Skip to main content

GABAB Receptors and Drug Addiction: Psychostimulants and Other Drugs of Abuse

  • Chapter
  • First Online:
Behavioral Neurobiology of GABAB Receptor Function

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 52))

Abstract

Metabotropic GABAB receptors (GABABRs) mediate slow inhibition and modulate synaptic plasticity throughout the brain. Dysfunction of GABABRs has been associated with psychiatric illnesses and addiction. Drugs of abuse alter GABAB receptor (GABABR) signaling in multiple brain regions, which partly contributes to the development of drug addiction. Recently, GABABR ligands and positive allosteric modulators (PAMs) have been shown to attenuate the initial rewarding effect of addictive substances, inhibit seeking and taking of these drugs, and in some cases, ameliorate drug withdrawal symptoms. The majority of the anti-addiction effects seen with GABABR modulation can be localized to ventral tegmental area (VTA) dopamine neurons, which receive complex inhibitory and excitatory inputs that are modified by drugs of abuse. Preclinical research suggests that GABABR PAMs are emerging as promising candidates for the treatment of drug addiction. Clinical studies on drug dependence have shown positive results with GABABR ligands but more are needed, and compounds with better pharmacokinetics and fewer side effects are critically needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agabio R, Colombo G (2015) GABAB receptor as therapeutic target for drug addiction: from baclofen to positive allosteric modulators. Psychiatr Pol 49(2):215–223

    PubMed  Google Scholar 

  • Ahmadi-Abhari SA, Akhondzadeh S, Assadi SM, Shabestari OL, Farzanehgan ZM, Kamlipour A (2001) Baclofen versus clonidine in the treatment of opiates withdrawal, side-effects aspect: a double-blind randomized controlled trial. J Clin Pharm Ther 26(1):67–71

    CAS  PubMed  Google Scholar 

  • Akhondzadeh S, Ahmadi-Abhari SA, Assadi SM, Shabestari OL, Kashani AR, Farzanehgan ZM (2000) Double-blind randomized controlled trial of baclofen vs. clonidine in the treatment of opiates withdrawal. J Clin Pharm Ther 25(5):347–353

    CAS  PubMed  Google Scholar 

  • Amantea D, Bowery NG (2004) Reduced inhibitory action of a GABAB receptor agonist on [3H]-dopamine release from rat ventral tegmental area in vitro after chronic nicotine administration. BMC Pharmacol 4:24

    PubMed  PubMed Central  Google Scholar 

  • Amantea D, Tessari M, Bowery NG (2004) Reduced G-protein coupling to the GABAB receptor in the nucleus accumbens and the medial prefrontal cortex of the rat after chronic treatment with nicotine. Neurosci Lett 355(3):161–164

    CAS  PubMed  Google Scholar 

  • Arai S, Takuma K, Mizoguchi H, Ibi D, Nagai T, Kamei H, Kim HC, Yamada K (2009) GABAB receptor agonist baclofen improves methamphetamine-induced cognitive deficit in mice. Eur J Pharmacol 602(1):101–104

    CAS  PubMed  Google Scholar 

  • Arora D, Hearing M, Haluk DM, Mirkovic K, Fajardo-Serrano A, Wessendorf MW, Watanabe M, Lujan R, Wickman K (2011) Acute cocaine exposure weakens GABA(B) receptor-dependent G-protein-gated inwardly rectifying K+ signaling in dopamine neurons of the ventral tegmental area. J Neurosci 31(34):12251–12257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Assadi SM, Radgoodarzi R, Ahmadi-Abhari SA (2003) Baclofen for maintenance treatment of opioid dependence: a randomized double-blind placebo-controlled clinical trial [ISRCTN32121581]. BMC Psychiatry 3:16

    PubMed  PubMed Central  Google Scholar 

  • Backes EN, Hemby SE (2008) Contribution of ventral tegmental GABA receptors to cocaine self-administration in rats. Neurochem Res 33(3):459–467

    CAS  PubMed  Google Scholar 

  • Baik JH (2013) Dopamine signaling in reward-related behaviors. Front Neural Circuits 7:152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bartoletti M, Gubellini C, Ricci F, Gaiardi M (2004) The GABAB agonist baclofen blocks the expression of sensitisation to the locomotor stimulant effect of amphetamine. Behav Pharmacol 15(5–6):397–401

    CAS  PubMed  Google Scholar 

  • Bartoletti M, Gubellini C, Ricci F, Gaiardi M (2005) Baclofen blocks the development of sensitization to the locomotor stimulant effect of amphetamine. Behav Pharmacol 16(7):553–558

    CAS  PubMed  Google Scholar 

  • Beckstead MJ, Gantz SC, Ford CP, Stenzel-Poore MP, Phillips PE, Mark GP, Williams JT (2009) CRF enhancement of GIRK channel-mediated transmission in dopamine neurons. Neuropsychopharmacology 34(8):1926–1935

    CAS  PubMed  Google Scholar 

  • Bettler B, Tiao JY (2006) Molecular diversity, trafficking and subcellular localization of GABAB receptors. Pharmacol Ther 110(3):533–543

    CAS  PubMed  Google Scholar 

  • Bexis S, Ong J, White J (2001) Attenuation of morphine withdrawal signs by the GABA(B) receptor agonist baclofen. Life Sci 70(4):395–401

    CAS  PubMed  Google Scholar 

  • Bidaut-Russell M, Devane WA, Howlett AC (1990) Cannabinoid receptors and modulation of cyclic AMP accumulation in the rat brain. J Neurochem 55(1):21–26

    CAS  PubMed  Google Scholar 

  • Biermann B, Ivankova-Susankova K, Bradaia A, Abdel Aziz S, Besseyrias V, Kapfhammer JP, Missler M, Gassmann M, Bettler B (2010) The sushi domains of GABAB receptors function as axonal targeting signals. J Neurosci 30(4):1385–1394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Binet V, Brajon C, Le Corre L, Acher F, Pin JP, Prezeau L (2004) The heptahelical domain of GABA(B2) is activated directly by CGP7930, a positive allosteric modulator of the GABA(B) receptor. J Biol Chem 279(28):29085–29091

    CAS  PubMed  Google Scholar 

  • Blacktop JM, Vranjkovic O, Mayer M, van Hoof M, Baker DA, Mantsch JR (2016) Antagonism of GABA-B but not GABA-A receptors in the VTA prevents stress- and intra-VTA CRF-induced reinstatement of extinguished cocaine seeking in rats. Neuropharmacology 102:197–206

    CAS  PubMed  Google Scholar 

  • Bocklisch C, Pascoli V, Wong JC, House DR, Yvon C, de Roo M, Tan KR, Luscher C (2013) Cocaine disinhibits dopamine neurons by potentiation of GABA transmission in the ventral tegmental area. Science 341(6153):1521–1525

    CAS  PubMed  Google Scholar 

  • Bonci A, Williams JT (1997) Increased probability of GABA release during withdrawal from morphine. J Neurosci 17(2):796–803

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bowery NG (2006) GABAB receptor: a site of therapeutic benefit. Curr Opin Pharmacol 6(1):37–43

    CAS  PubMed  Google Scholar 

  • Braillon A, Naudet F, Cristea IA, Lexchin J (2020) Baclofen and alcohol use disorders: breakthrough or great white elephant? Alcohol Alcohol 55(1):49–50

    PubMed  Google Scholar 

  • Brebner K, Froestl W, Andrews M, Phelan R, Roberts DC (1999) The GABA(B) agonist CGP 44532 decreases cocaine self-administration in rats: demonstration using a progressive ratio and a discrete trials procedure. Neuropharmacology 38(11):1797–1804

    CAS  PubMed  Google Scholar 

  • Brebner K, Phelan R, Roberts DC (2000a) Effect of baclofen on cocaine self-administration in rats reinforced under fixed-ratio 1 and progressive-ratio schedules. Psychopharmacology 148(3):314–321

    CAS  PubMed  Google Scholar 

  • Brebner K, Phelan R, Roberts DC (2000b) Intra-VTA baclofen attenuates cocaine self-administration on a progressive ratio schedule of reinforcement. Pharmacol Biochem Behav 66(4):857–862

    CAS  PubMed  Google Scholar 

  • Brebner K, Childress AR, Roberts DC (2002) A potential role for GABA(B) agonists in the treatment of psychostimulant addiction. Alcohol Alcohol 37(5):478–484

    CAS  PubMed  Google Scholar 

  • Brebner K, Ahn S, Phillips AG (2005) Attenuation of d-amphetamine self-administration by baclofen in the rat: behavioral and neurochemical correlates. Psychopharmacology 177(4):409–417

