Skip to main content

Animal Models of ADHD

  • Chapter
  • First Online:
Molecular and Functional Models in Neuropsychiatry

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 7))

Abstract

Studies employing animal models of attention-deficit/hyperactivity disorder (ADHD) present clear inherent advantages over human studies. Animal models are invaluable tools for the study of underlying neurochemical, neuropathological and genetic alterations that cause ADHD, because they allow relatively fast, rigorous hypothesis testing and invasive manipulations as well as selective breeding. Moreover, especially for ADHD, animal models with good predictive validity would allow the assessment of potential new therapeutics. In this chapter, we describe and comment on the most frequently used animal models of ADHD that have been created by genetic, neurochemical and physical alterations in rodents. We then discuss that an emerging and promising direction of the field is the analysis of individual behavioural differences among a normal population of animals. Subjects presenting extreme characteristics related to ADHD can be studied, thereby avoiding some of the problems that are found in other models, such as functional recovery and unnecessary assumptions about aetiology. This approach is justified by the theoretical need to consider human ADHD as the extreme part of a spectrum of characteristics that are distributed normally in the general population, as opposed to the predominant view of ADHD as a separate pathological category.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-CSRTT:

Five-choice serial reaction time task

5-HT:

Serotonin

6-OHDA:

6-Hydroxydopamine

ACg:

Anterior cingulate cortex

ADHD:

Attention-deficit/hyperactivity disorder

CPT:

Continuous performance task

DA:

Dopamine

DAT:

Dopamine transporter

DAT1:

Dopamine transporter gene 1

DAT-KO:

Dopamine transporter knock-out

dB:

Decibels

DRD4:

Dopamine receptor D4

DRL:

Differential reinforcement of low rates of responding

DSM-IV:

Diagnostic and statistical manual of mental disorders 4th edition

FCN:

Fixed consecutive number

GH:

Genetically hypertensive rat

ICD-10:

International classification of diseases 10th revision

IL:

Infralimbic cortex

LHT:

Lever-holding task

ms:

Milliseconds

NA:

Noradrenaline

NAc:

Nucleus accumbens

NHE:

Naples high-excitability

OFC:

Orbitofrontal cortex

PD:

Post-natal day

PFC:

Prefrontal cortex

PrL:

Prelimbic cortex

SHR:

Spontaneously hypertensive rat

SNAP-25:

Synaptosomal-associated protein 25

SSRT:

Stop-signal reaction time

SST:

Stop-signal task

TRbeta 1:

Thyroid hormone receptor beta 1

WK:

Wistar-Kyoto

References

  • Adams ZW, Derefinko KJ, Milich R, Fillmore MT (2008) Inhibitory functioning across ADHD subtypes: recent findings, clinical implications, and future directions. Dev Disabil Res Rev 14:268–275

    Article  PubMed  Google Scholar 

  • Adriani W, Laviola G (2004) Windows of vulnerability to psychopathology and therapeutic strategy in the adolescent rodent model. Behav Pharmacol 15:341–352

    Article  PubMed  CAS  Google Scholar 

  • Adriani W, Caprioli A, Granstrem O, Carli M, Laviola G (2003) The spontaneously hypertensive-rat as an animal model of ADHD: evidence for impulsive and non-impulsive subpopulations. Neurosci Biobehav Rev 27:639–651

    Article  PubMed  Google Scholar 

  • Alderson RM, Rapport MD, Kofler MJ (2007) Attention-deficit/hyperactivity disorder and behavioral inhibition: a meta-analytic review of the stop-signal paradigm. J Abnorm Child Psychol 35:745–758

    Article  PubMed  Google Scholar 

  • Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res 85:119–146

    Article  PubMed  CAS  Google Scholar 

  • Alsop B (2007) Problems with spontaneously hypertensive rats (SHR) as a model of attention-deficit/hyperactivity disorder (AD/HD). J Neurosci Methods 162:42–48

    Article  PubMed  Google Scholar 

  • American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, Washington DC

    Google Scholar 

  • Applegate B, Lahey BB, Hart EL, Biederman J, Hynd GW, Barkley RA, Ollendick T, Frick PJ, Greenhill L, McBurnett K, Newcorn JH, Kerdyk L, Garfinkel B, Waldman I, Shaffer D (1997) Validity of the age-of-onset criterion for ADHD: a report from the DSM-IV field trials. J Am Acad Child Adolesc Psychiatry 36:1211–1221

    Article  PubMed  CAS  Google Scholar 

  • Archer T, Danysz W, Fredriksson A, Jonsson G, Luthman J, Sundstrom E, Teiling A (1988a) Neonatal 6-hydroxydopamine-induced dopamine depletions: motor activity and performance in maze learning. Pharmacol Biochem Behav 31:357–364

    Article  PubMed  CAS  Google Scholar 

  • Archer T, Fredriksson A, Sundstrom E, Luthman J, Lewander T, Soderberg U, Jonsson G (1988b) Prenatal methylazoxymethanol treatment potentiates d-amphetamine- and methylphenidate-induced motor activity in male and female rats. Pharmacol Toxicol 63:233–239

    Article  PubMed  CAS  Google Scholar 

  • Aspide R, Gironi Carnevale UA, Sergeant JA, Sadile AG (1998) Non-selective attention and nitric oxide in putative animal models of attention-deficit hyperactivity disorder. Behav Brain Res 95:123–133

    Article  PubMed  CAS  Google Scholar 

  • Avale ME, Falzone TL, Gelman DM, Low MJ, Grandy DK, Rubinstein M (2004) The dopamine D4 receptor is essential for hyperactivity and impaired behavioral inhibition in a mouse model of attention deficit/hyperactivity disorder. Mol Psychiatry 9:718–726

    PubMed  CAS  Google Scholar 

  • Avila C, Cuenca I, Felix V, Parcet MA, Miranda A (2004) Measuring impulsivity in school-aged boys and examining its relationship with ADHD and ODD ratings. J Abnorm Child Psychol 32:295–304

    Article  PubMed  Google Scholar 

  • Barbelivien A, Ruotsalainen S, Sirvio J (2001) Metabolic alterations in the prefrontal and cingulate cortices are related to behavioral deficits in a rodent model of attention-deficit hyperactivity disorder. Cereb Cortex 11:1056–1063

    Article  PubMed  CAS  Google Scholar 

  • Bari A, Dalley JW, Robbins TW (2008) The application of the 5-choice serial reaction time task for the assessment of visual attentional processes and impulse control in rats. Nat Protoc 3:759–767

    Article  PubMed  CAS  Google Scholar 

  • Bari A, Eagle DM, Mar AC, Robinson ES, Robbins TW (2009) Dissociable effects of noradrenaline, dopamine, and serotonin uptake blockade on stop task performance in rats. Psychopharmacology (Berl) 205:273–283

    Article  CAS  Google Scholar 

  • Barkley RA (1997a) Attention-deficit/hyperactivity disorder, self-regulation, and time: toward a more comprehensive theory. J Dev Behav Pediatr 18:271–279

    PubMed  CAS  Google Scholar 

  • Barkley RA (1997b) Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull 121:65–94

    Article  PubMed  CAS  Google Scholar 

  • Barkley RA, Biederman J (1997) Toward a broader definition of the age-of-onset criterion for attention-deficit hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 36:1204–1210

    Article  PubMed  CAS  Google Scholar 

  • Barr CL, Feng Y, Wigg K, Bloom S, Roberts W, Malone M, Schachar R, Tannock R, Kennedy JL (2000) Identification of DNA variants in the SNAP-25 gene and linkage study of these polymorphisms and attention-deficit hyperactivity disorder. Mol Psychiatry 5:405–409

    Article  PubMed  CAS  Google Scholar 

  • Barr AM, Lehmann-Masten V, Paulus M, Gainetdinov RR, Caron MG, Geyer MA (2004) The selective serotonin-2A receptor antagonist M100907 reverses behavioral deficits in dopamine transporter knockout mice. Neuropsychopharmacology 29:221–228

