Skip to main content

Clinical Treatment Options and Randomized Clinical Trials for Neurocognitive Complications of HIV Infection: Combination Antiretroviral Therapy, Central Nervous System Penetration Effectiveness, and Adjuvants

  • Chapter
  • First Online:
Neurocognitive Complications of HIV-Infection

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 50))

Abstract

The etiology and pathogenesis of human immunodeficiency virus type-I (HIV)-associated neurocognitive disorders (HAND) remain undetermined and are likely the produce of multiple mechanisms. This can mainly include neuronal injury from HIV, inflammatory processes, and mental health issues. As a result, a variety of treatment options have been tested including NeuroHIV-targeted regimens based on the central nervous system (CNS) penetration effectiveness (CPE) of antiretroviral therapy (ART) and adjuvant therapies for HAND. NeuroHIV-targeted ART regimens have produced consistent and statistically significant HIV suppression in the CNS, but this is not the case for cognitive and functional domains. Most adjuvant therapies such as minocycline, memantine, and selegiline have negligible benefit in the improvement of cognitive function of people living with HIV (PLWH) with mild to moderate neurocognitive impairment. Newer experimental treatments have been proposed to target cognitive and functional symptoms of HAND as well as potential underlying pathogenesis. This review aims to provide an analytical overview of the clinical treatment options and clinical trials for HAND by focusing on NeuroHIV-targeted ART regimen development, CPE, and adjuvant therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson AM, Munoz-Moreno JA, McClernon DR et al (2017) Prevalence and correlates of persistent HIV-1 RNA in cerebrospinal fluid during antiretroviral therapy. J Infect Dis 215:105–113

    CAS  PubMed  Google Scholar 

  • Antinori A, Giancola ML, Grisetti S et al (2002) Factors influencing virological response to antiretroviral drugs in cerebrospinal fluid of advanced HIV-1-infected patients. AIDS 16:1867–1876

    CAS  PubMed  Google Scholar 

  • Baker LD, Barsness SM, Borson S et al (2012) Effects of growth hormone-releasing hormone on cognitive function in adults with mild cognitive impairment and healthy older adults: results of a controlled trial. Arch Neurol 69:1420–1429

    PubMed  PubMed Central  Google Scholar 

  • Baker LM, Paul RH, Heaps-Woodruff JM et al (2015) The effect of central nervous system penetration effectiveness of highly active antiretroviral therapy on neuropsychological performance and neuroimaging in HIV infected individuals. J Neuroimmune Pharmacol 10:487–492

    PubMed  PubMed Central  Google Scholar 

  • Blanchard HC, Taha AY, Rapoport SI, Yuan ZX (2015) Low-dose aspirin (acetylsalicylate) prevents increases in brain PGE2, 15-epi-lipoxin A4 and 8-isoprostane concentrations in 9 month-old HIV-1 transgenic rats, a model for HIV-1 associated neurocognitive disorders. Prostaglandins Leukot Essent Fatty Acids 96:25–30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bougea A, Spantideas N, Galanis P, Gkekas G, Thomaides T (2019) Optimal treatment of HIV-associated neurocognitive disorders: myths and reality. A critical review. Ther Adv Infect Dis 6:2049936119838228

    PubMed  PubMed Central  Google Scholar 

  • Brouillette MJ, Mayo N, Fellows LK et al (2015) A better screening tool for HIV-associated neurocognitive disorders: is it what clinicians need? AIDS 29:895–902

    PubMed  Google Scholar 

  • Calcagno A, Barco A, Trunfio M, Bonora S (2018) CNS-targeted antiretroviral strategies: when are they needed and what to choose. Curr HIV/AIDS Rep 15:84–91

    PubMed  Google Scholar 

  • Caniglia EC, Cain LE, Justice A et al (2014) Antiretroviral penetration into the CNS and incidence of AIDS-defining neurologic conditions. Neurology 83:134–141

    PubMed  PubMed Central  Google Scholar 

  • Cao S, Woodrow KA (2019) Nanotechnology approaches to eradicating HIV reservoirs. Eur J Pharm Biopharm 138:48–63

