Skip to main content

Antipsychotic Drug Development

  • Chapter
  • First Online:
Behavioral Neurobiology of Schizophrenia and Its Treatment

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 4))

Abstract

Schizophrenia typically manifests itself with a wide array of symptoms – positive, negative, cognitive, and affective – and may also involve neurodevelopmental and neurodegenerative aspects. Each of these symptom dimensions may be derived from pathology at one or more receptor types, localized in different regions of the brain. The absence of a single therapeutic target for schizophrenia has therefore prompted the de-emphasis of selective “magic bullets” and a critical re-examination of the intramolecular polypharmacy afforded by antipsychotics. In this chapter, we present a review of some of the receptor targets that are currently thought to mediate symptoms of schizophrenia, and discuss their possible implications for future antipsychotic drug development. Therapeutic strategies for schizophrenia that successfully exploit the multifunctionality of antipsychotics will take into account the entire receptor activity “portfolio” of the agent and provide a total therapeutic response that, like the elephant of the Buddhist parable, is greater than the sum of its parts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alex KD, Pehek EA (2007) Pharmacologic mechanisms of serotonergic regulation of dopamine neurotransmission. Pharmacol Ther 113:296–320

    Article  PubMed  CAS  Google Scholar 

  • Alex KD, Yavanian GJ, McFarlane HG, Pluto CP, Pehek EA (2005) Modulation of dopamine release by striatal 5-HT2C receptors. Synapse 55:242–251

    Article  PubMed  CAS  Google Scholar 

  • Azmitia EC, Gannon PJ, Kheck NM, Whitaker-Azmitia PM (1996) Cellular localization of the 5-HT1A receptor in primate brain neurons and glial cells. Neuropsychopharmacology 14:35–46

    Article  PubMed  CAS  Google Scholar 

  • Bard JA, Zgombick J, Adham N, Branchek TA, Weinshank RL (1993) Cloning of a novel human serotonin receptor (5-HT7) positively linked to adenylate cyclase. J Biol Chem 268:23422–23426

    PubMed  CAS  Google Scholar 

  • Bergeron R, Meyer TM, Coyle JT, Greene RW (1998) Modulation of N-methyl-d-aspartate receptor function by glycine transport. Proc Natl Acad Sci USA 95:15730–15734

    Article  PubMed  CAS  Google Scholar 

  • Berman RM, Marcus RN, Swanink R, McQuade RD, Carson WH, Corey-Lisle PK, Khan A (2007) The efficacy and safety of aripiprazole as adjunctive therapy in major depressive disorder: a multicenter, randomized, double-blind, placebo-controlled study. J Clin Psychiatry 68:843–853

    Article  PubMed  CAS  Google Scholar 

  • Burris KD, Molski TF, Xu C, Ryan E, Tottori K, Kikuchi T, Yocca FD, Molinoff PB (2002) Aripiprazole, a novel antipsychotic, is a high-affinity partial agonist at human dopamine D2 receptors. J Pharmacol Exp Ther 302:381–389

    Article  PubMed  CAS  Google Scholar 

  • Burstein ES, Ma J, Wong S, Gao Y, Pham E, Knapp AE, Nash NR, Olsson R, Davis RE, Hacksell U, Weiner DM, Brann MR (2005) Intrinsic efficacy of antipsychotics at human D2, D3, and D4 dopamine receptors: identification of the clozapine metabolite N desmethylclozapine as a D2/D3 partial agonist. J Pharmacol Exp Ther 315:1278–1287

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A, Waters N, Carlsson ML (1999) Neurotransmitter interactions in schizophrenia – therapeutic implications. Biol Psychiatry 46:1388–1395

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Kittler JT, Moss SJ, Yan Z (2006) Dopamine D3 receptors regulate GABAA receptor function through a phospho-dependent endocytosis mechanism in nucleus accumbens. J Neurosci 26:2513–2521

    Article  PubMed  CAS  Google Scholar 

  • Dekeyne A, Di Cara B, Gobert A, Millan MJ (2004) Blockade of dopamine D3 receptors enhances frontocortical cholinergic transmission and cognitive function in rats. Soc Neurosci Abstr 29:776.4