    Article  PubMed  CAS  Google Scholar 

  • Beck LH, Bransome ED Jr, Mirsky AF, Rosvold HE, Sarason I (1956) A continuous performance test of brain damage. J Consult Psychol 20:343–350

    Article  PubMed  CAS  Google Scholar 

  • Belin D, Mar AC, Dalley JW, Robbins TW, Everitt BJ (2008) High impulsivity predicts the switch to compulsive cocaine-taking. Science 320:1352–1355

    Article  PubMed  CAS  Google Scholar 

  • Bendel P, Eilam R (1992) Quantitation of ventricular size in normal and spontaneously hypertensive rats by magnetic resonance imaging. Brain Res 574:224–228

    Article  PubMed  CAS  Google Scholar 

  • Bernal J (2002) Action of thyroid hormone in brain. J Endocrinol Invest 25:268–288

    PubMed  CAS  Google Scholar 

  • Biederman J (2005) Attention-deficit/hyperactivity disorder: a selective overview. Biol Psychiatry 57:1215–1220

    Article  PubMed  Google Scholar 

  • Biederman J, Milberger S, Faraone SV, Kiely K, Guite J, Mick E, Ablon S, Warburton R, Reed E (1995) Family-environment risk factors for attention-deficit hyperactivity disorder. A test of Rutter’s indicators of adversity. Arch Gen Psychiatry 52:464–470

    Article  PubMed  CAS  Google Scholar 

  • Bizarro L, Patel S, Murtagh C, Stolerman IP (2004) Differential effects of psychomotor stimulants on attentional performance in rats: nicotine, amphetamine, caffeine and methylphenidate. Behav Pharmacol 15:195–206

    PubMed  CAS  Google Scholar 

  • Bizot JC, Chenault N, Houze B, Herpin A, David S, Pothion S, Trovero F (2007) Methylphenidate reduces impulsive behaviour in juvenile Wistar rats, but not in adult Wistar, SHR and WKY rats. Psychopharmacology (Berl) 193:215–223

    Article  CAS  Google Scholar 

  • Blondeau C, Dellu-Hagedorn F (2007) Dimensional analysis of ADHD subtypes in rats. Biol Psychiatry 61:1340–1350

    Article  PubMed  Google Scholar 

  • Boonstra AM, Kooij JJ, Oosterlaan J, Sergeant JA, Buitelaar JK (2005) Does methylphenidate improve inhibition and other cognitive abilities in adults with childhood-onset ADHD? J Clin Exp Neuropsychol 27:278–298

    Article  PubMed  Google Scholar 

  • Bradley C (1937) The behavior of children receiving benzedrine. Am J Psychiatry 9:577–585

    Google Scholar 

  • Braun JM, Kahn RS, Froehlich T, Auinger P, Lanphear BP (2006) Exposures to environmental toxicants and attention deficit hyperactivity disorder in U.S. children. Environ Health Perspect 114:1904–1909

    PubMed  Google Scholar 

  • Broersen LM, Uylings HB (1999) Visual attention task performance in Wistar and Lister hooded rats: response inhibition deficits after medial prefrontal cortex lesions. Neuroscience 94:47–57

    Article  PubMed  CAS  Google Scholar 

  • Bruno KJ, Freet CS, Twining RC, Egami K, Grigson PS, Hess EJ (2007) Abnormal latent inhibition and impulsivity in coloboma mice, a model of ADHD. Neurobiol Dis 25:206–216

    Article  PubMed  CAS  Google Scholar 

  • Bull E, Reavill C, Hagan JJ, Overend P, Jones DN (2000) Evaluation of the spontaneously hypertensive rat as a model of attention deficit hyperactivity disorder: acquisition and performance of the DRL-60s test. Behav Brain Res 109:27–35

    Article  PubMed  CAS  Google Scholar 

  • Bushnell PJ (1998) Behavioral approaches to the assessment of attention in animals. Psychopharmacology (Berl) 138:231–259

    Article  CAS  Google Scholar 

  • Button TM, Thapar A, McGuffin P (2005) Relationship between antisocial behaviour, attention-deficit hyperactivity disorder and maternal prenatal smoking. Br J Psychiatry 187:155–160

    Article  PubMed  CAS  Google Scholar 

  • Cardinal RN, Pennicott DR, Sugathapala CL, Robbins TW, Everitt BJ (2001) Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science 292:2499–2501

    Article  PubMed  CAS  Google Scholar 

  • Carli M, Robbins TW, Evenden JL, Everitt BJ (1983) Effects of lesions to ascending noradrenergic neurones on performance of a 5-choice serial reaction task in rats; implications for theories of dorsal noradrenergic bundle function based on selective attention and arousal. Behav Brain Res 9:361–380

    Article  PubMed  CAS  Google Scholar 

  • Castellanos FX, Sonuga-Barke EJ, Milham MP, Tannock R (2006) Characterizing cognition in ADHD: beyond executive dysfunction. Trends Cogn Sci 10:117–123

    Article  PubMed  Google Scholar 

  • Chamberlain SR, Muller U, Blackwell AD, Clark L, Robbins TW, Sahakian BJ (2006) Neurochemical modulation of response inhibition and probabilistic learning in humans. Science 311:861–863

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain SR, Del Campo N, Dowson J, Muller U, Clark L, Robbins TW, Sahakian BJ (2007) Atomoxetine improved response inhibition in adults with attention deficit/hyperactivity disorder. Biol Psychiatry 62:977–984

    Article  PubMed  CAS  Google Scholar 

  • Chan E, Mattingley JB, Huang-Pollock C, English T, Hester R, Vance A, Bellgrove MA (2009) Abnormal spatial asymmetry of selective attention in ADHD. J Child Psychol Psychiatry 50:1064–1072

    Article  PubMed  Google Scholar 

  • Cheon KA, Ryu YH, Kim YK, Namkoong K, Kim CH, Lee JD (2003) Dopamine transporter density in the basal ganglia assessed with [123I]IPT SPET in children with attention deficit hyperactivity disorder. Eur J Nucl Med Mol Imaging 30:306–311

    Article  PubMed  CAS  Google Scholar 

  • Christakou A, Robbins TW, Everitt BJ (2004) Prefrontal cortical-ventral striatal interactions involved in affective modulation of attentional performance: implications for corticostriatal circuit function. J Neurosci 24:773–780

    Article  PubMed  CAS  Google Scholar 

  • Chudasama Y, Passetti F, Rhodes SE, Lopian D, Desai A, Robbins TW (2003) Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: differential effects on selectivity, impulsivity and compulsivity. Behav Brain Res 146:105–119

    Article  PubMed  CAS  Google Scholar 

  • Clatworthy PL, Lewis SJ, Brichard L, Hong YT, Izquierdo D, Clark L, Cools R, Aigbirhio FI, Baron JC, Fryer TD, Robbins TW (2009) Dopamine release in dissociable striatal subregions predicts the different effects of oral methylphenidate on reversal learning and spatial working memory. J Neurosci 29:4690–4696

    Article  PubMed  CAS  Google Scholar 

  • Cole BJ, Robbins TW (1987) Amphetamine impairs the discriminative performance of rats with dorsal noradrenergic bundle lesions on a 5-choice serial reaction time task: new evidence for central dopaminergic-noradrenergic interactions. Psychopharmacology (Berl) 91:458–466

    Article  CAS  Google Scholar 

  • Corkum PV, Siegel LS (1993) Is the continuous performance task a valuable research tool for use with children with attention-deficit-hyperactivity disorder? J Child Psychol Psychiatry 34:1217–1239