    CAS  PubMed  Google Scholar 

  • Brodie MS, Dunwiddie TV (1990) Cocaine effects in the ventral tegmental area: evidence for an indirect dopaminergic mechanism of action. Naunyn Schmiedeberg's Arch Pharmacol 342(6):660–665

    CAS  Google Scholar 

  • Buffalari DM, See RE (2011) Inactivation of the bed nucleus of the stria terminalis in an animal model of relapse: effects on conditioned cue-induced reinstatement and its enhancement by yohimbine. Psychopharmacology 213(1):19–27

    CAS  PubMed  Google Scholar 

  • Cameron DL, Williams JT (1993) Dopamine D1 receptors facilitate transmitter release. Nature 366(6453):344–347

    CAS  PubMed  Google Scholar 

  • Cameron DL, Williams JT (1994) Cocaine inhibits GABA release in the VTA through endogenous 5-HT. J Neurosci 14(11 Pt 1):6763–6767

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell UC, Lac ST, Carroll ME (1999) Effects of baclofen on maintenance and reinstatement of intravenous cocaine self-administration in rats. Psychopharmacology 143(2):209–214

    CAS  PubMed  Google Scholar 

  • Campbell UC, Morgan AD, Carroll ME (2002) Sex differences in the effects of baclofen on the acquisition of intravenous cocaine self-administration in rats. Drug Alcohol Depend 66(1):61–69

    CAS  PubMed  Google Scholar 

  • Cedillo LN, Miranda F (2013) Effects of co-administration of the GABAB receptor agonist baclofen and a positive allosteric modulator of the GABAB receptor, CGP7930, on the development and expression of amphetamine-induced locomotor sensitization in rats. Pharmacol Rep 65(5):1132–1143

    CAS  PubMed  Google Scholar 

  • Chaignot C, Zureik M, Rey G, Dray-Spira R, Coste J, Weill A (2018) Risk of hospitalisation and death related to baclofen for alcohol use disorders: comparison with nalmefene, acamprosate, and naltrexone in a cohort study of 165 334 patients between 2009 and 2015 in France. Pharmacoepidemiol Drug Saf 27(11):1239–1248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chebib M, Johnston GA (1999) The 'ABC' of GABA receptors: a brief review. Clin Exp Pharmacol Physiol 26(11):937–940

    CAS  PubMed  Google Scholar 

  • Chen M, Zhao Y, Yang H, Luan W, Song J, Cui D, Dong Y, Lai B, Ma L, Zheng P (2015) Morphine disinhibits glutamatergic input to VTA dopamine neurons and promotes dopamine neuron excitation. elife 4

    Google Scholar 

  • Ciccarelli A, Calza A, Panzanelli P, Concas A, Giustetto M, Sassoe-Pognetto M (2012) Organization of GABAergic synaptic circuits in the rat ventral tegmental area. PLoS One 7(10):e46250

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corre J, van Zessen R, Loureiro M, Patriarchi T, Tian L, Pascoli V, Luscher C (2018) Dopamine neurons projecting to medial shell of the nucleus accumbens drive heroin reinforcement. elife 7

    Google Scholar 

  • Corrigall WA, Coen KM, Adamson KL, Chow BL, Zhang J (2000) Response of nicotine self-administration in the rat to manipulations of mu-opioid and gamma-aminobutyric acid receptors in the ventral tegmental area. Psychopharmacology 149(2):107–114

    CAS  PubMed  Google Scholar 

  • Cousins MS, Stamat HM, de Wit H (2001) Effects of a single dose of baclofen on self-reported subjective effects and tobacco smoking. Nicotine Tob Res 3(2):123–129

    CAS  PubMed  Google Scholar 

  • Cruz HG, Ivanova T, Lunn ML, Stoffel M, Slesinger PA, Luscher C (2004) Bi-directional effects of GABA(B) receptor agonists on the mesolimbic dopamine system. Nat Neurosci 7(2):153–159

    CAS  PubMed  Google Scholar 

  • Davies CH, Collingridge GL (1996) Regulation of EPSPs by the synaptic activation of GABAB autoreceptors in rat hippocampus. J Physiol 496(Pt 2):451–470

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davies CH, Starkey SJ, Pozza MF, Collingridge GL (1991) GABA autoreceptors regulate the induction of LTP. Nature 349(6310):609–611

    CAS  PubMed  Google Scholar 

  • de Beaurepaire R, Sinclair JMA, Heydtmann M, Addolorato G, Aubin HJ, Beraha EM, Caputo F, Chick JD, de La Selle P, Franchitto N, Garbutt JC, Haber PS, Jaury P, Lingford-Hughes AR, Morley KC, Muller CA, Owens L, Pastor A, Paterson LM, Pelissier F, Rolland B, Stafford A, Thompson A, van den Brink W, Leggio L, Agabio R (2018) The use of baclofen as a treatment for alcohol use disorder: a clinical practice perspective. Front Psych 9:708

    Google Scholar 

  • de Miguel E, Vekovischeva O, Kuokkanen K, Vesajoki M, Paasikoski N, Kaskinoro J, Myllymaki M, Lainiola M, Janhunen SK, Hyytia P, Linden AM, Korpi ER (2018) GABAB receptor positive allosteric modulators with different efficacies affect neuroadaptation to and self-administration of alcohol and cocaine. Addict Biol

    Google Scholar 

  • DePoy LM, Allen AG, Gourley SL (2016) Adolescent cocaine self-administration induces habit behavior in adulthood: sex differences and structural consequences. Trans Psychiatry 6(8):e875

    CAS  Google Scholar 

  • Diaz SL, Barros VG, Antonelli MC, Rubio MC, Balerio GN (2006) Morphine withdrawal syndrome and its prevention with baclofen: autoradiographic study of mu-opioid receptors in prepubertal male and female mice. Synapse 60(2):132–140

    CAS  PubMed  Google Scholar 

  • Dobrovitsky V, Pimentel P, Duarte A, Froestl W, Stellar JR, Trzcinska M (2002) CGP 44532, a GABAB receptor agonist, is hedonically neutral and reduces cocaine-induced enhancement of reward. Neuropharmacology 42(5):626–632

    CAS  PubMed  Google Scholar 

  • Dupuis DS, Relkovic D, Lhuillier L, Mosbacher J, Kaupmann K (2006) Point mutations in the transmembrane region of GABAB2 facilitate activation by the positive modulator N,N'-dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine (GS39783) in the absence of the GABAB1 subunit. Mol Pharmacol 70(6):2027–2036

    CAS  PubMed  Google Scholar 

  • Edwards NJ, Tejeda HA, Pignatelli M, Zhang S, McDevitt RA, Wu J, Bass CE, Bettler B, Morales M, Bonci A (2017) Circuit specificity in the inhibitory architecture of the VTA regulates cocaine-induced behavior. Nat Neurosci 20(3):438–448

    CAS  PubMed  Google Scholar 

  • Enna SJ (2001) A GABA(B) mystery: the search for pharmacologically distinct GABA(B) receptors. Mol Interv 1(4):208–218

    CAS  PubMed  Google Scholar 

  • Fadda P, Scherma M, Fresu A, Collu M, Fratta W (2003) Baclofen antagonizes nicotine-, cocaine-, and morphine-induced dopamine release in the nucleus accumbens of rat. Synapse 50(1):1–6

    CAS  PubMed  Google Scholar 

  • Faget L, Osakada F, Duan J, Ressler R, Johnson AB, Proudfoot JA, Yoo JH, Callaway EM, Hnasko TS (2016) Afferent inputs to neurotransmitter-defined cell types in the ventral tegmental area. Cell Rep 15(12):2796–2808

    CAS  PubMed  PubMed Central  Google Scholar 

  • Filip M, Frankowska M (2007) Effects of GABA(B) receptor agents on cocaine priming, discrete contextual cue and food induced relapses. Eur J Pharmacol 571(2–3):166–173

    CAS  PubMed  Google Scholar 

  • Filip M, Frankowska M (2008) GABA(B) receptors in drug addiction. Pharmacol Rep 60(6):755–770

    CAS  PubMed  Google Scholar 

  • Filip M, Frankowska M, Przegalinski E (2007) Effects of GABA(B) receptor antagonist, agonists and allosteric positive modulator on the cocaine-induced self-administration and drug discrimination. Eur J Pharmacol 574(2–3):148–157

    CAS  PubMed  Google Scholar 

  • Filip M, Frankowska M, Sadakierska-Chudy A, Suder A, Szumiec L, Mierzejewski P, Bienkowski P, Przegalinski E, Cryan JF (2015) GABAB receptors as a therapeutic strategy in substance use disorders: focus on positive allosteric modulators. Neuropharmacology 88:36–47