    Google Scholar 

  • Goff DC, Herz L, Posever T, Shih V, Tsai G, Henderson DC, Freudenreich O, Evins AE, Yovel I, Zhang H, Schoenfeld D (2005) A six-month, placebo-controlled trial of d-cycloserine co-administered with conventional antipsychotics in schizophrenia patients. Psychopharmacology (Berl) 179:144–150

    Article  CAS  Google Scholar 

  • Gray JA, Roth BL (2007a) Molecular targets for treating cognitive dysfunction in schizophrenia. Schizophr Bull 33:1100–1119

    Article  PubMed  Google Scholar 

  • Gray JA, Roth BL (2007b) The pipeline and future of drug development in schizophrenia. Mol Psychiatry 12:904–922

    Article  PubMed  CAS  Google Scholar 

  • Gunes A, Dahl ML, Spina E, Scordo MG (2008) Further evidence for the association between 5-HT2C receptor gene polymorphisms and extrapyramidal side effects in male schizophrenic patients. Eur J Clin Pharmacol 64:477–482

    Article  PubMed  CAS  Google Scholar 

  • Guscott MR, Egan E, Cook GP, Stanton JA, Beer MS, Rosahl TW, Hartmann S, Kulagowski J, McAllister G, Fone KC, Hutson PH (2003) The hypothermic effect of 5-CT in mice is mediated through the 5-HT7 receptor. Neuropharmacology 44:1031–1037

    Article  PubMed  CAS  Google Scholar 

  • Hagan JJ, Price GW, Jeffrey P, Deeks NJ, Stean T, Piper D, Smith MI, Upton N, Medhurst AD, Middlemiss DN, Riley GJ, Lovell PJ, Bromidge SM, Thomas DR (2000) Characterization of SB-269970-A, a selective 5 HT7 receptor antagonist. Br J Pharmacol 130:539–548

    Article  PubMed  CAS  Google Scholar 

  • Hedlund PB, Danielson PE, Thomas EA, Slanina K, Carson MJ, Sutcliffe JG (2003) No hypothermic response to serotonin in 5-HT7 receptor knockout mice. Proc Natl Acad Sci USA 100:1375–1380

    Article  PubMed  CAS  Google Scholar 

  • Heresco-Levy U, Javitt DC (2004) Comparative effects of glycine and d-cycloserine on persistent negative symptoms in schizophrenia: a retrospective analysis. Schizophr Res 66:89–96

    Article  PubMed  Google Scholar 

  • Ichikawa J, Ishii H, Bonaccorso S, Fowler WL, O'Laughlin IA, Meltzer HY (2001) 5-HT2A and D2 receptor blockade increases cortical DA release via 5-HT1A receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release. J Neurochem 76:1521–1531

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC (2004) Glutamate as a therapeutic target in psychiatric disorders. Mol Psychiatry 9:984–997

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC (2006) Is the glycine site half saturated or half unsaturated? Effects of glutamatergic drugs in schizophrenia patients. Curr Opin Psychiatry 19:151–157

    Article  PubMed  Google Scholar 

  • Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325:529–531

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen H, Riis M, Knigge U, Kjaer A, Warberg J (2003) Serotonin receptors involved in vasopressin and oxytocin secretion. J Neuroendocrinol 15:242–249

    Article  PubMed  CAS  Google Scholar 

  • Joyce JN (2001) Dopamine D3 receptor as a therapeutic target for antipsychotic and antiparkinsonian drugs. Pharmacol Ther 90:231–259

    Article  PubMed  CAS  Google Scholar 

  • Joyce JN, Millan MJ (2005) Dopamine D3 receptor antagonists as therapeutic agents. Drug Discov Today 10:917–925

    Article  PubMed  CAS  Google Scholar 

  • Kapur S, Seeman P (2001) Does fast dissociation from the dopamine D2 receptor explain the action of atypical antipsychotics? A new hypothesis. Am J Psychiatry 158:360–369