    Article  PubMed  CAS  Google Scholar 

  • Dalley JW, Fryer TD, Brichard L, Robinson ES, Theobald DE, Laane K, Pena Y, Murphy ER, Shah Y, Probst K, Abakumova I, Aigbirhio FI, Richards HK, Hong Y, Baron JC, Everitt BJ, Robbins TW (2007) Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science 315:1267–1270

    Article  PubMed  CAS  Google Scholar 

  • Dalton GL, Lee MD, Kennett GA, Dourish CT, Clifton PG (2004) mCPP-induced hyperactivity in 5-HT2C receptor mutant mice is mediated by activation of multiple 5-HT receptor subtypes. Neuropharmacology 46:663–671

    Article  PubMed  CAS  Google Scholar 

  • Daugherty TK, Quay HC (1991) Response perseveration and delayed responding in childhood behavior disorders. J Child Psychol Psychiatry 32:453–461

    Article  PubMed  CAS  Google Scholar 

  • Davids E, Zhang K, Kula NS, Tarazi FI, Baldessarini RJ (2002) Effects of norepinephrine and serotonin transporter inhibitors on hyperactivity induced by neonatal 6-hydroxydopamine lesioning in rats. J Pharmacol Exp Ther 301:1097–1102

    Article  PubMed  CAS  Google Scholar 

  • Davids E, Zhang K, Tarazi FI, Baldessarini RJ (2003) Animal models of attention-deficit hyperactivity disorder. Brain Res Brain Res Rev 42:1–21

    Article  PubMed  Google Scholar 

  • de Villiers AS, Russell VA, Sagvolden T, Searson A, Jaffer A, Taljaard JJ (1995) Alpha 2-adrenoceptor mediated inhibition of [3H]dopamine release from nucleus accumbens slices and monoamine levels in a rat model for attention-deficit hyperactivity disorder. Neurochem Res 20:427–433

    Article  PubMed  Google Scholar 

  • Dell’Anna ME, Calzolari S, Molinari M, Iuvone L, Calimici R (1991) Neonatal anoxia induces transitory hyperactivity, permanent spatial memory deficits and CA1 cell density reduction in developing rats. Behav Brain Res 45:125–134

    Article  PubMed  Google Scholar 

  • Dell’Anna ME, Luthman J, Lindqvist E, Olson L (1993) Development of monoamine systems after neonatal anoxia in rats. Brain Res Bull 32:159–170

    Article  PubMed  Google Scholar 

  • Dougherty DD, Bonab AA, Spencer TJ, Rauch SL, Madras BK, Fischman AJ (1999) Dopamine transporter density in patients with attention deficit hyperactivity disorder. Lancet 354:2132–2133

    Article  PubMed  CAS  Google Scholar 

  • Eagle DM, Robbins TW (2003) Inhibitory control in rats performing a stop-signal reaction-time task: effects of lesions of the medial striatum and d-amphetamine. Behav Neurosci 117:1302–1317

    Article  PubMed  CAS  Google Scholar 

  • Eagle DM, Tufft MR, Goodchild HL, Robbins TW (2007) Differential effects of modafinil and methylphenidate on stop-signal reaction time task performance in the rat, and interactions with the dopamine receptor antagonist cis-flupenthixol. Psychopharmacology (Berl) 192:193–206

    Article  CAS  Google Scholar 

  • Eagle DM, Bari A, Robbins TW (2008a) The neuropsychopharmacology of action inhibition: cross-species translation of the stop-signal and go/no-go tasks. Psychopharmacology (Berl) 199:439–456

    Article  CAS  Google Scholar 

  • Eagle DM, Baunez C, Hutcheson DM, Lehmann O, Shah AP, Robbins TW (2008b) Stop-signal reaction-time task performance: role of prefrontal cortex and subthalamic nucleus. Cereb Cortex 18:178–188

    Article  PubMed  Google Scholar 

  • Eagle DM, Lehmann O, Theobald DE, Pena Y, Zakaria R, Ghosh R, Dalley JW, Robbins TW (2009) Serotonin depletion impairs waiting but not stop-signal reaction time in rats: implications for theories of the role of 5-HT in behavioral inhibition. Neuropsychopharmacology 34:1311–1321

    Article  PubMed  CAS  Google Scholar 

  • Elliott R, Sahakian BJ, Matthews K, Bannerjea A, Rimmer J, Robbins TW (1997) Effects of methylphenidate on spatial working memory and planning in healthy young adults. Psychopharmacology (Berl) 131:196–206

    Article  CAS  Google Scholar 

  • Evenden JL (1998) The pharmacology of impulsive behaviour in rats III: the effects of amphetamine, haloperidol, imipramine, chlordiazepoxide and ethanol on a paced fixed consecutive number schedule. Psychopharmacology (Berl) 138:295–304

    Article  CAS  Google Scholar 

  • Evenden JL (1999) Varieties of impulsivity. Psychopharmacology (Berl) 146:348–361

    Article  CAS  Google Scholar 

  • Fahlke C, Hansen S (1999) Alcohol responsiveness, hyperreactivity, and motor restlessness in an animal model for attention-deficit hyperactivity disorder. Psychopharmacology (Berl) 146:1–9

    Article  CAS  Google Scholar 

  • Fan X, Xu M, Hess EJ (2010) D2 dopamine receptor subtype-mediated hyperactivity and amphetamine responses in a model of ADHD. Neurobiol Dis 37:228–236

    Google Scholar 

  • Faraone SV, Biederman J (1998) Neurobiology of attention-deficit hyperactivity disorder. Biol Psychiatry 44:951–958

    Article  PubMed  CAS  Google Scholar 

  • Faraone SV, Doyle AE, Mick E, Biederman J (2001) Meta-analysis of the association between the 7-repeat allele of the dopamine D(4) receptor gene and attention deficit hyperactivity disorder. Am J Psychiatry 158:1052–1057

    Article  PubMed  CAS  Google Scholar 

  • Faraone SV, Sergeant J, Gillberg C, Biederman J (2003) The worldwide prevalence of ADHD: is it an American condition? World Psychiatry 2:104–113

    PubMed  Google Scholar 

  • Faraone SV, Perlis RH, Doyle AE, Smoller JW, Goralnick JJ, Holmgren MA, Sklar P (2005) Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1313–1323

    Article  PubMed  CAS  Google Scholar 

  • Feng Y, Crosbie J, Wigg K, Pathare T, Ickowicz A, Schachar R, Tannock R, Roberts W, Malone M, Swanson J, Kennedy JL, Barr CL (2005) The SNAP25 gene as a susceptibility gene contributing to attention-deficit hyperactivity disorder. Mol Psychiatry 10(998–1005):973

    Article  CAS  Google Scholar 

  • Feola TW, de Wit H, Richards JB (2000) Effects of d-amphetamine and alcohol on a measure of behavioral inhibition in rats. Behav Neurosci 114:838–848

    Article  PubMed  CAS  Google Scholar 

  • Ferguson SA (1996) Neuroanatomical and functional alterations resulting from early postnatal cerebellar insults in rodents. Pharmacol Biochem Behav 55:663–671

    Article  PubMed  CAS  Google Scholar 

  • Ferguson SA, Paule MG (1996) Effects of chlorpromazine and diazepam on time estimation behavior and motivation in rats. Pharmacol Biochem Behav 53:115–122

    Article  PubMed  CAS  Google Scholar 

  • Ferguson SA, Paule MG, Holson RR (1996) Functional effects of methylazoxymethanol-induced cerebellar hypoplasia in rats. Neurotoxicol Teratol 18:529–537

    Article  PubMed  CAS  Google Scholar 

  • Ferguson SA, Paule MG, Holson RR (2001) Neonatal dexamethasone on day 7 in rats causes behavioral alterations reflective of hippocampal, but not cerebellar, deficits. Neurotoxicol Teratol 23:57–69

    Article  PubMed  CAS  Google Scholar 

  • Ferster CB, Skinner BF (1957) Schedules of reinforcement. Appleton-Century-Crofts, New York