    CAS  PubMed  Google Scholar 

  • Floresco SB, West AR, Ash B, Moore H, Grace AA (2003) Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci 6(9):968–973

    CAS  PubMed  Google Scholar 

  • Francis TC, Gantz SC, Moussawi K, Bonci A (2019) Synaptic and intrinsic plasticity in the ventral tegmental area after chronic cocaine. Curr Opin Neurobiol 54:66–72

    CAS  PubMed  Google Scholar 

  • Franklin TR, Harper D, Kampman K, Kildea-McCrea S, Jens W, Lynch KG, O'Brien CP, Childress AR (2009) The GABA B agonist baclofen reduces cigarette consumption in a preliminary double-blind placebo-controlled smoking reduction study. Drug Alcohol Depend 103(1–2):30–36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frankowska M, Wydra K, Faron-Gorecka A, Zaniewska M, Kusmider M, Dziedzicka-Wasylewska M, Filip M (2008) Neuroadaptive changes in the rat brain GABA(B) receptors after withdrawal from cocaine self-administration. Eur J Pharmacol 599(1–3):58–64

    CAS  PubMed  Google Scholar 

  • Frankowska M, Nowak E, Filip M (2009) Effects of GABAB receptor agonists on cocaine hyperlocomotor and sensitizing effects in rats. Pharmacol Rep 61(6):1042–1049

    CAS  PubMed  Google Scholar 

  • Froestl W (2010) Chemistry and pharmacology of GABAB receptor ligands. Adv Pharmacol 58:19–62

    CAS  PubMed  Google Scholar 

  • Froger-Colleaux C, Castagne V (2016) Effects of baclofen and raclopride on reinstatement of cocaine self-administration in the rat. Eur J Pharmacol 777:147–155

    CAS  PubMed  Google Scholar 

  • Fu Z, Yang H, Xiao Y, Zhao G, Huang H (2012) The gamma-aminobutyric acid type B (GABAB) receptor agonist baclofen inhibits morphine sensitization by decreasing the dopamine level in rat nucleus accumbens. Behav Brain Funct 8:20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs RA, Ramirez DR, Bell GH (2008) Nucleus accumbens shell and core involvement in drug context-induced reinstatement of cocaine seeking in rats. Psychopharmacology 200(4):545–556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gahwiler BH, Brown DA (1985) GABAB-receptor-activated K+ current in voltage-clamped CA3 pyramidal cells in hippocampal cultures. Proc Natl Acad Sci U S A 82(5):1558–1562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galvez T, Parmentier ML, Joly C, Malitschek B, Kaupmann K, Kuhn R, Bittiger H, Froestl W, Bettler B, Pin JP (1999) Mutagenesis and modeling of the GABAB receptor extracellular domain support a venus flytrap mechanism for ligand binding. J Biol Chem 274(19):13362–13369

    CAS  PubMed  Google Scholar 

  • Galvez T, Prezeau L, Milioti G, Franek M, Joly C, Froestl W, Bettler B, Bertrand HO, Blahos J, Pin JP (2000) Mapping the agonist-binding site of GABAB type 1 subunit sheds light on the activation process of GABAB receptors. J Biol Chem 275(52):41166–41174

    CAS  PubMed  Google Scholar 

  • Garcia-Gil L, de Miguel R, Romero J, Perez A, Ramos JA, Fernandez-Ruiz JJ (1999) Perinatal delta9-tetrahydrocannabinol exposure augmented the magnitude of motor inhibition caused by GABA(B), but not GABA(A), receptor agonists in adult rats. Neurotoxicol Teratol 21(3):277–283

    CAS  PubMed  Google Scholar 

  • Gassmann M, Shaban H, Vigot R, Sansig G, Haller C, Barbieri S, Humeau Y, Schuler V, Muller M, Kinzel B, Klebs K, Schmutz M, Froestl W, Heid J, Kelly PH, Gentry C, Jaton AL, van der Putten H, Mombereau C, Lecourtier L, Mosbacher J, Cryan JF, Fritschy JM, Luthi A, Kaupmann K, Bettler B (2004) Redistribution of GABAB(1) protein and atypical GABAB responses in GABAB(2)-deficient mice. J Neurosci 24(27):6086–6097

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gill MJ, Ghee SM, Harper SM, See RE (2013) Inactivation of the lateral habenula reduces anxiogenic behavior and cocaine seeking under conditions of heightened stress. Pharmacol Biochem Behav 111:24–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giorgetti M, Hotsenpiller G, Froestl W, Wolf ME (2002) In vivo modulation of ventral tegmental area dopamine and glutamate efflux by local GABA(B) receptors is altered after repeated amphetamine treatment. Neuroscience 109(3):585–595

    CAS  PubMed  Google Scholar 

  • Guery S, Floersheim P, Kaupmann K, Froestl W (2007) Syntheses and optimization of new GS39783 analogues as positive allosteric modulators of GABA B receptors. Bioorg Med Chem Lett 17(22):6206–6211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gysling K, Wang RY (1983) Morphine-induced activation of A10 dopamine neurons in the rat. Brain Res 277(1):119–127

    CAS  PubMed  Google Scholar 

  • Halbout B, Quarta D, Valerio E, Heidbreder CA, Hutcheson DM (2011) The GABA-B positive modulator GS39783 decreases psychostimulant conditioned-reinforcement and conditioned-reward. Addict Biol 16(3):416–427

    CAS  PubMed  Google Scholar 

  • Haney M, Hart CL, Foltin RW (2006) Effects of baclofen on cocaine self-administration: opioid- and nonopioid-dependent volunteers. Neuropsychopharmacology 31(8):1814–1821

    CAS  PubMed  Google Scholar 

  • Haney M, Hart CL, Vosburg SK, Comer SD, Reed SC, Cooper ZD, Foltin RW (2010) Effects of baclofen and mirtazapine on a laboratory model of marijuana withdrawal and relapse. Psychopharmacology 211(2):233–244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heaney CF, Kinney JW (2016) Role of GABA(B) receptors in learning and memory and neurological disorders. Neurosci Biobehav Rev 63:1–28

    CAS  PubMed  Google Scholar 

  • Hearing M, Kotecki L, Marron Fernandez de Velasco E, Fajardo-Serrano A, Chung HJ, Lujan R, Wickman K (2013) Repeated cocaine weakens GABA(B)-Girk signaling in layer 5/6 pyramidal neurons in the prelimbic cortex. Neuron 80(1):159–170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heinrichs SC, Leite-Morris KA, Carey RJ, Kaplan GB (2010) Baclofen enhances extinction of opiate conditioned place preference. Behav Brain Res 207(2):353–359

    CAS  PubMed  Google Scholar 

  • Heinzerling KG, Shoptaw S, Peck JA, Yang X, Liu J, Roll J, Ling W (2006) Randomized, placebo-controlled trial of baclofen and gabapentin for the treatment of methamphetamine dependence. Drug Alcohol Depend 85(3):177–184

    CAS  PubMed  Google Scholar 

  • Holtz NA, Carroll ME (2011) Baclofen has opposite effects on escalation of cocaine self-administration: increased intake in rats selectively bred for high (HiS) saccharin intake and decreased intake in those selected for low (LoS) saccharin intake. Pharmacol Biochem Behav 100(2):275–283

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hotsenpiller G, Wolf ME (2003) Baclofen attenuates conditioned locomotion to cues associated with cocaine administration and stabilizes extracellular glutamate levels in rat nucleus accumbens. Neuroscience 118(1):123–134

    CAS  PubMed  Google Scholar 

  • Howlett AC, Qualy JM, Khachatrian LL (1986) Involvement of Gi in the inhibition of adenylate cyclase by cannabimimetic drugs. Mol Pharmacol 29(3):307–313

    CAS  PubMed  Google Scholar 

  • Jacobson LH, Sweeney FF, Kaupmann K, O'Leary OF, Gassmann M, Bettler B, Cryan JF (2016) Differential roles of GABAB1 subunit isoforms on locomotor responses to acute and repeated administration of cocaine. Behav Brain Res 298(Pt B):12–16

    CAS  PubMed  Google Scholar 

  • Jacobson LH, Vlachou S, Slattery DA, Li X, Cryan JF (2018) The gamma-aminobutyric acid B receptor in depression and reward. Biol Psychiatry 83(11):963–976

    CAS  PubMed  Google Scholar 

  • Jayaram P, Steketee JD (2004) Effects of repeated cocaine on medial prefrontal cortical GABAB receptor modulation of neurotransmission in the mesocorticolimbic dopamine system. J Neurochem 90(4):839–847