    CAS  PubMed  Google Scholar 

  • Carroll A, Brew B (2017) HIV-associated neurocognitive disorders: recent advances in pathogenesis, biomarkers, and treatment. F1000Res 6:312

    PubMed  PubMed Central  Google Scholar 

  • Carvalhal A, Gill MJ, Letendre SL et al (2016) Central nervous system penetration effectiveness of antiretroviral drugs and neuropsychological impairment in the Ontario HIV Treatment Network cohort study. J Neurovirol 22:349–357

    CAS  PubMed  Google Scholar 

  • Casado JL, Marin A, Moreno A et al (2014) Central nervous system antiretroviral penetration and cognitive functioning in largely pretreated HIV-infected patients. J Neurovirol 20:54–61

    CAS  PubMed  Google Scholar 

  • Churchill MJ, Gorry PR, Cowley D et al (2006) Use of laser capture microdissection to detect integrated HIV-1 DNA in macrophages and astrocytes from autopsy brain tissues. J Neurovirol 12:146–152

    PubMed  Google Scholar 

  • Ciccarelli N, Fabbiani M, Colafigli M et al (2013) Revised central nervous system neuropenetration-effectiveness score is associated with cognitive disorders in HIV-infected patients with controlled plasma viraemia. Antivir Ther 18:153–160

    PubMed  Google Scholar 

  • Clifford DB, McArthur JC, Schifitto G et al (2002) A randomized clinical trial of CPI-1189 for HIV-associated cognitive-motor impairment. Neurology 59:1568–1573

    CAS  PubMed  Google Scholar 

  • Cross HM, Combrinck MI, Joska JA (2013) HIV-associated neurocognitive disorders: antiretroviral regimen, central nervous system penetration effectiveness, and cognitive outcomes. S Afr Med J 103:758–762

    CAS  PubMed  Google Scholar 

  • Cusini A, Vernazza PL, Yerly S et al (2013) Higher CNS penetration-effectiveness of long-term combination antiretroviral therapy is associated with better HIV-1 viral suppression in cerebrospinal fluid. J Acquir Immune Defic Syndr 62:28–35

    CAS  PubMed  Google Scholar 

  • Cysique LA, Maruff P, Brew BJ (2004) Prevalence and pattern of neuropsychological impairment in human immunodeficiency virus-infected/acquired immunodeficiency syndrome (HIV/AIDS) patients across pre- and post-highly active antiretroviral therapy eras: a combined study of two cohorts. J Neurovirol 10:350–357

    PubMed  Google Scholar 

  • Cysique LA, Vaida F, Letendre S et al (2009) Dynamics of cognitive change in impaired HIV-positive patients initiating antiretroviral therapy. Neurology 73:342–348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cysique LA, Moffat K, Moore DM et al (2013) HIV, vascular and aging injuries in the brain of clinically stable HIV-infected adults: a (1)H MRS study. PLoS One 8:e61738

    CAS  PubMed  PubMed Central  Google Scholar 

  • D’Antoni ML, Paul RH, Mitchell BI et al (2018) Improved cognitive performance and reduced monocyte activation in virally suppressed chronic HIV after dual CCR2 and CCR5 antagonism. J Acquir Immune Defic Syndr 79:108–116

    PubMed  PubMed Central  Google Scholar 

  • Dana Consortium on the Therapy of HIV Dementia and Related Cognitive Disorders (1998) A randomized, double-blind, placebo-controlled trial of deprenyl and thioctic acid in human immunodeficiency virus-associated cognitive impairment. Neurology 50:645–651

    Google Scholar 

  • De Luca A, Ciancio BC, Larussa D et al (2002) Correlates of independent HIV-1 replication in the CNS and of its control by antiretrovirals. Neurology 59:342–347

    PubMed  Google Scholar 

  • Decloedt EH, Rosenkranz B, Maartens G, Joska J (2015) Central nervous system penetration of antiretroviral drugs: pharmacokinetic, pharmacodynamic and pharmacogenomic considerations. Clin Pharmacokinet 54:581–598

    CAS  PubMed  Google Scholar 

  • Deutsch R, Ellis RJ, McCutchan JA et al (2001) AIDS-associated mild neurocognitive impairment is delayed in the era of highly active antiretroviral therapy. AIDS 15:1898–1899