    Book  Google Scholar 

  • Festing MF, Bender K (1984) Genetic relationships between inbred strains of rats. An analysis based on genetic markers at 28 biochemical loci. Genet Res 44:271–281

    Article  PubMed  CAS  Google Scholar 

  • Filipek PA, Semrud-Clikeman M, Steingard RJ, Renshaw PF, Kennedy DN, Biederman J (1997) Volumetric MRI analysis comparing subjects having attention-deficit hyperactivity disorder with normal controls. Neurology 48:589–601

    Article  PubMed  CAS  Google Scholar 

  • Fineberg NA, Potenza MN, Chamberlain SR, Berlin HA, Menzies L, Bechara A, Sahakian BJ, Robbins TW, Bullmore ET, Hollander E (2009) Probing compulsive and impulsive behaviors, from animal models to endophenotypes: a narrative review. Neuropsychopharmacology 35(3):591–604

    Google Scholar 

  • Fox AT, Hand DJ, Reilly MP (2008) Impulsive choice in a rodent model of attention-deficit/hyperactivity disorder. Behav Brain Res 187:146–152

    Article  PubMed  Google Scholar 

  • Fung YK, Lau YS (1989) Effects of prenatal nicotine exposure on rat striatal dopaminergic and nicotinic systems. Pharmacol Biochem Behav 33:1–6

    Article  PubMed  CAS  Google Scholar 

  • Gainetdinov RR, Caron MG (2000) An animal model of attention deficit hyperactivity disorder. Mol Med Today 6:43–44

    Article  PubMed  CAS  Google Scholar 

  • Gainetdinov RR, Caron MG (2001) Genetics of childhood disorders: XXIV. ADHD, part 8: Hyperdopaminergic mice as an animal model of ADHD. J Am Acad Child Adolesc Psychiatry 40:380–382

    Article  PubMed  CAS  Google Scholar 

  • Gainetdinov RR, Jones SR, Fumagalli F, Wightman RM, Caron MG (1998) Re-evaluation of the role of the dopamine transporter in dopamine system homeostasis. Brain Res Brain Res Rev 26:148–153

    Article  PubMed  CAS  Google Scholar 

  • Gainetdinov RR, Jones SR, Caron MG (1999a) Functional hyperdopaminergia in dopamine transporter knock-out mice. Biol Psychiatry 46:303–311

    Article  PubMed  CAS  Google Scholar 

  • Gainetdinov RR, Wetsel WC, Jones SR, Levin ED, Jaber M, Caron MG (1999b) Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science 283:397–401

    Article  PubMed  CAS  Google Scholar 

  • Giedd JN, Blumenthal J, Molloy E, Castellanos FX (2001) Brain imaging of attention deficit/hyperactivity disorder. Ann N Y Acad Sci 931:33–49

    Article  PubMed  CAS  Google Scholar 

  • Giros B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379:606–612

    Article  PubMed  CAS  Google Scholar 

  • Gjone H, Stevenson J, Sundet JM (1996) Genetic influence on parent-reported attention-related problems in a Norwegian general population twin sample. J Am Acad Child Adolesc Psychiatry 35:588–596; discussion 596–598

    Google Scholar 

  • Gordon M (1979) The assessment of impulsivity and mediating behaviors in hyperactive and nonhyperactive boys. J Abnorm Child Psychol 7:317–326

    Article  PubMed  CAS  Google Scholar 

  • Gorenstein EE, Newman JP (1980) Disinhibitory psychopathology: a new perspective and a model for research. Psychol Rev 87:301–315

    Article  PubMed  CAS  Google Scholar 

  • Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160:636–645

    Article  PubMed  Google Scholar 

  • Granon S, Changeux JP (2006) Attention-deficit/hyperactivity disorder: a plausible mouse model? Acta Paediatr 95:645–649

    Article  PubMed  Google Scholar 

  • Granon S, Hardouin J, Courtier A, Poucet B (1998) Evidence for the involvement of the rat prefrontal cortex in sustained attention. Q J Exp Psychol B 51:219–233

    PubMed  CAS  Google Scholar 

  • Granon S, Passetti F, Thomas KL, Dalley JW, Everitt BJ, Robbins TW (2000) Enhanced and impaired attentional performance after infusion of D1 dopaminergic receptor agents into rat prefrontal cortex. J Neurosci 20:1208–1215

    PubMed  CAS  Google Scholar 

  • Granon S, Faure P, Changeux JP (2003) Executive and social behaviors under nicotinic receptor regulation. Proc Natl Acad Sci USA 100:9596–9601

    Article  PubMed  CAS  Google Scholar 

  • Hand DJ, Fox AT, Reilly MP (2009) Differential effects of d-amphetamine on impulsive choice in spontaneously hypertensive and Wistar-Kyoto rats. Behav Pharmacol 20:549–553

    Article  PubMed  CAS  Google Scholar 

  • Hanna GL, Ornitz EM, Hariharan M (1996) Urinary catecholamine excretion and behavioral differences in ADHD and normal boys. J Child Adolesc Psychopharmacol 6:63–73

    Article  PubMed  CAS  Google Scholar 

  • Harrison AA, Everitt BJ, Robbins TW (1997) Central 5-HT depletion enhances impulsive responding without affecting the accuracy of attentional performance: interactions with dopaminergic mechanisms. Psychopharmacology (Berl) 133:329–342

    Article  CAS  Google Scholar 

  • Hausknecht KA, Acheson A, Farrar AM, Kieres AK, Shen RY, Richards JB, Sabol KE (2005) Prenatal alcohol exposure causes attention deficits in male rats. Behav Neurosci 119:302–310

    Article  PubMed  CAS  Google Scholar 

  • Heal DJ, Smith SL, Kulkarni RS, Rowley HL (2008) New perspectives from microdialysis studies in freely-moving, spontaneously hypertensive rats on the pharmacology of drugs for the treatment of ADHD. Pharmacol Biochem Behav 90:184–197

    Article  PubMed  CAS  Google Scholar 

  • Helms CM, Gubner NR, Wilhelm CJ, Mitchell SH, Grandy DK (2008) D4 receptor deficiency in mice has limited effects on impulsivity and novelty seeking. Pharmacol Biochem Behav 90:387–393

    Article  PubMed  CAS  Google Scholar 

  • Hess EJ, Collins KA, Wilson MC (1996) Mouse model of hyperkinesis implicates SNAP-25 in behavioral regulation. J Neurosci 16:3104–3111

    PubMed  CAS  Google Scholar 

  • Highfield DA, Hu D, Amsel A (1998) Alleviation of x-irradiation-based deficit in memory-based learning by D-amphetamine: suggestions for attention deficit-hyperactivity disorder. Proc Natl Acad Sci USA 95:5785–5788

    Article  PubMed  CAS  Google Scholar 

  • Holson RR, Gazzara RA, Ferguson SA, Adams J (1997) Behavioral effects of low-dose gestational day 11-13 retinoic acid exposure. Neurotoxicol Teratol 19:355–362

    Article  PubMed  CAS  Google Scholar 

  • Huang-Pollock CL, Nigg JT (2003) Searching for the attention deficit in attention deficit hyperactivity disorder: the case of visuospatial orienting. Clin Psychol Rev 23:801–830

    Article  PubMed  Google Scholar 

  • Huang-Pollock CL, Nigg JT, Carr TH (2005) Deficient attention is hard to find: applying the perceptual load model of selective attention to attention deficit hyperactivity disorder subtypes. J Child Psychol Psychiatry 46:1211–1218

    Article  PubMed  Google Scholar 

  • Hudziak JJ, Heath AC, Madden PF, Reich W, Bucholz KK, Slutske W, Bierut LJ, Neuman RJ, Todd RD (1998) Latent class and factor analysis of DSM-IV ADHD: a twin study of female adolescents. J Am Acad Child Adolesc Psychiatry 37:848–857