    CAS  PubMed  Google Scholar 

  • Jhou TC, Fields HL, Baxter MG, Saper CB, Holland PC (2009a) The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses. Neuron 61(5):786–800

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jhou TC, Geisler S, Marinelli M, Degarmo BA, Zahm DS (2009b) The mesopontine rostromedial tegmental nucleus: a structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and substantia nigra compacta. J Comp Neurol 513(6):566–596

    PubMed  PubMed Central  Google Scholar 

  • Johnson SW, North RA (1992) Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci 12(2):483–488

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kahn R, Biswas K, Childress AR, Shoptaw S, Fudala PJ, Gorgon L, Montoya I, Collins J, McSherry F, Li SH, Chiang N, Alathari H, Watson D, Liberto J, Beresford T, Stock C, Wallace C, Gruber V, Elkashef A (2009) Multi-center trial of baclofen for abstinence initiation in severe cocaine-dependent individuals. Drug Alcohol Depend 103(1–2):59–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalinichev M, Girard F, Haddouk H, Rouillier M, Riguet E, Royer-Urios I, Mutel V, Lutjens R, Poli S (2017) The drug candidate, ADX71441, is a novel, potent and selective positive allosteric modulator of the GABAB receptor with a potential for treatment of anxiety, pain and spasticity. Neuropharmacology 114:34–47

    CAS  PubMed  Google Scholar 

  • Kalivas PW (1995) Interactions between dopamine and excitatory amino acids in behavioral sensitization to psychostimulants. Drug Alcohol Depend 37(2):95–100

    CAS  PubMed  Google Scholar 

  • Kalivas PW, Duffy P, Eberhardt H (1990) Modulation of A10 dopamine neurons by gamma-aminobutyric acid agonists. J Pharmacol Exp Ther 253(2):858–866

    CAS  PubMed  Google Scholar 

  • Kallo I, Molnar CS, Szoke S, Fekete C, Hrabovszky E, Liposits Z (2015) Area-specific analysis of the distribution of hypothalamic neurons projecting to the rat ventral tegmental area, with special reference to the GABAergic and glutamatergic efferents. Front Neuroanat 9:112

    PubMed  PubMed Central  Google Scholar 

  • Kaplan GB, McRoberts RL 3rd, Smokler HJ (2004) Baclofen as adjunctive treatment for a patient with cocaine dependence and schizoaffective disorder. J Clin Psychopharmacol 24(5):574–575

    PubMed  Google Scholar 

  • Kaufling J, Veinante P, Pawlowski SA, Freund-Mercier MJ, Barrot M (2009) Afferents to the GABAergic tail of the ventral tegmental area in the rat. J Comp Neurol 513(6):597–621

    PubMed  Google Scholar 

  • Kaupmann K, Huggel K, Heid J, Flor PJ, Bischoff S, Mickel SJ, McMaster G, Angst C, Bittiger H, Froestl W, Bettler B (1997) Expression cloning of GABA(B) receptors uncovers similarity to metabotropic glutamate receptors. Nature 386(6622):239–246

    CAS  PubMed  Google Scholar 

  • Klitenick MA, DeWitte P, Kalivas PW (1992) Regulation of somatodendritic dopamine release in the ventral tegmental area by opioids and GABA: an in vivo microdialysis study. J Neurosci 12(7):2623–2632

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kniazeff J, Galvez T, Labesse G, Pin JP (2002) No ligand binding in the GB2 subunit of the GABA(B) receptor is required for activation and allosteric interaction between the subunits. J Neurosci 22(17):7352–7361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar K, Sharma S, Kumar P, Deshmukh R (2013) Therapeutic potential of GABA(B) receptor ligands in drug addiction, anxiety, depression and other CNS disorders. Pharmacol Biochem Behav 110:174–184

    CAS  PubMed  Google Scholar 

  • Kushner SA, Unterwald EM (2001) Chronic cocaine administration decreases the functional coupling of GABA(B) receptors in the rat ventral tegmental area as measured by baclofen-stimulated 35S-GTPgammaS binding. Life Sci 69(9):1093–1102

    CAS  PubMed  Google Scholar 

  • Labouebe G, Lomazzi M, Cruz HG, Creton C, Lujan R, Li M, Yanagawa Y, Obata K, Watanabe M, Wickman K, Boyer SB, Slesinger PA, Luscher C (2007) RGS2 modulates coupling between GABAB receptors and GIRK channels in dopamine neurons of the ventral tegmental area. Nat Neurosci 10(12):1559–1568

    CAS  PubMed  Google Scholar 

  • Lacey MG, Mercuri NB, North RA (1990) Actions of cocaine on rat dopaminergic neurones in vitro. Br J Pharmacol 99(4):731–735

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lalive AL, Lüscher C (2016) GABA B receptor functions in the mesolimbic dopamine system. In: GiancarloColombo (ed) GABAB receptors the receptors. Humana Press, Cham, pp 129–154

    Google Scholar 

  • Laviolette SR, van der Kooy D (2001) GABA(A) receptors in the ventral tegmental area control bidirectional reward signalling between dopaminergic and non-dopaminergic neural motivational systems. Eur J Neurosci 13(5):1009–1015

    CAS  PubMed  Google Scholar 

  • Laviolette SR, Gallegos RA, Henriksen SJ, van der Kooy D (2004) Opiate state controls bi-directional reward signaling via GABAA receptors in the ventral tegmental area. Nat Neurosci 7(2):160–169

    CAS  PubMed  Google Scholar 

  • Le Foll B, Wertheim CE, Goldberg SR (2008) Effects of baclofen on conditioned rewarding and discriminative stimulus effects of nicotine in rats. Neurosci Lett 443(3):236–240

    PubMed  PubMed Central  Google Scholar 

  • Lecca S, Melis M, Luchicchi A, Muntoni AL, Pistis M (2012) Inhibitory inputs from rostromedial tegmental neurons regulate spontaneous activity of midbrain dopamine cells and their responses to drugs of abuse. Neuropsychopharmacology 37(5):1164–1176

    CAS  PubMed  Google Scholar 

  • Leite-Morris KA, Fukudome EY, Shoeb MH, Kaplan GB (2004) GABA(B) receptor activation in the ventral tegmental area inhibits the acquisition and expression of opiate-induced motor sensitization. J Pharmacol Exp Ther 308(2):667–678

    CAS  PubMed  Google Scholar 

  • LeSage MG, Stafford D, Glowa JR (2000) Abuse liability of the anesthetic propofol: self-administration of propofol in rats under fixed-ratio schedules of drug delivery. Psychopharmacology 153(1):148–154

    CAS  PubMed  Google Scholar 

  • Lhuillier L, Mombereau C, Cryan JF, Kaupmann K (2007) GABA(B) receptor-positive modulation decreases selective molecular and behavioral effects of cocaine. Neuropsychopharmacology 32(2):388–398

    CAS  PubMed  Google Scholar 

  • Li SM, Yin LL, Ren YH, Pan LS, Zheng JW (2001) GABA(B) receptor agonist baclofen attenuates the development and expression of d-methamphetamine-induced place preference in rats. Life Sci 70(3):349–356

    CAS  PubMed  Google Scholar 

  • Li J, Olinger AB, Dassow MS, Abel MS (2002a) GABA(B) receptor gene expression is not altered in cocaine-sensitized rats. J Neurosci Res 68(2):241–247

    CAS  PubMed  Google Scholar 

  • Li SP, Park MS, Bahk JY, Kim MO (2002b) Chronic nicotine and smoking exposure decreases GABA(B1) receptor expression in the rat hippocampus. Neurosci Lett 334(2):135–139

    CAS  PubMed  Google Scholar 

  • Li SP, Park MS, Kim JH, Kim MO (2004) Chronic nicotine and smoke treatment modulate dopaminergic activities in ventral tegmental area and nucleus accumbens and the gamma-aminobutyric acid type B receptor expression of the rat prefrontal cortex. J Neurosci Res 78(6):868–879

    CAS  PubMed  Google Scholar 

  • Li X, Sturchler E, Kaczanowska K, Cameron M, Finn MG, Griffin P, McDonald P, Markou A (2017) KK-92A, a novel GABAB receptor positive allosteric modulator, attenuates nicotine self-administration and cue-induced nicotine seeking in rats. Psychopharmacology 234(9–10):1633–1644

    CAS  PubMed  Google Scholar 

  • Lile JA, Stoops WW, Allen TS, Glaser PE, Hays LR, Rush CR (2004) Baclofen does not alter the reinforcing, subject-rated or cardiovascular effects of intranasal cocaine in humans. Psychopharmacology 171(4):441–449

