Liu J (2007) Dominant role of GABAB2 and Gbetagamma for GABAB receptor-mediated-ERK1/2/CREB pathway in cerebellar neurons. Cell Signal 19(9):1996–2002

    Article  CAS  PubMed  Google Scholar 

  • Tyagi RK, Bisht R, Pant J, Kumar P, Majeed AB, Prakash A (2015) Possible role of GABA-B receptor modulation in MPTP induced Parkinson’s disease in rats. Exp Toxicol Pathol 67(2):211–217

    Article  CAS  PubMed  Google Scholar 

  • Urwyler S (2011) Allosteric modulation of family C G-protein-coupled receptors: from molecular insights to therapeutic perspectives. Pharmacol Rev 63(1):59–126

    Article  CAS  PubMed  Google Scholar 

  • Urwyler S, Mosbacher J, Lingenhoehl K, Heid J, Hofstetter K, Froestl W, Bettler B, Kaupmann K (2001) Positive allosteric modulation of native and recombinant gamma-aminobutyric acid(B) receptors by 2,6-Di-tert-butyl-4-(3-hydroxy-2,2-dimethyl-propyl)-phenol (CGP7930) and its aldehyde analog CGP13501. Mol Pharmacol 60(5):963–971

    Article  CAS  PubMed  Google Scholar 

  • Urwyler S, Pozza MF, Lingenhoehl K, Mosbacher J, Lampert C, Froestl W, Koller M, Kaupmann K (2003) N,N′-Dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine (GS39783) and structurally related compounds: novel allosteric enhancers of gamma-aminobutyric acidB receptor function. J Pharmacol Exp Ther 307(1):322–330

    Article  CAS  PubMed  Google Scholar 

  • Urwyler S, Gjoni T, Kaupmann K, Pozza MF, Mosbacher J (2004) Selected amino acids, dipeptides and arylalkylamine derivatives do not act as allosteric modulators at GABAB receptors. Eur J Pharmacol 483(2–3):147–153

    Article  CAS  PubMed  Google Scholar 

  • Urwyler S, Gjoni T, Koljatic J, Dupuis DS (2005) Mechanisms of allosteric modulation at GABAB receptors by CGP7930 and GS39783: effects on affinities and efficacies of orthosteric ligands with distinct intrinsic properties. Neuropharmacology 48(3):343–353

    Article  CAS  PubMed  Google Scholar 

  • Vanhoose AM, Emery M, Jimenez L, Winder DG (2002) ERK activation by G-protein-coupled receptors in mouse brain is receptor identity-specific. J Biol Chem 277(11):9049–9053

    Article  CAS  PubMed  Google Scholar 

  • Veenstra-VanderWeele J, Cook EH, King BH, Zarevics P, Cherubini M, Walton-Bowen K, Bear MF, Wang PP, Carpenter RL (2017) Arbaclofen in children and adolescents with autism spectrum disorder: a randomized, controlled, phase 2 trial. Neuropsychopharmacology 42(7):1390–1398

    Article  CAS  PubMed  Google Scholar 

  • Vigot R, Barbieri S, Bräuner-Osborne H, Turecek R, Shigemoto R, Zhang YP, Luján R, Jacobson LH, Biermann B, Fritschy JM, Vacher CM, Müller M, Sansig G, Guetg N, Cryan JF, Kaupmann K, Gassmann M, Oertner TG, Bettler B (2006) Differential compartmentalization and distinct functions of GABAB receptor variants. Neuron 50(4):589–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlachou S, Paterson NE, Guery S, Kaupmann K, Froestl W, Banerjee D, Finn MG, Markou A (2011) Both GABA(B) receptor activation and blockade exacerbated anhedonic aspects of nicotine withdrawal in rats. Eur J Pharmacol 655(1–3):52–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weatherby RP, Allan RD, Johnston GA (1984) Resolution of the stereoisomers of baclofen by high performance liquid chromatography. J Neurosci Methods 10(1):23–28

    Article  CAS  PubMed  Google Scholar 

  • Wellendorph P, Høg S, Greenwood JR, de Lichtenberg A, Nielsen B, Frølund B, Brehm L, Clausen RP, Bräuner-Osborne H (2005) Novel cyclic gamma-hydroxybutyrate (GHB) analogs with high affinity and stereoselectivity of binding to GHB sites in rat brain. J Pharmacol Exp Ther 315(1):346–351

    Article  CAS  PubMed  Google Scholar 

  • Wong CG, Gibson KM, Snead OC 3rd (2004) From the street to the brain: neurobiology of the recreational drug gamma-hydroxybutyric acid. Trends Pharmacol Sci 25(1):29–34

    Article  CAS  PubMed  Google Scholar 

  • Young SZ, Bordey A (2009) GABA’s control of stem and cancer cell proliferation in adult neural and peripheral niches. Physiology 24:171–185

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Du Z, Liu J, He J (2014) Gamma-aminobutyric acid receptors affect the progression and migration of tumor cells. J Recept Signal Transduct Res 34(6):431–439

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Xu C, Tu H, Wang Y, Sun Q, Hu P, Hu Y, Rondard P, Liu J (2015) GABAB receptor upregulates fragile X mental retardation protein expression in neurons. Sci Rep 5(1):10468

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuo H, Glaaser I, Zhao Y, Kurinov I, Mosyak L, Wang H, Liu J, Park J, Frangaj A, Sturchler E, Zhou M, McDonald P, Geng Y, Slesinger PA, Fan QR (2019) Structural basis for auxiliary subunit KCTD16 regulation of the GABA(B) receptor. Proc Natl Acad Sci U S A 116(17):8370–8379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We were introduced to the GABA/GABAB receptor field by Dr. Athina Markou (UCSD). We are honored to have worked with Dr. Markou and forever grateful for the opportunities that she gave us to work with other experts in this field. It is on the shoulders of such giants that we write this chapter and hope that we have done their work justice. We apologize to those whose work we may have omitted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. McDonald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nieto, A., Bailey, T., Kaczanowska, K., McDonald, P. (2021). GABAB Receptor Chemistry and Pharmacology: Agonists, Antagonists, and Allosteric Modulators. In: Vlachou, S., Wickman, K. (eds) Behavioral Neurobiology of GABAB Receptor Function. Current Topics in Behavioral Neurosciences, vol 52. Springer, Cham. https://doi.org/10.1007/7854_2021_232

Download citation

Publish with us

Policies and ethics