    Article  PubMed  CAS  Google Scholar 

  • Iuvone L, Geloso MC, Dell’Anna E (1996) Changes in open field behavior, spatial memory, and hippocampal parvalbumin immunoreactivity following enrichment in rats exposed to neonatal anoxia. Exp Neurol 139:25–33

    Article  PubMed  CAS  Google Scholar 

  • Johansen EB, Aase H, Meyer A, Sagvolden T (2002) Attention-deficit/hyperactivity disorder (ADHD) behaviour explained by dysfunctioning reinforcement and extinction processes. Behav Brain Res 130:37–45

    Article  PubMed  Google Scholar 

  • Johansen EB, Sagvolden T, Kvande G (2005) Effects of delayed reinforcers on the behavior of an animal model of attention-deficit/hyperactivity disorder (ADHD). Behav Brain Res 162:47–61

    Article  PubMed  Google Scholar 

  • Johansen EB, Killeen PR, Sagvolden T (2007) Behavioral variability, elimination of responses, and delay-of-reinforcement gradients in SHR and WKY rats. Behav Brain Funct 3:60

    Article  PubMed  Google Scholar 

  • Johnson ML, Ely DL, Turner ME (1992) Genetic divergence between the Wistar-Kyoto rat and the spontaneously hypertensive rat. Hypertension 19:425–427

    Article  PubMed  CAS  Google Scholar 

  • Johnson KA, Robertson IH, Barry E, Mulligan A, Daibhis A, Daly M, Watchorn A, Gill M, Bellgrove MA (2008) Impaired conflict resolution and alerting in children with ADHD: evidence from the Attention Network Task (ANT). J Child Psychol Psychiatry 49:1339–1347

    Article  PubMed  Google Scholar 

  • Jones MD, Hess EJ (2003) Norepinephrine regulates locomotor hyperactivity in the mouse mutant coloboma. Pharmacol Biochem Behav 75:209–216

    Article  PubMed  CAS  Google Scholar 

  • Jones MD, Williams ME, Hess EJ (2001a) Abnormal presynaptic catecholamine regulation in a hyperactive SNAP-25-deficient mouse mutant. Pharmacol Biochem Behav 68:669–676

    Article  PubMed  CAS  Google Scholar 

  • Jones MD, Williams ME, Hess EJ (2001b) Expression of catecholaminergic mRNAs in the hyperactive mouse mutant coloboma. Brain Res Mol Brain Res 96:114–121

    Article  PubMed  CAS  Google Scholar 

  • Jucaite A, Fernell E, Halldin C, Forssberg H, Farde L (2005) Reduced midbrain dopamine transporter binding in male adolescents with attention-deficit/hyperactivity disorder: association between striatal dopamine markers and motor hyperactivity. Biol Psychiatry 57:229–238

    Article  PubMed  CAS  Google Scholar 

  • Kipp K (2005) A developmental perspective on the measurement of cognitive deficits in attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1256–1260

    Article  PubMed  Google Scholar 

  • Kostrzewa RM, Kostrzewa JP, Kostrzewa RA, Nowak P, Brus R (2008) Pharmacological models of ADHD. J Neural Transm 115:287–298

    Article  PubMed  CAS  Google Scholar 

  • Kraemer HC, Noda A, O’Hara R (2004) Categorical versus dimensional approaches to diagnosis: methodological challenges. J Psychiatr Res 38:17–25

    Article  PubMed  Google Scholar 

  • Krause KH, Dresel SH, Krause J, Kung HF, Tatsch K (2000) Increased striatal dopamine transporter in adult patients with attention deficit hyperactivity disorder: effects of methylphenidate as measured by single photon emission computed tomography. Neurosci Lett 285:107–110

    Article  PubMed  CAS  Google Scholar 

  • Kupietz SS, Balka EB (1976) Alterations in the vigilance performance of children receiving amitriptyline and methylphenidate pharmacotherapy. Psychopharmacology (Berl) 50:29–33

    Article  CAS  Google Scholar 

  • Kurtz TW, Morris RC Jr (1987) Biological variability in Wistar-Kyoto rats. Implications for research with the spontaneously hypertensive rat. Hypertension 10:127–131

    Article  PubMed  CAS  Google Scholar 

  • Kustanovich V, Merriman B, McGough J, McCracken JT, Smalley SL, Nelson SF (2003) Biased paternal transmission of SNAP-25 risk alleles in attention-deficit hyperactivity disorder. Mol Psychiatry 8:309–315

    Article  PubMed  CAS  Google Scholar 

  • Lahey BB, Applegate B (2001) Validity of DSM-IV ADHD. J Am Acad Child Adolesc Psychiatry 40:502–504

    Article  PubMed  CAS  Google Scholar 

  • LaHoste GJ, Swanson JM, Wigal SB, Glabe C, Wigal T, King N, Kennedy JL (1996) Dopamine D4 receptor gene polymorphism is associated with attention deficit hyperactivity disorder. Mol Psychiatry 1:121–124

    PubMed  CAS  Google Scholar 

  • Lawrence CA, Barry RJ, Clarke AR, Johnstone SJ, McCarthy R, Selikowitz M, Broyd SJ (2005) Methylphenidate effects in attention deficit/hyperactivity disorder: electrodermal and ERP measures during a continuous performance task. Psychopharmacology (Berl) 183:81–91

    Article  CAS  Google Scholar 

  • Le Moal M, Galey D, Cardo B (1975) Behavioral effects of local injection of 6-hydroxydopamine in the medial ventral tegmentum in the rat. Possible role of the mesolimbic dopamingergic system. Brain Res 88:190–194

    Article  PubMed  Google Scholar 

  • Leo D, Sorrentino E, Volpicelli F, Eyman M, Greco D, Viggiano D, di Porzio U, Perrone-Capano C (2003) Altered midbrain dopaminergic neurotransmission during development in an animal model of ADHD. Neurosci Biobehav Rev 27:661–669

    Article  PubMed  CAS  Google Scholar 

  • Levin ED, Rezvani AH (2002) Nicotinic treatment for cognitive dysfunction. Curr Drug Targets CNS Neurol Disord 1:423–431

    Article  PubMed  CAS  Google Scholar 

  • Levy F, Hay DA, McStephen M, Wood C, Waldman I (1997) Attention-deficit hyperactivity disorder: a category or a continuum? Genetic analysis of a large-scale twin study. J Am Acad Child Adolesc Psychiatry 36:737–744

    Article  PubMed  CAS  Google Scholar 

  • Lijffijt M, Kenemans JL, Verbaten MN, van Engeland H (2005) A meta-analytic review of stopping performance in attention-deficit/hyperactivity disorder: deficient inhibitory motor control? J Abnorm Psychol 114:216–222

    Article  PubMed  Google Scholar 

  • Lim MH, Kim HW, Paik KC, Cho SC, Yoon DY, Lee HJ (2006) Association of the DAT1 polymorphism with attention deficit hyperactivity disorder (ADHD): a family-based approach. Am J Med Genet B Neuropsychiatr Genet 141B:309–311

    Article  PubMed  CAS  Google Scholar 

  • Linnet KM, Dalsgaard S, Obel C, Wisborg K, Henriksen TB, Rodriguez A, Kotimaa A, Moilanen I, Thomsen PH, Olsen J, Jarvelin MR (2003) Maternal lifestyle factors in pregnancy risk of attention deficit hyperactivity disorder and associated behaviors: review of the current evidence. Am J Psychiatry 160:1028–1040

    Article  PubMed  Google Scholar 

  • Linthorst AC, De Lang H, De Jong W, Versteeg DH (1991) Effect of the dopamine D2 receptor agonist quinpirole on the in vivo release of dopamine in the caudate nucleus of hypertensive rats. Eur J Pharmacol 201:125–133