    CAS  PubMed  Google Scholar 

  • Lile JA, Kelly TH, Hays LR (2012) Separate and combined effects of the GABA(B) agonist baclofen and Delta9-THC in humans discriminating Delta9-THC. Drug Alcohol Depend 126(1–2):216–223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ling W, Shoptaw S, Majewska D (1998) Baclofen as a cocaine anti-craving medication: a preliminary clinical study. Neuropsychopharmacology 18(5):403–404

    CAS  PubMed  Google Scholar 

  • Liu J, Maurel D, Etzol S, Brabet I, Ansanay H, Pin JP, Rondard P (2004) Molecular determinants involved in the allosteric control of agonist affinity in the GABAB receptor by the GABAB2 subunit. J Biol Chem 279(16):15824–15830

    CAS  PubMed  Google Scholar 

  • Lobina C, Carai MA, Froestl W, Mugnaini C, Pasquini S, Corelli F, Gessa GL, Colombo G (2011) Activation of the GABA(B) receptor prevents nicotine-induced locomotor stimulation in mice. Front Psych 2:76

    CAS  Google Scholar 

  • Luscher C, Malenka RC (2011) Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 69(4):650–663

    PubMed  PubMed Central  Google Scholar 

  • Luscher C, Jan LY, Stoffel M, Malenka RC, Nicoll RA (1997) G protein-coupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. Neuron 19(3):687–695

    CAS  PubMed  Google Scholar 

  • Macey DJ, Froestl W, Koob GF, Markou A (2001) Both GABA(B) receptor agonist and antagonists decreased brain stimulation reward in the rat. Neuropharmacology 40(5):676–685

    CAS  PubMed  Google Scholar 

  • Mahler SV, Vazey EM, Beckley JT, Keistler CR, McGlinchey EM, Kaufling J, Wilson SP, Deisseroth K, Woodward JJ, Aston-Jones G (2014) Designer receptors show role for ventral pallidum input to ventral tegmental area in cocaine seeking. Nat Neurosci 17(4):577–585

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malherbe P, Masciadri R, Norcross RD, Knoflach F, Kratzeisen C, Zenner MT, Kolb Y, Marcuz A, Huwyler J, Nakagawa T, Porter RH, Thomas AW, Wettstein JG, Sleight AJ, Spooren W, Prinssen EP (2008) Characterization of (R,S)-5,7-di-tert-butyl-3-hydroxy-3-trifluoromethyl-3H-benzofuran-2-one as a positive allosteric modulator of GABAB receptors. Br J Pharmacol 154(4):797–811

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mansvelder HD, Keath JR, McGehee DS (2002) Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron 33(6):905–919

    CAS  PubMed  Google Scholar 

  • Manzoni OJ, Williams JT (1999) Presynaptic regulation of glutamate release in the ventral tegmental area during morphine withdrawal. J Neurosci 19(15):6629–6636

    CAS  PubMed  PubMed Central  Google Scholar 

  • Margeta-Mitrovic M, Mitrovic I, Riley RC, Jan LY, Basbaum AI (1999) Immunohistochemical localization of GABA(B) receptors in the rat central nervous system. J Comp Neurol 405(3):299–321

    CAS  PubMed  Google Scholar 

  • Margolis EB, Hjelmstad GO, Fujita W, Fields HL (2014) Direct bidirectional mu-opioid control of midbrain dopamine neurons. J Neurosci 34(44):14707–14716

    PubMed  PubMed Central  Google Scholar 

  • Matsui A, Williams JT (2011) Opioid-sensitive GABA inputs from rostromedial tegmental nucleus synapse onto midbrain dopamine neurons. J Neurosci 31(48):17729–17735

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsui A, Jarvie BC, Robinson BG, Hentges ST, Williams JT (2014) Separate GABA afferents to dopamine neurons mediate acute action of opioids, development of tolerance, and expression of withdrawal. Neuron 82(6):1346–1356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matthews RT, German DC (1984) Electrophysiological evidence for excitation of rat ventral tegmental area dopamine neurons by morphine. Neuroscience 11(3):617–625

    CAS  PubMed  Google Scholar 

  • Meng S, Quan W, Qi X, Su Z, Yang S (2014) Effect of baclofen on morphine-induced conditioned place preference, extinction, and stress-induced reinstatement in chronically stressed mice. Psychopharmacology 231(1):27–36

    CAS  PubMed  Google Scholar 

  • Mombereau C, Kaupmann K, Froestl W, Sansig G, van der Putten H, Cryan JF (2004) Genetic and pharmacological evidence of a role for GABA(B) receptors in the modulation of anxiety- and antidepressant-like behavior. Neuropsychopharmacology 29(6):1050–1062

    CAS  PubMed  Google Scholar 

  • Mombereau C, Lhuillier L, Kaupmann K, Cryan JF (2007) GABAB receptor-positive modulation-induced blockade of the rewarding properties of nicotine is associated with a reduction in nucleus accumbens DeltaFosB accumulation. J Pharmacol Exp Ther 321(1):172–177

    CAS  PubMed  Google Scholar 

  • Morrisett RA, Mott DD, Lewis DV, Swartzwelder HS, Wilson WA (1991) GABAB-receptor-mediated inhibition of the N-methyl-D-aspartate component of synaptic transmission in the rat hippocampus. J Neurosci 11(1):203–209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Munoz MB, Padgett CL, Rifkin R, Terunuma M, Wickman K, Contet C, Moss SJ, Slesinger PA (2016) A role for the GIRK3 subunit in methamphetamine-induced attenuation of GABAB receptor-activated GIRK currents in VTA dopamine neurons. J Neurosci 36(11):3106–3114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Negrete-Diaz JV, Shumilov K, Real MA, Medina-Luque J, Valderrama-Carvajal A, Flores G, Rodriguez-Moreno A, Rivera A (2019) Pharmacological activation of dopamine D4 receptor modulates morphine-induced changes in the expression of GAD65/67 and GABAB receptors in the basal ganglia. Neuropharmacology 152:22–29

    CAS  PubMed  Google Scholar 

  • Nestler EJ, Terwilliger RZ, Walker JR, Sevarino KA, Duman RS (1990) Chronic cocaine treatment decreases levels of the G protein subunits Gi alpha and Go alpha in discrete regions of rat brain. J Neurochem 55(3):1079–1082

    CAS  PubMed  Google Scholar 

  • Nieh EH, Matthews GA, Allsop SA, Presbrey KN, Leppla CA, Wichmann R, Neve R, Wildes CP, Tye KM (2015) Decoding neural circuits that control compulsive sucrose seeking. Cell 160(3):528–541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nieh EH, Vander Weele CM, Matthews GA, Presbrey KN, Wichmann R, Leppla CA, Izadmehr EM, Tye KM (2016) Inhibitory input from the lateral hypothalamus to the ventral tegmental area disinhibits dopamine neurons and promotes behavioral activation. Neuron 90(6):1286–1298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Odagaki Y, Koyama T (2001) Identification of galpha subtype(s) involved in gamma-aminobutyric acid(B) receptor-mediated high-affinity guanosine triphosphatase activity in rat cerebral cortical membranes. Neurosci Lett 297(2):137–141

    CAS  PubMed  Google Scholar 

  • Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 47(6):419–427

    CAS  PubMed  Google Scholar 

  • Olpe HR, Steinmann MW, Ferrat T, Pozza MF, Greiner K, Brugger F, Froestl W, Mickel SJ, Bittiger H (1993) The actions of orally active GABAB receptor antagonists on GABAergic transmission in vivo and in vitro. Eur J Pharmacol 233(2–3):179–186

    CAS  PubMed  Google Scholar 

  • Overton PG, Richards CD, Berry MS, Clark D (1999) Long-term potentiation at excitatory amino acid synapses on midbrain dopamine neurons. Neuroreport 10(2):221–226

    CAS  PubMed  Google Scholar 

  • Padgett CL, Lalive AL, Tan KR, Terunuma M, Munoz MB, Pangalos MN, Martinez-Hernandez J, Watanabe M, Moss SJ, Lujan R, Luscher C, Slesinger PA (2012) Methamphetamine-evoked depression of GABA(B) receptor signaling in GABA neurons of the VTA. Neuron 73(5):978–989

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paladini CA, Tepper JM (1999) GABA(A) and GABA(B) antagonists differentially affect the firing pattern of substantia nigra dopaminergic neurons in vivo. Synapse 32(3):165–176

    CAS  PubMed  Google Scholar 

  • Palpacuer C, Duprez R, Huneau A, Locher C, Boussageon R, Laviolle B, Naudet F (2018) Pharmacologically controlled drinking in the treatment of alcohol dependence or alcohol use disorders: a systematic review with direct and network meta-analyses on nalmefene, naltrexone, acamprosate, baclofen and topiramate. Addiction 113(2):220–237