    Article  PubMed  CAS  Google Scholar 

  • Kirkpatrick B, Fenton WS, Carpenter WT Jr, Marder SR (2006) The NIMH-MATRICS consensus statement on negative symptoms. Schizophr Bull 32:214–219

    Article  PubMed  Google Scholar 

  • Lacroix LP, Hows MEP, Shah AJ, Hagan JJ, Heidbreder CA (2003) Selective antagonism at dopamine D3 receptors enhances monoaminergic and cholinergic neurotransmission in the rat anterior cingulate cortex. Neuropsychopharmacology 28:839–849

    PubMed  CAS  Google Scholar 

  • Laplante P, Diorio J, Meaney MJ (2002) Serotonin regulates hippocampal glucocorticoid receptor expression via a 5-HT7 receptor. Brain Res Dev Brain Res 139:199–203

    Article  PubMed  CAS  Google Scholar 

  • Laszy J, Laszlovszky I, Gyertyán I (2005) Dopamine D3 receptor antagonists improve the learning performance in memory-impaired rats. Psychopharmacology 179:567–575

    Article  PubMed  CAS  Google Scholar 

  • Lawler CP, Prioleau C, Lewis MM, Mak C, Jiang D, Schetz JA, Gonzalez AM, Sibley DR, Mailman RB (1999) Interactions of the novel antipsychotic aripiprazole (OPC-14597) with dopamine and serotonin receptor subtypes. Neuropsychopharmacology 20:612–627

    Article  PubMed  CAS  Google Scholar 

  • Lovenberg TW, Baron BM, de Lecea L, Miller JD, Prosser RA, Rea MA, Foye PE, Racke M, Slone AL, Siegel BW, Danielson PE, Sutcliff JG, Erlander MG (1993) A novel adenylyl cyclase-activating serotonin receptor (5-HT7) implicated in the regulation of mammalian circadian rhythms. Neuron 11:449–458

    Article  PubMed  CAS  Google Scholar 

  • Mamo D, Graff A, Mizrahi R, Shammi CM, Romeyer F, Kapur S (2007) Differential effects of aripiprazole on D2, 5-HT2, and 5-HT1A receptor occupancy in patients with schizophrenia: a triple tracer PET study. Am J Psychiatry 164:1411–1417

    Article  PubMed  Google Scholar 

  • Manuel-Apolinar L, Meneses A (2004) 8-OH-DPAT facilitated memory consolidation and increased hippocampal and cortical cAMP production. Behav Brain Res 148:179–184

    Article  PubMed  CAS  Google Scholar 

  • Meltzer HY (2004) What’s atypical about atypical antipsychotic drugs? Curr Opin Pharmacol 4:53–57

    Article  PubMed  CAS  Google Scholar 

  • Millan MJ, Dekeyne A, Gobert A (1998) Serotonin (5-HT)2C receptors tonically inhibit dopamine (DA) and noradrenaline (NA), but not 5-HT, release in the frontal cortex in vivo. Neuropharmacology 37:953–955

    Article  PubMed  CAS  Google Scholar 

  • Millan MJ, la Cour CM, Novi F, Maggio R, Audinot V, Newman-Tancredi A, Cussac D, Pasteau V, Boutin JA, Dubuffet T, Lavielle G (2008) S33138 [N-[4-[2-[(3aS,9bR)-8-cyano-1,3a,4,9b-tetrahydro[1]-benzopyrano[3,4-c]pyrrol-2(3H)-yl)-ethyl]phenylacetamide], a preferential dopamine D3 versus D2 receptor antagonist and potential antipsychotic agent. I. Receptor-binding profile and functional actions at G-protein-coupled receptors. J Pharmacol Exp Ther 324:587–599

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto S, Duncan GE, Marx CE, Lieberman JA (2005) Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol Psychiatry 10:79–104

    Article  PubMed  CAS  Google Scholar 

  • Moghaddam B, Adams BW (1998) Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science 281:1349–1352