    CAS  PubMed  Google Scholar 

  • Donath M, Wolf T, Sturmer M et al (2016) HIV-1 replication in central nervous system increases over time on only protease inhibitor therapy. Med Microbiol Immunol 205:575–583

    CAS  PubMed  Google Scholar 

  • Dravid AN, Natrajan K, Kulkarni MM et al (2018) Discordant CSF/plasma HIV-1 RNA in individuals on virologically suppressive antiretroviral therapy in Western India. Medicine (Baltimore) 97:e9969

    CAS  Google Scholar 

  • Eden A, Fuchs D, Hagberg L et al (2010) HIV-1 viral escape in cerebrospinal fluid of subjects on suppressive antiretroviral treatment. J Infect Dis 202:1819–1825

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis R, Letendre SL (2016) Update and new directions in therapeutics for neurological complications of HIV infections. Neurotherapeutics 13:471–476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis RJ, Hsia K, Spector SA et al (1997) Cerebrospinal fluid human immunodeficiency virus type 1 RNA levels are elevated in neurocognitively impaired individuals with acquired immunodeficiency syndrome. HIV Neurobehavioral Research Center Group. Ann Neurol 42:679–688

    CAS  PubMed  Google Scholar 

  • Ellis RJ, Moore DJ, Childers ME et al (2002) Progression to neuropsychological impairment in human immunodeficiency virus infection predicted by elevated cerebrospinal fluid levels of human immunodeficiency virus RNA. Arch Neurol 59:923–928

    PubMed  Google Scholar 

  • Ellis RJ, Letendre S, Vaida F et al (2014) Randomized trial of central nervous system-targeted antiretrovirals for HIV-associated neurocognitive disorder. Clin Infect Dis 58:1015–1022

    CAS  PubMed  Google Scholar 

  • Erlandson KM, Kitch D, Wester CW et al (2017) The impact of statin and angiotensin-converting enzyme inhibitor/angiotensin receptor blocker therapy on cognitive function in adults with human immunodeficiency virus infection. Clin Infect Dis 65:2042–2049

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evans SR, Yeh TM, Sacktor N et al (2007) Selegiline transdermal system (STS) for HIV-associated cognitive impairment: open-label report of ACTG 5090. HIV Clin Trials 8:437–446

    PubMed  Google Scholar 

  • Foley J, Ettenhofer M, Wright MJ et al (2010) Neurocognitive functioning in HIV-1 infection: effects of cerebrovascular risk factors and age. Clin Neuropsychol 24:265–285

    PubMed  PubMed Central  Google Scholar 

  • Garvey L, Surendrakumar V, Winston A (2011) Low rates of neurocognitive impairment are observed in neuro-asymptomatic HIV-infected subjects on effective antiretroviral therapy. HIV Clin Trials 12:333–338

    CAS  PubMed  Google Scholar 

  • Gates TM, Cysique LA, Siefried KJ, Chaganti J, Moffat KJ, Brew BJ (2016) Maraviroc-intensified combined antiretroviral therapy improves cognition in virally suppressed HIV-associated neurocognitive disorder. AIDS 30:591–600

    CAS  PubMed  Google Scholar 

  • Heseltine PN, Goodkin K, Atkinson JH et al (1998) Randomized double-blind placebo-controlled trial of peptide T for HIV-associated cognitive impairment. Arch Neurol 55:41–51

    CAS  PubMed  Google Scholar 

  • Hong S, Banks WA (2015) Role of the immune system in HIV-associated neuroinflammation and neurocognitive implications. Brain Behav Immun 45:1–12

    CAS  PubMed  Google Scholar 

  • Joseph SB, Arrildt KT, Sturdevant CB, Swanstrom R (2015) HIV-1 target cells in the CNS. J Neurovirol 21:276–289

    CAS  PubMed  Google Scholar 

  • Kahouadji Y, Dumurgier J, Sellier P et al (2013) Cognitive function after several years of antiretroviral therapy with stable central nervous system penetration score. HIV Med 14:311–315

    CAS  PubMed  Google Scholar 

  • Kelly KM, Beck SE, Metcalf Pate KA et al (2013) Neuroprotective maraviroc monotherapy in simian immunodeficiency virus-infected macaques: reduced replicating and latent SIV in the brain. AIDS 27:F21–F28