    Article  PubMed  CAS  Google Scholar 

  • Logan GD (1994) On the ability to inhibit thought and action. A users’ guide to the stop signal paradigm. In: Dagenbach D, Carr TH (eds) Inhibitory processes in attention, memory and language. Academic, San Diego, CA, pp 189–236

    Google Scholar 

  • Logan GD, Cowan WB, Davis KA (1984) On the ability to inhibit simple and choice reaction time responses: a model and a method. J Exp Psychol Hum Percept Perform 10:276–291

    Article  PubMed  CAS  Google Scholar 

  • Losier BJ, McGrath PJ, Klein RM (1996) Error patterns on the continuous performance test in non-medicated and medicated samples of children with and without ADHD: a meta-analytic review. J Child Psychol Psychiatry 37:971–987

    Article  PubMed  CAS  Google Scholar 

  • Lou HC (1996) Etiology and pathogenesis of attention-deficit hyperactivity disorder (ADHD): significance of prematurity and perinatal hypoxic-haemodynamic encephalopathy. Acta Paediatr 85:1266–1271

    Article  PubMed  CAS  Google Scholar 

  • Lubke GH, Muthen B, Moilanen IK, McGough JJ, Loo SK, Swanson JM, Yang MH, Taanila A, Hurtig T, Jarvelin MR, Smalley SL (2007) Subtypes versus severity differences in attention-deficit/hyperactivity disorder in the Northern Finnish Birth Cohort. J Am Acad Child Adolesc Psychiatry 46:1584–1593

    Article  PubMed  Google Scholar 

  • Lubke GH, Hudziak JJ, Derks EM, van Bijsterveldt TC, Boomsma DI (2009) Maternal ratings of attention problems in ADHD: evidence for the existence of a continuum. J Am Acad Child Adolesc Psychiatry 48:1085–1093

    Article  PubMed  Google Scholar 

  • Luders E, Narr KL, Hamilton LS, Phillips OR, Thompson PM, Valle JS, Del'Homme M, Strickland T, McCracken JT, Toga AW, Levitt JG (2009) Decreased callosal thickness in attention-deficit/hyperactivity disorder. Biol Psychiatry 65:84–88

    Article  PubMed  Google Scholar 

  • Luthman J, Fredriksson A, Lewander T, Jonsson G, Archer T (1989) Effects of d-amphetamine and methylphenidate on hyperactivity produced by neonatal 6-hydroxydopamine treatment. Psychopharmacology (Berl) 99:550–557

    Article  CAS  Google Scholar 

  • Magara F, Ricceri L, Wolfer DP, Lipp HP (2000) The acallosal mouse strain I/LnJ: a putative model of ADHD? Neurosci Biobehav Rev 24:45–50

    Article  PubMed  CAS  Google Scholar 

  • Mar AC, Robbins TW (2007) Delay discounting and impulsive choice in the rat. Curr Protoc Neurosci Chap. 8: Unit 8.22

    Google Scholar 

  • McClure GY, Wenger GR, McMillan DE (1997) Effects of drugs on response duration differentiation. V: differential effects under temporal response differentiation schedules. J Pharmacol Exp Ther 281:1357–1367

    PubMed  CAS  Google Scholar 

  • McDonald MP, Wong R, Goldstein G, Weintraub B, Cheng SY, Crawley JN (1998) Hyperactivity and learning deficits in transgenic mice bearing a human mutant thyroid hormone beta1 receptor gene. Learn Mem 5:289–301

    PubMed  CAS  Google Scholar 

  • McGaughy J, Turchi J, Sarter M (1994) Crossmodal divided attention in rats: effects of chlordiazepoxide and scopolamine. Psychopharmacology (Berl) 115:213–220

    Article  CAS  Google Scholar 

  • McKinney WT Jr, Bunney WE Jr (1969) Animal model of depression. I. Review of evidence: implications for research. Arch Gen Psychiatry 21:240–248

    Article  PubMed  Google Scholar 

  • Mick E, Biederman J, Faraone SV, Sayer J, Kleinman S (2002) Case-control study of attention-deficit hyperactivity disorder and maternal smoking, alcohol use, and drug use during pregnancy. J Am Acad Child Adolesc Psychiatry 41:378–385

    Article  PubMed  Google Scholar 

  • Milberger S, Biederman J, Faraone SV, Jones J (1998) Further evidence of an association between maternal smoking during pregnancy and attention deficit hyperactivity disorder: findings from a high-risk sample of siblings. J Clin Child Psychol 27:352–358

    Article  PubMed  CAS  Google Scholar 

  • Milich R, Balentine A, Lynam D (2001) ADHD combined type and ADHD predominantly inattentive type are distinct and unrelated disorders. Clin Psychol Sci Practice 8:463–488

    Article  Google Scholar 

  • Mill J (2007) Rodent models: utility for candidate gene studies in human attention-deficit hyperactivity disorder (ADHD). J Neurosci Methods 166:294–305

    Article  PubMed  CAS  Google Scholar 

  • Mill J, Curran S, Kent L, Gould A, Huckett L, Richards S, Taylor E, Asherson P (2002) Association study of a SNAP-25 microsatellite and attention deficit hyperactivity disorder. Am J Med Genet 114:269–271

    Article  PubMed  Google Scholar 

  • Mobini S, Body S, Ho MY, Bradshaw CM, Szabadi E, Deakin JF, Anderson IM (2002) Effects of lesions of the orbitofrontal cortex on sensitivity to delayed and probabilistic reinforcement. Psychopharmacology (Berl) 160:290–298

    Article  CAS  Google Scholar 

  • Moser MB, Moser EI, Wultz B, Sagvolden T (1988) Component analyses differentiate between exploratory behaviour of spontaneously hypertensive rats and Wistar Kyoto rats in a two-compartment free-exploration open field. Scand J Psychol 29:200–206

    Article  PubMed  CAS  Google Scholar 

  • Muir JL, Everitt BJ, Robbins TW (1994) AMPA-induced excitotoxic lesions of the basal forebrain: a significant role for the cortical cholinergic system in attentional function. J Neurosci 14:2313–2326

    PubMed  CAS  Google Scholar 

  • Muir JL, Everitt BJ, Robbins TW (1996) The cerebral cortex of the rat and visual attentional function: dissociable effects of mediofrontal, cingulate, anterior dorsolateral, and parietal cortex lesions on a five-choice serial reaction time task. Cereb Cortex 6:470–481

    Article  PubMed  CAS  Google Scholar 

  • Muller U, Clark L, Lam ML, Moore RM, Murphy CL, Richmond NK, Sandhu RS, Wilkins IA, Menon DK, Sahakian BJ, Robbins TW (2005) Lack of effects of guanfacine on executive and memory functions in healthy male volunteers. Psychopharmacology (Berl) 182:205–213

    Article  CAS  Google Scholar 

  • Navarra R, Graf R, Huang Y, Logue S, Comery T, Hughes Z, Day M (2008) Effects of atomoxetine and methylphenidate on attention and impulsivity in the 5-choice serial reaction time test. Prog Neuropsychopharmacol Biol Psychiatry 32(1):34–41

    Article  PubMed  CAS  Google Scholar 

  • Neuman RJ, Sitdhiraksa N, Reich W, Ji TH, Joyner CA, Sun LW, Todd RD (2005) Estimation of prevalence of DSM-IV and latent class-defined ADHD subtypes in a population-based sample of child and adolescent twins. Twin Res Hum Genet 8:392–401

    Article  PubMed  Google Scholar 

  • Nigg JT (2001) Is ADHD a disinhibitory disorder? Psychol Bull 127:571–598

    Article  PubMed  CAS  Google Scholar 

  • Nigg JT (2005) Neuropsychologic theory and findings in attention-deficit/hyperactivity disorder: the state of the field and salient challenges for the coming decade. Biol Psychiatry 57:1424–1435

    Article  PubMed  Google Scholar 

  • Nigg JT (2006) What causes ADHD? Understanding what goes wrong and why. Guilford, New York, USA