    PubMed  Google Scholar 

  • Paterson NE, Froestl W, Markou A (2004) The GABAB receptor agonists baclofen and CGP44532 decreased nicotine self-administration in the rat. Psychopharmacology 172(2):179–186

    CAS  PubMed  Google Scholar 

  • Paterson NE, Bruijnzeel AW, Kenny PJ, Wright CD, Froestl W, Markou A (2005a) Prolonged nicotine exposure does not alter GABA(B) receptor-mediated regulation of brain reward function. Neuropharmacology 49(7):953–962

    CAS  PubMed  Google Scholar 

  • Paterson NE, Froestl W, Markou A (2005b) Repeated administration of the GABAB receptor agonist CGP44532 decreased nicotine self-administration, and acute administration decreased cue-induced reinstatement of nicotine-seeking in rats. Neuropsychopharmacology 30(1):119–128

    CAS  PubMed  Google Scholar 

  • Paterson NE, Vlachou S, Guery S, Kaupmann K, Froestl W, Markou A (2008) Positive modulation of GABA(B) receptors decreased nicotine self-administration and counteracted nicotine-induced enhancement of brain reward function in rats. J Pharmacol Exp Ther 326(1):306–314

    CAS  PubMed  Google Scholar 

  • Pedron VT, Varani AP, Balerio GN (2016) Baclofen prevents the elevated plus maze behavior and BDNF expression during naloxone precipitated morphine withdrawal in male and female mice. Synapse 70(5):187–197

    CAS  PubMed  Google Scholar 

  • Perdona E, Costantini VJ, Tessari M, Martinelli P, Carignani C, Valerio E, Mok MH, Zonzini L, Visentini F, Gianotti M, Gordon L, Rocheville M, Corsi M, Capelli AM (2011) In vitro and in vivo characterization of the novel GABAB receptor positive allosteric modulator, 2-{1-[2-(4-chlorophenyl)-5-methylpyrazolo[1,5-a]pyrimidin-7-yl]-2-piperidinyl}ethanol (CMPPE). Neuropharmacology 61(5–6):957–966

    CAS  PubMed  Google Scholar 

  • Perrotti LI, Bolanos CA, Choi KH, Russo SJ, Edwards S, Ulery PG, Wallace DL, Self DW, Nestler EJ, Barrot M (2005) DeltaFosB accumulates in a GABAergic cell population in the posterior tail of the ventral tegmental area after psychostimulant treatment. Eur J Neurosci 21(10):2817–2824

    PubMed  Google Scholar 

  • Phillips TJ, Reed C (2014) Targeting GABAB receptors for anti-abuse drug discovery. Expert Opin Drug Discov 9(11):1307–1317

    CAS  PubMed  Google Scholar 

  • Pitman KA, Puil E, Borgland SL (2014) GABA(B) modulation of dopamine release in the nucleus accumbens core. Eur J Neurosci 40(10):3472–3480

    PubMed  Google Scholar 

  • Polter AM, Barcomb K, Tsuda AC, Kauer JA (2018) Synaptic function and plasticity in identified inhibitory inputs onto VTA dopamine neurons. Eur J Neurosci 47(10):1208–1218

    PubMed  PubMed Central  Google Scholar 

  • Prosser HM, Gill CH, Hirst WD, Grau E, Robbins M, Calver A, Soffin EM, Farmer CE, Lanneau C, Gray J, Schenck E, Warmerdam BS, Clapham C, Reavill C, Rogers DC, Stean T, Upton N, Humphreys K, Randall A, Geppert M, Davies CH, Pangalos MN (2001) Epileptogenesis and enhanced prepulse inhibition in GABA(B1)-deficient mice. Mol Cell Neurosci 17(6):1059–1070

    CAS  PubMed  Google Scholar 

  • Ramshini E, Alaei H, Reisi P, Alaei S, Shahidani S (2013) The role of GABAB receptors in morphine self-administration. Int J Prev Med 4(2):158–164

    PubMed  PubMed Central  Google Scholar 

  • Ranaldi R (2014) Dopamine and reward seeking: the role of ventral tegmental area. Rev Neurosci 25(5):621–630

    CAS  PubMed  Google Scholar 

  • Ranaldi R, Poeggel K (2002) Baclofen decreases methamphetamine self-administration in rats. Neuroreport 13(9):1107–1110

    CAS  PubMed  Google Scholar 

  • Riahi E, Mirzaii-Dizgah I, Karimian SM, Sadeghipour HR, Dehpour AR (2009) Attenuation of morphine withdrawal signs by a GABAB receptor agonist in the locus coeruleus of rats. Behav Brain Res 196(1):11–14

    CAS  PubMed  Google Scholar 

  • Rifkin RA, Huyghe D, Li X, Parakala M, Aisenberg E, Moss SJ, Slesinger PA (2018) GIRK currents in VTA dopamine neurons control the sensitivity of mice to cocaine-induced locomotor sensitization. Proc Natl Acad Sci U S A 115(40):E9479–E9488

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts DC, Andrews MM (1997) Baclofen suppression of cocaine self-administration: demonstration using a discrete trials procedure. Psychopharmacology 131(3):271–277

    CAS  PubMed  Google Scholar 

  • Roberts DC, Andrews MM, Vickers GJ (1996) Baclofen attenuates the reinforcing effects of cocaine in rats. Neuropsychopharmacology 15(4):417–423

    CAS  PubMed  Google Scholar 

  • Rotheram-Fuller E, De La Garza R 2nd, Mahoney JJ 3rd, Shoptaw S, Newton TF (2007) Subjective and cardiovascular effects of cocaine during treatment with amantadine and baclofen in combination. Psychiatry Res 152(2–3):205–210

    CAS  PubMed  Google Scholar 

  • Saal D, Dong Y, Bonci A, Malenka RC (2003) Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron 37(4):577–582

    CAS  PubMed  Google Scholar 

  • Saigusa T, Aono Y, Sekino R, Uchida T, Takada K, Oi Y, Koshikawa N, Cools AR (2012) In vivo neurochemical evidence that newly synthesised GABA activates GABA(B), but not GABA(A), receptors on dopaminergic nerve endings in the nucleus accumbens of freely moving rats. Neuropharmacology 62(2):907–913

    CAS  PubMed  Google Scholar 

  • Schuler V, Luscher C, Blanchet C, Klix N, Sansig G, Klebs K, Schmutz M, Heid J, Gentry C, Urban L, Fox A, Spooren W, Jaton AL, Vigouret J, Pozza M, Kelly PH, Mosbacher J, Froestl W, Kaslin E, Korn R, Bischoff S, Kaupmann K, van der Putten H, Bettler B (2001) Epilepsy, hyperalgesia, impaired memory, and loss of pre- and postsynaptic GABA(B) responses in mice lacking GABA(B(1)). Neuron 31(1):47–58

    CAS  PubMed  Google Scholar 

  • Schwenk J, Metz M, Zolles G, Turecek R, Fritzius T, Bildl W, Tarusawa E, Kulik A, Unger A, Ivankova K, Seddik R, Tiao JY, Rajalu M, Trojanova J, Rohde V, Gassmann M, Schulte U, Fakler B, Bettler B (2010) Native GABA(B) receptors are heteromultimers with a family of auxiliary subunits. Nature 465(7295):231–235

    CAS  PubMed  Google Scholar 

  • Seddik R, Jungblut SP, Silander OK, Rajalu M, Fritzius T, Besseyrias V, Jacquier V, Fakler B, Gassmann M, Bettler B (2012) Opposite effects of KCTD subunit domains on GABA(B) receptor-mediated desensitization. J Biol Chem 287(47):39869–39877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Self DW (2004) Regulation of drug-taking and -seeking behaviors by neuroadaptations in the mesolimbic dopamine system. Neuropharmacology 47(Suppl 1):242–255

    CAS  PubMed  Google Scholar 

  • Selley DE, Nestler EJ, Breivogel CS, Childers SR (1997) Opioid receptor-coupled G-proteins in rat locus coeruleus membranes: decrease in activity after chronic morphine treatment. Brain Res 746(1–2):10–18

    CAS  PubMed  Google Scholar 

  • Selley DE, Cassidy MP, Martin BR, Sim-Selley LJ (2004) Long-term administration of Delta9-tetrahydrocannabinol desensitizes CB1-, adenosine A1-, and GABAB-mediated inhibition of adenylyl cyclase in mouse cerebellum. Mol Pharmacol 66(5):1275–1284

    CAS  PubMed  Google Scholar 

  • Sharpe AL, Varela E, Bettinger L, Beckstead MJ (2014) Methamphetamine self-administration in mice decreases GIRK channel-mediated currents in midbrain dopamine neurons. Int J Neuropsychopharmacol 18(5)