    CAS  PubMed  Google Scholar 

  • Kim BH, Kelschenbach J, Borjabad A et al (2019) Intranasal insulin therapy reverses hippocampal dendritic injury and cognitive impairment in a model of HIV-associated neurocognitive disorders in EcoHIV-infected mice. AIDS 33:973–984

    CAS  PubMed  Google Scholar 

  • Lanman T, Letendre S, Ma Q, Bang A, Ellis R (2019) CNS neurotoxicity of antiretrovirals. J Neuroimmune Pharmacol

    Google Scholar 

  • Letendre S (2011) Central nervous system complications in HIV disease: HIV-associated neurocognitive disorder. Top Antivir Med 19:137–142

    PubMed  Google Scholar 

  • Letendre SL, Woods SP, Ellis RJ et al (2006) Lithium improves HIV-associated neurocognitive impairment. AIDS 20:1885–1888

    CAS  PubMed  Google Scholar 

  • Letendre SL, Marquie-Beck J, Ellis RJ et al (2007) The role of cohort studies in drug development: clinical evidence of antiviral activity of serotonin reuptake inhibitors and HMG-CoA reductase inhibitors in the central nervous system. J Neuroimmune Pharmacol 2:120–127

    PubMed  Google Scholar 

  • Letendre S, Marquie-Beck J, Capparelli E et al (2008) Validation of the CNS penetration-effectiveness rank for quantifying antiretroviral penetration into the central nervous system. Arch Neurol 65:65–70

    PubMed  PubMed Central  Google Scholar 

  • Letendre SL, Ellis RJ, Ances BM, McCutchan JA (2010) Neurologic complications of HIV disease and their treatment. Top HIV Med 18:45–55

    PubMed  PubMed Central  Google Scholar 

  • Libertone R, Lorenzini P, Balestra P et al (2014) Central nervous system penetration-effectiveness rank does not reliably predict neurocognitive impairment in HIV-infected individuals. J Int AIDS Soc 17:19655

    PubMed  PubMed Central  Google Scholar 

  • Livelli A, Vaida F, Ellis RJ et al (2019) Correlates of HIV RNA concentrations in cerebrospinal fluid during antiretroviral therapy: a longitudinal cohort study. Lancet HIV 6:e456–ee62

    PubMed  Google Scholar 

  • Lu CL, Murakowski DK, Bournazos S et al (2016) Enhanced clearance of HIV-1-infected cells by broadly neutralizing antibodies against HIV-1 in vivo. Science 352:1001–1004

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marban C, Forouzanfar F, Ait-Ammar A et al (2016) Targeting the brain reservoirs: toward an HIV cure. Front Immunol 7:397

    PubMed  PubMed Central  Google Scholar 

  • Marra CM, Zhao Y, Clifford DB et al (2009) Impact of combination antiretroviral therapy on cerebrospinal fluid HIV RNA and neurocognitive performance. AIDS 23:1359–1366

    PubMed  Google Scholar 

  • Morrison SA, Fazeli PL, Gower B et al (2019) Cognitive effects of a Ketogenic diet on neurocognitive impairment in adults aging with HIV: a pilot study. J Assoc Nurses AIDS Care

    Google Scholar 

  • Morrison SA, Fazeli PL, Gower B et al (2020) Cognitive effects of a Ketogenic diet on neurocognitive impairment in adults aging with HIV: a pilot study. J Assoc Nurses AIDS Care 31:312–324

    PubMed  PubMed Central  Google Scholar 

  • Mukerji SS, Locascio JJ, Misra V et al (2016) Lipid profiles and APOE4 allele impact midlife cognitive decline in HIV-infected men on antiretroviral therapy. Clin Infect Dis 63:1130–1139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Munoz-Moreno JA, Prats A, Molto J et al (2017) Transdermal rivastigmine for HIV-associated cognitive impairment: a randomized pilot study. PLoS One 12:e0182547