    Google Scholar 

  • Nigg JT, Knottnerus GM, Martel MM, Nikolas M, Cavanagh K, Karmaus W, Rappley MD (2008) Low blood lead levels associated with clinically diagnosed attention-deficit/hyperactivity disorder and mediated by weak cognitive control. Biol Psychiatry 63:325–331

    Article  PubMed  CAS  Google Scholar 

  • Oades RD (1987) Attention deficit disorder with hyperactivity (ADDH): the contribution of catecholaminergic activity. Prog Neurobiol 29:365–391

    Article  PubMed  CAS  Google Scholar 

  • Okamoto K, Aoki K (1963) Development of a strain of spontaneously hypertensive rats. Jpn Circ J 27:282–293

    Article  PubMed  CAS  Google Scholar 

  • Oosterlaan J, Logan GD, Sergeant JA (1998) Response inhibition in AD/HD, CD, comorbid AD/HD + CD, anxious, and control children: a meta-analysis of studies with the stop task. J Child Psychol Psychiatry 39:411–425

    Article  PubMed  CAS  Google Scholar 

  • Orduna V, Valencia-Torres L, Bouzas A (2009) DRL performance of spontaneously hypertensive rats: dissociation of timing and inhibition of responses. Behav Brain Res 201:158–165

    Article  PubMed  CAS  Google Scholar 

  • Pattij T, Janssen MC, Vanderschuren LJ, Schoffelmeer AN, van Gaalen MM (2007) Involvement of dopamine D1 and D2 receptors in the nucleus accumbens core and shell in inhibitory response control. Psychopharmacology (Berl) 191:587–598

    Article  CAS  Google Scholar 

  • Paz R, Barsness B, Martenson T, Tanner D, Allan AM (2007) Behavioral teratogenicity induced by nonforced maternal nicotine consumption. Neuropsychopharmacology 32:693–699

    Article  PubMed  CAS  Google Scholar 

  • Pennington BF (2006) From single to multiple deficit models of developmental disorders. Cognition 101:385–413

    Article  PubMed  Google Scholar 

  • Pennington BF, Ozonoff S (1996) Executive functions and developmental psychopathology. J Child Psychol Psychiatry 37:51–87

    Article  PubMed  CAS  Google Scholar 

  • Polderman TJ, Derks EM, Hudziak JJ, Verhulst FC, Posthuma D, Boomsma DI (2007) Across the continuum of attention skills: a twin study of the SWAN ADHD rating scale. J Child Psychol Psychiatry 48:1080–1087

    Article  PubMed  Google Scholar 

  • Pollier F, Sarre S, Aguerre S, Ebinger G, Mormede P, Michotte Y, Chaouloff F (2000) Serotonin reuptake inhibition by citalopram in rat strains differing for their emotionality. Neuropsychopharmacology 22:64–76

    Article  PubMed  CAS  Google Scholar 

  • Puumala T, Ruotsalainen S, Jakala P, Koivisto E, Riekkinen P Jr, Sirvio J (1996) Behavioral and pharmacological studies on the validation of a new animal model for attention deficit hyperactivity disorder. Neurobiol Learn Mem 66:198–211

    Article  PubMed  CAS  Google Scholar 

  • Quist JF, Barr CL, Schachar R, Roberts W, Malone M, Tannock R, Basile VS, Beitchman J, Kennedy JL (2000) Evidence for the serotonin HTR2A receptor gene as a susceptibility factor in attention deficit hyperactivity disorder (ADHD). Mol Psychiatry 5:537–541

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen ER, Neuman RJ, Heath AC, Levy F, Hay DA, Todd RD (2004) Familial clustering of latent class and DSM-IV defined attention-deficit/hyperactivity disorder (ADHD) subtypes. J Child Psychol Psychiatry 45:589–598

    Article  PubMed  Google Scholar 

  • Reja V, Goodchild AK, Phillips JK, Pilowsky PM (2002) Tyrosine hydroxylase gene expression in ventrolateral medulla oblongata of WKY and SHR: a quantitative real-time polymerase chain reaction study. Auton Neurosci 98:79–84

    Article  PubMed  CAS  Google Scholar 

  • Richardson SA, Tizabi Y (1994) Hyperactivity in the offspring of nicotine-treated rats: role of the mesolimbic and nigrostriatal dopaminergic pathways. Pharmacol Biochem Behav 47:331–337

    Article  PubMed  CAS  Google Scholar 

  • Rivalan M, Blondeau C, Dellu-Hagedorn F (2009) Modelling symptoms of mental disorders using a dimensional approach in the rat. In: Granon S (ed) Endophenotypes of psychiatric and neurodegenerative disorders in rodent models. Transworld Research Network, Trivandrum, pp 15–40

    Google Scholar 

  • Robbins TW (2002) The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology (Berl) 163:362–380

    Article  CAS  Google Scholar 

  • Robbins TW (2007) Shifting and stopping: fronto-striatal substrates, neurochemical modulation and clinical implications. Philos Trans R Soc Lond B Biol Sci 362:917–932

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW, Everitt BJ, Marston HM, Wilkinson J, Jones GH, Page KJ (1989) Comparative effects of ibotenic acid- and quisqualic acid-induced lesions of the substantia innominata on attentional function in the rat: further implications for the role of the cholinergic neurons of the nucleus basalis in cognitive processes. Behav Brain Res 35:221–240

    Article  PubMed  CAS  Google Scholar 

  • Robinson ES, Eagle DM, Mar AC, Bari A, Banerjee G, Jiang X, Dalley JW, Robbins TW (2008) Similar effects of the selective noradrenaline reuptake inhibitor atomoxetine on three distinct forms of impulsivity in the rat. Neuropsychopharmacology 33:1028–1037

    Article  PubMed  CAS  Google Scholar 

  • Robinson ES, Eagle DM, Economidou D, Theobald DE, Mar AC, Murphy ER, Robbins TW, Dalley JW (2009) Behavioural characterisation of high impulsivity on the 5-choice serial reaction time task: specific deficits in ‘waiting’ versus ‘stopping’. Behav Brain Res 196:310–316

    Article  PubMed  CAS  Google Scholar 

  • Rogers RD, Everitt BJ, Baldacchino A, Blackshaw AJ, Swainson R, Wynne K, Baker NB, Hunter J, Carthy T, Booker E, London M, Deakin JF, Sahakian BJ, Robbins TW (1999) Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: evidence for monoaminergic mechanisms. Neuropsychopharmacology 20:322–339

    Article  PubMed  CAS  Google Scholar 

  • Rogers RD, Baunez C, Everitt BJ, Robbins TW (2001) Lesions of the medial and lateral striatum in the rat produce differential deficits in attentional performance. Behav Neurosci 115:799–811

    Article  PubMed  CAS  Google Scholar 

  • Roman T, Schmitz M, Polanczyk GV, Eizirik M, Rohde LA, Hutz MH (2002) Further evidence for the association between attention-deficit/hyperactivity disorder and the dopamine-beta-hydroxylase gene. Am J Med Genet 114:154–158

    Article  PubMed  Google Scholar 

  • Routh DK, Roberts RD (1972) Minimal brain dysfunction in children: failure to find evidence for a behavioral syndrome. Psychol Rep 31:307–314

    Article  PubMed  CAS  Google Scholar 

  • Rubia K, Overmeyer S, Taylor E, Brammer M, Williams SC, Simmons A, Bullmore ET (1999) Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: a study with functional MRI. Am J Psychiatry 156:891–896

    PubMed  CAS  Google Scholar 

  • Rubinstein M, Phillips TJ, Bunzow JR, Falzone TL, Dziewczapolski G, Zhang G, Fang Y, Larson JL, McDougall JA, Chester JA, Saez C, Pugsley TA, Gershanik O, Low MJ, Grandy DK (1997) Mice lacking dopamine D4 receptors are supersensitive to ethanol, cocaine, and methamphetamine. Cell 90:991–1001