    Article  PubMed  CAS  Google Scholar 

  • Mothet JP, Parent AT, Wolosker H, Brady RO Jr, Linden DJ, Ferris CD, Rogawski MA, Snyder SH (2000) d-Serine is an endogenous ligand for the glycine site of the N-methyl-d-aspartate receptor. Proc Natl Acad Sci USA 97:4926–4931

    Article  PubMed  CAS  Google Scholar 

  • Mullins UL, Gianutsos G, Eison AS (1999) Effects of antidepressants on 5-HT7 receptor regulation in the rat hypothalamus. Neuropsychopharmacology 21:352–367

    Article  PubMed  CAS  Google Scholar 

  • Newcomer JW, Farber NB, Jevtovic-Todorovic V, Selke G, Melson AK, Hershey T, Craft S, Olney JW (1999) Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology 20:106–118

    Article  PubMed  CAS  Google Scholar 

  • Olney JW, Newcomer JW, Farber NB (1999) NMDA receptor hypofunction model of schizophrenia. J Psychiatr Res 33:523–533

    Article  PubMed  CAS  Google Scholar 

  • Reavill C, Kettle A, Holland V, Riley G, Blackburn TP (1999) Attenuation of haloperidol-induced catalepsy by a 5-HT2C receptor antagonist. Br J Pharmacol 126:572–574

    Article  PubMed  CAS  Google Scholar 

  • Reavill C, Taylor SG, Wood MD, Ashmeade T, Austin NE, Avenell KY, Boyfield I, Branch CL, Cilia J, Coldwell MC, Hadley MS, Hunter AJ, Jeffrey P, Jewitt F, Johnson CN, Jones DN, Medhurst AD, Middlemiss DN, Nash DJ, Riley GJ, Routledge C, Stemp G, Thewlis KM, Trail B, Vong AK, Hagan JJ (2000) Pharmacological actions of a novel, high-affinity, and selective human dopamine D3 receptor antagonist, SB-277011-A. J Pharmacol Exp Ther 294(3):1154–1165

    PubMed  CAS  Google Scholar 

  • Richtand NM, Woods SC, Berger SP, Strakowski SM (2001) D3 dopamine receptor, behavioral sensitization, and psychosis. Neurosci Biobehav Rev 25:427–443

    Article  PubMed  CAS  Google Scholar 

  • Roberts AJ, Krucker T, Levy CL, Slanina KA, Sutcliffe JG, Hedlund PB (2004) Mice lacking 5 HT7 receptors show specific impairments in contextual learning. Eur J Neurosci 19:1913–1922

    Article  PubMed  Google Scholar 

  • Roth BL, Craigo SC, Choudhary MS, Uluer A, Monsma FJ Jr, Shen Y, Meltzer HY, Sibley DR (1994) Binding of typical and atypical antipsychotic agents to 5-hydroxytryptamine-6 and 5-hydroxytryptamine-7 receptors. J Pharmacol Exp Ther 268:1403–1410

    PubMed  CAS  Google Scholar 

  • Ruat M, Traiffort E, Leurs R, Tardivel-Lacombe J, Diaz J, Arrang JM, Schwartz JC (1993) Molecular cloning, characterization, and localization of a high-affinity serotonin receptor (5-HT7) activating cAMP formation. Proc Natl Acad Sci USA 90:8547–8551

    Article  PubMed  CAS  Google Scholar 

  • Schmidt AW, Lebel LA, Howard HR Jr, Zorn SH (2001) Ziprasidone: a novel antipsychotic agent with a unique human receptor binding profile. Eur J Pharmacol 425:197–201

    Article  PubMed  CAS  Google Scholar 

  • Schwartz J, Diaz J, Pilon C, Sokoloff P (2000) Possible implications of the dopamine D3 receptor in schizophrenia and in antipsychotic drug actions. Brain Res Brain Res Rev 31:277–287

    Article  PubMed  CAS  Google Scholar 

  • Stahl SM (2007a) Beyond the dopamine hypothesis to the NMDA glutamate receptor hypofunction hypothesis of schizophrenia. CNS Spectr 12:265–268

    PubMed  Google Scholar 

  • Stahl SM (2007b) Novel therapeutics for schizophrenia: targeting glycine modulation of NMDA glutamate receptors. CNS Spectr 12:423–427