    PubMed  PubMed Central  Google Scholar 

  • Nakasujja N, Miyahara S, Evans S et al (2013) Randomized trial of minocycline in the treatment of HIV-associated cognitive impairment. Neurology 80:196–202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perez Valero I, Gonzalez-Baeza A, Montes Ramirez ML (2014) Central nervous system penetration and effectiveness of darunavir/ritonavir monotherapy. AIDS Rev 16:101–108

    Google Scholar 

  • Petito CK, Chen H, Mastri AR, Torres-Munoz J, Roberts B, Wood C (1999) HIV infection of choroid plexus in AIDS and asymptomatic HIV-infected patients suggests that the choroid plexus may be a reservoir of productive infection. J Neurovirol 5:670–677

    CAS  PubMed  Google Scholar 

  • Prabhakaran M. Narpala S, Gama L, et al. (2020) Infiltration of bNAb VRC01 into the cerebrospinal fluid in humans in the RV397 study. CROI 2020, Boston USA. Conference abstract 453

    Google Scholar 

  • Rawson T, Muir D, Mackie NE, Garvey LJ, Everitt A, Winston A (2012) Factors associated with cerebrospinal fluid HIV RNA in HIV infected subjects undergoing lumbar puncture examination in a clinical setting. J Infect 65:239–245

    PubMed  Google Scholar 

  • Robertson K, Jiang H, Kumwenda J et al (2012) Improved neuropsychological and neurological functioning across three antiretroviral regimens in diverse resource-limited settings: AIDS Clinical Trials Group study a5199, the international neurological study. Clin Infect Dis 55:868–876

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson KR, Miyahara S, Lee A et al (2016) Neurocognition with maraviroc compared with tenofovir in HIV. AIDS 30:2315–2321

    CAS  PubMed  Google Scholar 

  • Sacktor N, Schifitto G, McDermott MP, Marder K, McArthur JC, Kieburtz K (2000) Transdermal selegiline in HIV-associated cognitive impairment: pilot, placebo-controlled study. Neurology 54:233–235

    CAS  PubMed  Google Scholar 

  • Sacktor N, Miyahara S, Deng L et al (2011) Minocycline treatment for HIV-associated cognitive impairment: results from a randomized trial. Neurology 77:1135–1142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sacktor N, Skolasky RL, Moxley R et al (2018) Paroxetine and fluconazole therapy for HIV-associated neurocognitive impairment: results from a double-blind, placebo-controlled trial. J Neurovirol 24:16–27

    CAS  PubMed  Google Scholar 

  • Santos GMA, Locatelli I, Metral M et al (2019) Cross-sectional and cumulative longitudinal central nervous system penetration effectiveness scores are not associated with neurocognitive impairment in a well treated aging human immunodeficiency virus-positive population in Switzerland. Open Forum Infect Dis 6:ofz277

    PubMed  PubMed Central  Google Scholar 

  • Schifitto G, Sacktor N, Marder K et al (1999) Randomized trial of the platelet-activating factor antagonist lexipafant in HIV-associated cognitive impairment. Neurological AIDS Research Consortium. Neurology 53:391–396

    CAS  PubMed  Google Scholar 

  • Schifitto G, Peterson DR, Zhong J et al (2006) Valproic acid adjunctive therapy for HIV-associated cognitive impairment: a first report. Neurology 66:919–921

    CAS  PubMed  Google Scholar 

  • Schifitto G, Zhang J, Evans SR et al (2007a) A multicenter trial of selegiline transdermal system for HIV-associated cognitive impairment. Neurology 69:1314–1321

    CAS  PubMed  Google Scholar 

  • Schifitto G, Navia BA, Yiannoutsos CT et al (2007b) Memantine and HIV-associated cognitive impairment: a neuropsychological and proton magnetic resonance spectroscopy study. AIDS 21:1877–1886

    CAS  PubMed  Google Scholar 

  • Schifitto G, Zhong J, Gill D et al (2009a) Lithium therapy for human immunodeficiency virus type 1-associated neurocognitive impairment. J Neurovirol 15:176–186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schifitto G, Yiannoutsos CT, Ernst T et al (2009b) Selegiline and oxidative stress in HIV-associated cognitive impairment. Neurology 73:1975–1981

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sevigny JJ, Albert SM, McDermott MP et al (2007) An evaluation of neurocognitive status and markers of immune activation as predictors of time to death in advanced HIV infection. Arch Neurol 64:97–102