    Google Scholar 

  • Sharpe MJ, Marchant NJ, Whitaker LR, Richie CT, Zhang YJ, Campbell EJ, Koivula PP, Necarsulmer JC, Mejias-Aponte C, Morales M, Pickel J, Smith JC, Niv Y, Shaham Y, Harvey BK, Schoenbaum G (2017) Lateral hypothalamic GABAergic neurons encode reward predictions that are relayed to the ventral tegmental area to regulate learning. Curr Biol 27(14):2089–2100.e5

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shoaib M, Swanner LS, Beyer CE, Goldberg SR, Schindler CW (1998) The GABAB agonist baclofen modifies cocaine self-administration in rats. Behav Pharmacol 9(3):195–206

    CAS  PubMed  Google Scholar 

  • Shoji S, Simms D, McDaniel WC, Gallagher JP (1997) Chronic cocaine enhances gamma-aminobutyric acid and glutamate release by altering presynaptic and not postsynaptic gamma-aminobutyric acidB receptors within the rat dorsolateral septal nucleus. J Pharmacol Exp Ther 280(1):129–137

    CAS  PubMed  Google Scholar 

  • Shoptaw S, Yang X, Rotheram-Fuller EJ, Hsieh YC, Kintaudi PC, Charuvastra VC, Ling W (2003) Randomized placebo-controlled trial of baclofen for cocaine dependence: preliminary effects for individuals with chronic patterns of cocaine use. J Clin Psychiatry 64(12):1440–1448

    CAS  PubMed  Google Scholar 

  • Sim LJ, Hampson RE, Deadwyler SA, Childers SR (1996) Effects of chronic treatment with delta9-tetrahydrocannabinol on cannabinoid-stimulated [35S]GTPgammaS autoradiography in rat brain. J Neurosci 16(24):8057–8066

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha R (2008) Chronic stress, drug use, and vulnerability to addiction. Ann N Y Acad Sci 1141:105–130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Slattery DA, Markou A, Froestl W, Cryan JF (2005) The GABAB receptor-positive modulator GS39783 and the GABAB receptor agonist baclofen attenuate the reward-facilitating effects of cocaine: intracranial self-stimulation studies in the rat. Neuropsychopharmacology 30(11):2065–2072

    CAS  PubMed  Google Scholar 

  • Smith MA, Yancey DL, Morgan D, Liu Y, Froestl W, Roberts DC (2004) Effects of positive allosteric modulators of the GABAB receptor on cocaine self-administration in rats. Psychopharmacology 173(1–2):105–111

    CAS  PubMed  Google Scholar 

  • Smith KS, Tindell AJ, Aldridge JW, Berridge KC (2009) Ventral pallidum roles in reward and motivation. Behav Brain Res 196(2):155–167

    PubMed  Google Scholar 

  • Soden ME, Chung AS, Cuevas B, Resnick JM, Awatramani R, Zweifel LS (2020) Anatomic resolution of neurotransmitter-specific projections to the VTA reveals diversity of GABAergic inputs. Nat Neurosci

    Google Scholar 

  • Steketee JD, Beyer CE (2005) Injections of baclofen into the ventral medial prefrontal cortex block the initiation, but not the expression, of cocaine sensitization in rats. Psychopharmacology 180(2):352–358

    CAS  PubMed  Google Scholar 

  • Sturchler E, Li X, de Lourdes Ladino M, Kaczanowska K, Cameron M, Griffin PR, Finn MG, Markou A, McDonald P (2017) GABAB receptor allosteric modulators exhibit pathway-dependent and species-selective activity. Pharmacol Res Perspect 5(2):e00288

    PubMed  PubMed Central  Google Scholar 

  • Sugita S, Johnson SW, North RA (1992) Synaptic inputs to GABAA and GABAB receptors originate from discrete afferent neurons. Neurosci Lett 134(2):207–211

    CAS  PubMed  Google Scholar 

  • Takahashi T, Kajikawa Y, Tsujimoto T (1998) G-protein-coupled modulation of presynaptic calcium currents and transmitter release by a GABAB receptor. J Neurosci 18(9):3138–3146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan KR, Brown M, Labouebe G, Yvon C, Creton C, Fritschy JM, Rudolph U, Luscher C (2010) Neural bases for addictive properties of benzodiazepines. Nature 463(7282):769–774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan D, Nuno-Perez A, Mameli M, Meye FJ (2018) Cocaine withdrawal reduces GABAB R transmission at entopeduncular nucleus – lateral habenula synapses. Eur J Neurosci 50(3):2124–2133

    PubMed  PubMed Central  Google Scholar 

  • Taylor SR, Badurek S, Dileone RJ, Nashmi R, Minichiello L, Picciotto MR (2014) GABAergic and glutamatergic efferents of the mouse ventral tegmental area. J Comp Neurol 522(14):3308–3334

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson SM, Gahwiler BH (1992) Comparison of the actions of baclofen at pre- and postsynaptic receptors in the rat hippocampus in vitro. J Physiol 451:329–345

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuji M, Nakagawa Y, Ishibashi Y, Yoshii T, Takashima T, Shimada M, Suzuki T (1996) Activation of ventral tegmental GABAB receptors inhibits morphine-induced place preference in rats. Eur J Pharmacol 313(3):169–173

    CAS  PubMed  Google Scholar 

  • Turecek R, Schwenk J, Fritzius T, Ivankova K, Zolles G, Adelfinger L, Jacquier V, Besseyrias V, Gassmann M, Schulte U, Fakler B, Bettler B (2014) Auxiliary GABAB receptor subunits uncouple G protein betagamma subunits from effector channels to induce desensitization. Neuron 82(5):1032–1044

    CAS  PubMed  Google Scholar 

  • Tyacke RJ, Lingford-Hughes A, Reed LJ, Nutt DJ (2010) GABAB receptors in addiction and its treatment. In: GABAB receptor pharmacology – a tribute to Norman bowery advances in pharmacology, pp 373–396

    Google Scholar 

  • Ulrich D, Bettler B (2007) GABA(B) receptors: synaptic functions and mechanisms of diversity. Curr Opin Neurobiol 17(3):298–303

    CAS  PubMed  Google Scholar 

  • Ungless MA, Whistler JL, Malenka RC, Bonci A (2001) Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 411(6837):583–587

    CAS  PubMed  Google Scholar 

  • Ungless MA, Singh V, Crowder TL, Yaka R, Ron D, Bonci A (2003) Corticotropin-releasing factor requires CRF binding protein to potentiate NMDA receptors via CRF receptor 2 in dopamine neurons. Neuron 39(3):401–407

    CAS  PubMed  Google Scholar 

  • Urwyler S (2011) Allosteric modulation of family C G-protein-coupled receptors: from molecular insights to therapeutic perspectives. Pharmacol Rev 63(1):59–126

    CAS  PubMed  Google Scholar 

  • Urwyler S, Mosbacher J, Lingenhoehl K, Heid J, Hofstetter K, Froestl W, Bettler B, Kaupmann K (2001) Positive allosteric modulation of native and recombinant gamma-aminobutyric acid(B) receptors by 2,6-Di-tert-butyl-4-(3-hydroxy-2,2-dimethyl-propyl)-phenol (CGP7930) and its aldehyde analog CGP13501. Mol Pharmacol 60(5):963–971

    CAS  PubMed  Google Scholar 

  • Urwyler S, Pozza MF, Lingenhoehl K, Mosbacher J, Lampert C, Froestl W, Koller M, Kaupmann K (2003) N,N'-Dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine (GS39783) and structurally related compounds: novel allosteric enhancers of gamma-aminobutyric acidB receptor function. J Pharmacol Exp Ther 307(1):322–330

    CAS  PubMed  Google Scholar 

  • Van Etten ML, Anthony JC (1999) Comparative epidemiology of initial drug opportunities and transitions to first use: marijuana, cocaine, hallucinogens and heroin. Drug Alcohol Depend 54(2):117–125

    PubMed  Google Scholar 

  • Varani AP, Balerio GN (2012) GABA(B) receptors involvement in the effects induced by nicotine on anxiety-related behaviour in mice. Pharmacol Res 65(5):507–513

    CAS  PubMed  Google Scholar 

  • Varani AP, Moutinho LM, Bettler B, Balerio GN (2012) Acute behavioural responses to nicotine and nicotine withdrawal syndrome are modified in GABAB1 knockout mice. Neuropharmacology 63(5):863–872