    PubMed  Google Scholar 

  • Stahl SM (2007c) Novel mechanism of antidepressant action: norepinephrine and dopamine disinhibition (NDDI) plus melatonergic agonism. Int J Neuropsychopharmacol 10:575–578

    Article  PubMed  CAS  Google Scholar 

  • Stahl SM (2008a) Stahl’s essential psychopharmacology: neuroscientific basis and practical applications, 3rd edn. Cambridge University Press, New York, NY

    Google Scholar 

  • Stahl SM (2008b) Do dopamine partial agonists have partial efficacy as antipsychotics? CNS Spectr 13:279–282

    PubMed  Google Scholar 

  • Strange PG (2008) Antipsychotic drug action: antagonism, inverse agonism or partial agonism. Trends Pharmacol Sci 29:314–321

    Article  PubMed  CAS  Google Scholar 

  • Sumiyoshi T, Matsui M, Nohara S, Yamashita I, Kurachi M, Sumiyoshi C, Jayathilake K, Meltzer HY (2001) Enhancement of cognitive performance in schizophrenia by addition of tandospirone to neuroleptic treatment. Am J Psychiatry 158:1722–1725

    Article  PubMed  CAS  Google Scholar 

  • Sur C, Mallorga PJ, Wittmann M, Jacobson MA, Pascarella D, Williams JB, Brandish PE, Pettibone DJ, Scolnick EM, Conn PJ (2003) N-desmethylclozapine, an allosteric agonist at muscarinic 1 receptor, potentiates N-methyl-d-aspartate receptor activity. Proc Natl Acad Sci USA 100:13674–13679

    Article  PubMed  CAS  Google Scholar 

  • Thase ME, Jonas A, Khan A, Bowden CL, Wu X, McQuade RD, Carson WH, Marcus RN, Owen R (2008) Aripiprazole monotherapy in nonpsychotic bipolar I depression: results of 2 randomized, placebo-controlled studies. J Clin Psychopharmacol 28:13–20

    Article  PubMed  CAS  Google Scholar 

  • Thomas DR, Melotto S, Massagrande M, Gribble AD, Jeffrey P, Stevens AJ, Deeks NJ, Eddershaw PJ, Fenwick SH, Riley G, Stean T, Scott CM, Hill MJ, Middlemiss DN, Hagan JJ, Price GW, Forbes IT (2003) SB-656104-A, a novel selective 5-HT7 receptor antagonist, modulates REM sleep in rats. Br J Pharmacol 139:705–714

    Article  PubMed  CAS  Google Scholar 

  • Tsai GE, Yang P, Chang YC, Chong MY (2006) d-Alanine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 59:230–234

    Article  PubMed  CAS  Google Scholar 

  • van Berckel BN, Evenblij CN, van Loon BJ, Maas MF, van der Geld MA, Wynne HJ, van Ree JM, Kahn RS (1999) d-Cycloserine increases positive symptoms in chronic schizophrenic patients when administered in addition to antipsychotics: a double-blind, parallel, placebo-controlled study. Neuropsychopharmacology 21:203–210

    Article  PubMed  Google Scholar 

  • Yasuno F, Suhara T, Nakayama T, Ichimiya T, Okubo Y, Takano A, Ando T, Inoue M, Maeda J, Suzuki K (2003) Inhibitory effect of hippocampal 5-HT1A receptors on human explicit memory. Am J Psychiatry 160:334–340

    Article  PubMed  Google Scholar 

  • Zapata A, Shippenberg TS (2002) D3 receptor ligands modulate extracellular dopamine clearance in the nucleus accumbens. J Neurochem 81:1035–1042

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Daniel Lara Rios and Jahon Jabali for preparation of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen M. Stahl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Kim, D.H., Stahl, S.M. (2010). Antipsychotic Drug Development. In: Swerdlow, N. (eds) Behavioral Neurobiology of Schizophrenia and Its Treatment. Current Topics in Behavioral Neurosciences, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2010_47

Download citation

Publish with us

Policies and ethics