    PubMed  Google Scholar 

  • Simioni S, Cavassini M, Annoni JM et al (2013) Rivastigmine for HIV-associated neurocognitive disorders: a randomized crossover pilot study. Neurology 80:553–560

    CAS  PubMed  Google Scholar 

  • Smurzynski M, Wu K, Letendre S et al (2011) Effects of central nervous system antiretroviral penetration on cognitive functioning in the ALLRT cohort. AIDS 25:357–365

    PubMed  Google Scholar 

  • The Dana Consortium on the Therapy of HIV Dementia and Related Cognitive Disorders (1997) Safety and tolerability of the antioxidant OPC-14117 in HIV-associated cognitive impairment. Neurology 49:142–146

    Google Scholar 

  • Thompson KA, Cherry CL, Bell JE, McLean CA (2011) Brain cell reservoirs of latent virus in presymptomatic HIV-infected individuals. Am J Pathol 179:1623–1629

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson M, Saag M, DeJesus E et al (2016) A 48-week randomized phase 2b study evaluating cenicriviroc versus efavirenz in treatment-naive HIV-infected adults with C-C chemokine receptor type 5-tropic virus. AIDS 30:869–878

    CAS  PubMed  Google Scholar 

  • Tozzi V, Balestra P, Salvatori MF et al (2009) Changes in cognition during antiretroviral therapy: comparison of 2 different ranking systems to measure antiretroviral drug efficacy on HIV-associated neurocognitive disorders. J Acquir Immune Defic Syndr 52:56–63

    CAS  PubMed  Google Scholar 

  • Underwood J, Robertson KR, Winston A (2015) Could antiretroviral neurotoxicity play a role in the pathogenesis of cognitive impairment in treated HIV disease? AIDS 29:253–261

    CAS  PubMed  Google Scholar 

  • Valcour V, Chalermchai T, Sailasuta N et al (2012) Central nervous system viral invasion and inflammation during acute HIV infection. J Infect Dis 206:275–282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valcour VG, Spudich SS, Sailasuta N et al (2015) Neurological response to cART vs. cART plus Integrase inhibitor and CCR5 antagonist initiated during acute HIV. PLoS One 10:e0142600

    PubMed  PubMed Central  Google Scholar 

  • Vassallo M, Durant J, Biscay V et al (2014) Can high central nervous system penetrating antiretroviral regimens protect against the onset of HIV-associated neurocognitive disorders? AIDS 28:493–501

    CAS  PubMed  Google Scholar 

  • Vassallo M, Fabre R, Durant J et al (2017) A decreasing CD4/CD8 ratio over time and lower CSF-penetrating antiretroviral regimens are associated with a higher risk of neurocognitive deterioration, independently of viral replication. J Neurovirol 23:216–225

    CAS  PubMed  Google Scholar 

  • Wang CX, Cannon PM (2016) The clinical applications of genome editing in HIV. Blood 127:2546–2552

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright EJ, Grund B, Robertson K et al (2010) Cardiovascular risk factors associated with lower baseline cognitive performance in HIV-positive persons. Neurology 75:864–873

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav A, Betts MR, Collman RG (2016) Statin modulation of monocyte phenotype and function: implications for HIV-1-associated neurocognitive disorders. J Neurovirol 22:584–596

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Navia BA, Marra CM et al (2010) Memantine for AIDS dementia complex: open-label report of ACTG 301. HIV Clin Trials 11:59–67

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Drs. Scott Letendre and Qing Ma are currently supported in part by NIH grant R01AG063659.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lin, SP., Calcagno, A., Letendre, S.L., Ma, Q. (2020). Clinical Treatment Options and Randomized Clinical Trials for Neurocognitive Complications of HIV Infection: Combination Antiretroviral Therapy, Central Nervous System Penetration Effectiveness, and Adjuvants. In: Cysique, L.A., Rourke, S.B. (eds) Neurocognitive Complications of HIV-Infection. Current Topics in Behavioral Neurosciences, vol 50. Springer, Cham. https://doi.org/10.1007/7854_2020_186

Download citation

Publish with us

Policies and ethics