    CAS  PubMed  Google Scholar 

  • Varani AP, Pedron VT, Bettler B, Balerio GN (2014) Involvement of GABAB receptors in biochemical alterations induced by anxiety-related responses to nicotine in mice: genetic and pharmacological approaches. Neuropharmacology 81:31–41

    CAS  PubMed  Google Scholar 

  • Varani AP, Pedron VT, Machado LM, Antonelli MC, Bettler B, Balerio GN (2015) Lack of GABAB receptors modifies behavioural and biochemical alterations induced by precipitated nicotine withdrawal. Neuropharmacology 90:90–101

    CAS  PubMed  Google Scholar 

  • Varani AP, Pedron VT, Aon AJ, Hocht C, Acosta GB, Bettler B, Balerio GN (2018) Nicotine-induced molecular alterations are modulated by GABAB receptor activity. Addict Biol 23(1):230–246

    CAS  PubMed  Google Scholar 

  • Vengeliene V, Takahashi TT, Dravolina OA, Belozertseva I, Zvartau E, Bespalov AY, Spanagel R (2018) Efficacy and side effects of baclofen and the novel GABAB receptor positive allosteric modulator CMPPE in animal models for alcohol and cocaine addiction. Psychopharmacology 235(7):1955–1965

    CAS  PubMed  Google Scholar 

  • Vigot R, Barbieri S, Brauner-Osborne H, Turecek R, Shigemoto R, Zhang YP, Lujan R, Jacobson LH, Biermann B, Fritschy JM, Vacher CM, Muller M, Sansig G, Guetg N, Cryan JF, Kaupmann K, Gassmann M, Oertner TG, Bettler B (2006) Differential compartmentalization and distinct functions of GABAB receptor variants. Neuron 50(4):589–601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vlachou S, Markou A (2010) GABAB receptors in reward processes. In: GABAB receptor pharmacology – a tribute to Norman bowery advances in pharmacology, pp 315–371

    Google Scholar 

  • Vlachou S, Guery S, Froestl W, Banerjee D, Benedict J, Finn MG, Markou A (2011) Repeated administration of the GABAB receptor positive modulator BHF177 decreased nicotine self-administration, and acute administration decreased cue-induced reinstatement of nicotine seeking in rats. Psychopharmacology 215(1):117–128

    CAS  PubMed  Google Scholar 

  • Voigt RM, Herrold AA, Napier TC (2011a) Baclofen facilitates the extinction of methamphetamine-induced conditioned place preference in rats. Behav Neurosci 125(2):261–267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Voigt RM, Herrold AA, Riddle JL, Napier TC (2011b) Administration of GABA(B) receptor positive allosteric modulators inhibit the expression of previously established methamphetamine-induced conditioned place preference. Behav Brain Res 216(1):419–423

    CAS  PubMed  Google Scholar 

  • Wanat MJ, Willuhn I, Clark JJ, Phillips PE (2009) Phasic dopamine release in appetitive behaviors and drug addiction. Curr Drug Abuse Rev 2(2):195–213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Shaham Y, Zitzman D, Azari S, Wise RA, You ZB (2005) Cocaine experience establishes control of midbrain glutamate and dopamine by corticotropin-releasing factor: a role in stress-induced relapse to drug seeking. J Neurosci 25(22):5389–5396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weerts EM, Froestl W, Griffiths RR (2005) Effects of GABAergic modulators on food and cocaine self-administration in baboons. Drug Alcohol Depend 80(3):369–376

    CAS  PubMed  Google Scholar 

  • Weerts EM, Froestl W, Kaminski BJ, Griffiths RR (2007) Attenuation of cocaine-seeking by GABA B receptor agonists baclofen and CGP44532 but not the GABA reuptake inhibitor tiagabine in baboons. Drug Alcohol Depend 89(2–3):206–213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Westerink BH, Kwint HF, deVries JB (1996) The pharmacology of mesolimbic dopamine neurons: a dual-probe microdialysis study in the ventral tegmental area and nucleus accumbens of the rat brain. J Neurosci 16(8):2605–2611

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams CL, Buchta WC, Riegel AC (2014) CRF-R2 and the heterosynaptic regulation of VTA glutamate during reinstatement of cocaine seeking. J Neurosci 34(31):10402–10414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willick ML, Kokkinidis L (1995) The effects of ventral tegmental administration of GABAA, GABAB and NMDA receptor agonists on medial forebrain bundle self-stimulation. Behav Brain Res 70(1):31–36

    CAS  PubMed  Google Scholar 

  • Xi ZX, Stein EA (1998) Nucleus accumbens dopamine release modulation by mesolimbic GABAA receptors-an in vivo electrochemical study. Brain Res 798(1–2):156–165

    CAS  PubMed  Google Scholar 

  • Xi ZX, Stein EA (1999) Baclofen inhibits heroin self-administration behavior and mesolimbic dopamine release. J Pharmacol Exp Ther 290(3):1369–1374

    CAS  PubMed  Google Scholar 

  • Xi ZX, Ramamoorthy S, Shen H, Lake R, Samuvel DJ, Kalivas PW (2003) GABA transmission in the nucleus accumbens is altered after withdrawal from repeated cocaine. J Neurosci 23(8):3498–3505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia Y, Driscoll JR, Wilbrecht L, Margolis EB, Fields HL, Hjelmstad GO (2011) Nucleus accumbens medium spiny neurons target non-dopaminergic neurons in the ventral tegmental area. J Neurosci 31(21):7811–7816

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang B, Wang BF, Lai MJ, Zhang FQ, Yang XW, Zhou WH, Lian QQ (2011) Differential involvement of GABAA and GABAB receptors in propofol self-administration in rats. Acta Pharmacol Sin 32(12):1460–1465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, de Jong JW, Tak Y, Peck J, Bateup HS, Lammel S (2018) Nucleus accumbens subnuclei regulate motivated behavior via direct inhibition and disinhibition of VTA dopamine subpopulations. Neuron 97(2):434–449.e4

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon SS, Lee BH, Kim HS, Choi KH, Yun J, Jang EY, Shim I, Kim JA, Kim MR, Yang CH (2007) Potential roles of GABA receptors in morphine self-administration in rats. Neurosci Lett 428(1):33–37

    CAS  PubMed  Google Scholar 

  • Young KA, Franklin TR, Roberts DC, Jagannathan K, Suh JJ, Wetherill RR, Wang Z, Kampman KM, O'Brien CP, Childress AR (2014) Nipping cue reactivity in the bud: baclofen prevents limbic activation elicited by subliminal drug cues. J Neurosci 34(14):5038–5043

    PubMed  PubMed Central  Google Scholar 

  • Yu G, Sharp BM (2015) Basolateral amygdala and ventral hippocampus in stress-induced amplification of nicotine self-administration during reacquisition in rat. Psychopharmacology 232(15):2741–2749

    CAS  PubMed  Google Scholar 

  • Zhang XF, Hu XT, White FJ, Wolf ME (1997) Increased responsiveness of ventral tegmental area dopamine neurons to glutamate after repeated administration of cocaine or amphetamine is transient and selectively involves AMPA receptors. J Pharmacol Exp Ther 281(2):699–706

    CAS  PubMed  Google Scholar 

  • Zhang K, Tarazi FI, Campbell A, Baldessarini RJ (2000) GABA(B) receptors: altered coupling to G-proteins in rats sensitized to amphetamine. Neuroscience 101(1):5–10

    CAS  PubMed  Google Scholar 

  • Zhao-Shea R, Liu L, Soll LG, Improgo MR, Meyers EE, McIntosh JM, Grady SR, Marks MJ, Gardner PD, Tapper AR (2011) Nicotine-mediated activation of dopaminergic neurons in distinct regions of the ventral tegmental area. Neuropsychopharmacology 36(5):1021–1032

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng S, Abreu N, Levitz J, Kruse AC (2019) Structural basis for KCTD-mediated rapid desensitization of GABAB signalling. Nature 567(7746):127–131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo H, Glaaser I, Zhao Y, Kurinov I, Mosyak L, Wang H, Liu J, Park J, Frangaj A, Sturchler E, Zhou M, McDonald P, Geng Y, Slesinger PA, Fan QR (2019) Structural basis for auxiliary subunit KCTD16 regulation of the GABAB receptor. Proc Natl Acad Sci U S A 116(17):8370–8379

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaofan Li or Paul A. Slesinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, X., Slesinger, P.A. (2020). GABAB Receptors and Drug Addiction: Psychostimulants and Other Drugs of Abuse. In: Vlachou, S., Wickman, K. (eds) Behavioral Neurobiology of GABAB Receptor Function. Current Topics in Behavioral Neurosciences, vol 52. Springer, Cham. https://doi.org/10.1007/7854_2020_187

Download citation

Publish with us

Policies and ethics