    Article  PubMed  CAS  Google Scholar 

  • Russell VA (2007) Neurobiology of animal models of attention-deficit hyperactivity disorder. J Neurosci Methods 161:185–198

    Article  PubMed  Google Scholar 

  • Russell VA, Sagvolden T, Johansen EB (2005) Animal models of attention-deficit hyperactivity disorder. Behav Brain Funct 1:9

    Article  PubMed  CAS  Google Scholar 

  • Sadile AG, Cerbone A, Grimaldi A, Manzi G, Cioffi LA (1986) Postnatal brain growth and behavior: evaluation of environmental factors. Bibl Nutr Dieta 38:194–205

    Google Scholar 

  • Sadile AG, Lamberti C, Siegfried B, Welzl H (1993) Circadian activity, nociceptive thresholds, nigrostriatal and mesolimbic dopaminergic activity in the Naples High- and Low-Excitability rat lines. Behav Brain Res 55:17–27

    Article  PubMed  CAS  Google Scholar 

  • Sagvolden T (2000) Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neurosci Biobehav Rev 24:31–39

    Article  PubMed  CAS  Google Scholar 

  • Sagvolden T (2006) The alpha-2A adrenoceptor agonist guanfacine improves sustained attention and reduces overactivity and impulsiveness in an animal model of Attention-Deficit/Hyperactivity Disorder (ADHD). Behav Brain Funct 2:41

    Article  PubMed  CAS  Google Scholar 

  • Sagvolden T, Metzger MA, Schiorbeck HK, Rugland AL, Spinnangr I, Sagvolden G (1992) The spontaneously hypertensive rat (SHR) as an animal model of childhood hyperactivity (ADHD): changed reactivity to reinforcers and to psychomotor stimulants. Behav Neural Biol 58:103–112

    Article  PubMed  CAS  Google Scholar 

  • Sagvolden T, Aase H, Zeiner P, Berger D (1998) Altered reinforcement mechanisms in attention-deficit/hyperactivity disorder. Behav Brain Res 94:61–71

    Article  PubMed  CAS  Google Scholar 

  • Sagvolden T, Russell VA, Aase H, Johansen EB, Farshbaf M (2005) Rodent models of attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1239–1247

    Article  PubMed  Google Scholar 

  • Sanabria F, Killeen PR (2008) Evidence for impulsivity in the spontaneously hypertensive rat drawn from complementary response-withholding tasks. Behav Brain Funct 4:7

    Article  PubMed  Google Scholar 

  • Sarter M, Hagan J, Dudchenko P (1992) Behavioral screening for cognition enhancers: from indiscriminate to valid testing: Part I. Psychopharmacology (Berl) 107:144–159

    Article  CAS  Google Scholar 

  • Schachar R, Mota VL, Logan GD, Tannock R, Klim P (2000) Confirmation of an inhibitory control deficit in attention-deficit/hyperactivity disorder. J Abnorm Child Psychol 28:227–235

    Article  PubMed  CAS  Google Scholar 

  • Seidman LJ, Valera EM, Makris N (2005) Structural brain imaging of attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1263–1272

    Article  PubMed  Google Scholar 

  • Shaffer D, Greenhill L (1979) A critical note on the predictive validity of “the hyperkinetic syndrome”. J Child Psychol Psychiatry 20:61–72

    Article  PubMed  CAS  Google Scholar 

  • Shaywitz BA, Klopper JH, Yager RD, Gordon JW (1976a) Paradoxical response to amphetamine in developing rats treated with 6-hydroxydopamine. Nature 261:153–155

    Article  PubMed  CAS  Google Scholar 

  • Shaywitz BA, Yager RD, Klopper JH (1976b) Selective brain dopamine depletion in developing rats: an experimental model of minimal brain dysfunction. Science 191:305–308

    Article  PubMed  CAS  Google Scholar 

  • Shen RY, Choong KC (2006) Different adaptations in ventral tegmental area dopamine neurons in control and ethanol exposed rats after methylphenidate treatment. Biol Psychiatry 59:635–642

    Article  PubMed  CAS  Google Scholar 

  • Siesser WB, Zhao J, Miller LR, Cheng SY, McDonald MP (2006) Transgenic mice expressing a human mutant beta1 thyroid receptor are hyperactive, impulsive, and inattentive. Genes Brain Behav 5:282–297

    Article  PubMed  CAS  Google Scholar 

  • Silbergeld EK, Goldberg AM (1974) Lead-induced behavioral dysfunction: an animal model of hyperactivity. Exp Neurol 42:146–157

    Article  PubMed  CAS  Google Scholar 

  • Silbergeld EK, Goldberg AM (1975) Pharmacological and neurochemical investigations of lead-induced hyperactivity. Neuropharmacology 14:431–444

    Article  PubMed  CAS  Google Scholar 

  • Sleator EK, Ullmann RK (1981) Can the physician diagnose hyperactivity in the office? Pediatrics 67:13–17

    PubMed  CAS  Google Scholar 

  • Smirk FH, Hall WH (1958) Inherited hypertension in rats. Nature 182:727–728

    Article  PubMed  CAS  Google Scholar 

  • Smith A, Taylor E, Rogers JW, Newman S, Rubia K (2002) Evidence for a pure time perception deficit in children with ADHD. J Child Psychol Psychiatry 43:529–542

    Article  PubMed  Google Scholar 

  • Sobanski E (2006) Psychiatric comorbidity in adults with attention-deficit/hyperactivity disorder (ADHD). Eur Arch Psychiatry Clin Neurosci 256(Suppl 1):i26–i31

    Article  PubMed  Google Scholar 

  • Solanto MV (1998) Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: a review and integration. Behav Brain Res 94:127–152

    Article  PubMed  CAS  Google Scholar 

  • Solanto MV (2000) Clinical psychopharmacology of AD/HD: implications for animal models. Neurosci Biobehav Rev 24:27–30

    Article  PubMed  CAS  Google Scholar 

  • Solanto MV, Abikoff H, Sonuga-Barke E, Schachar R, Logan GD, Wigal T, Hechtman L, Hinshaw S, Turkel E (2001) The ecological validity of delay aversion and response inhibition as measures of impulsivity in AD/HD: a supplement to the NIMH multimodal treatment study of AD/HD. J Abnorm Child Psychol 29:215–228

    Article  PubMed  CAS  Google Scholar 

  • Sonuga-Barke EJ (2002) Psychological heterogeneity in AD/HD–a dual pathway model of behaviour and cognition. Behav Brain Res 130:29–36

    Article  PubMed  Google Scholar 

  • Sonuga-Barke EJ (2005) Causal models of attention-deficit/hyperactivity disorder: from common simple deficits to multiple developmental pathways. Biol Psychiatry 57:1231–1238

    Article  PubMed  Google Scholar 

  • Sonuga-Barke EJ, Dalen L, Remington B (2003) Do executive deficits and delay aversion make independent contributions to preschool attention-deficit/hyperactivity disorder symptoms? J Am Acad Child Adolesc Psychiatry 42:1335–1342

    Article  PubMed  Google Scholar 

  • Speiser Z, Shved A, Gitter S (1983) Effect of propranolol treatment in pregnant rats on motor activity and avoidance learning of the offspring. Psychopharmacology (Berl) 79:148–154

    Article  CAS  Google Scholar 

  • Spencer TJ (2006) ADHD and comorbidity in childhood. J Clin Psychiatry 67(suppl 8):27–31

    PubMed  Google Scholar 

  • Sprich-Buckminster S, Biederman J, Milberger S, Faraone SV, Lehman BK (1993) Are perinatal complications relevant to the manifestation of ADD? Issues of comorbidity and familiality. J Am Acad Child Adolesc Psychiatry 32:1032–1037

    Article  PubMed  CAS  Google Scholar 

  • Stocker SD, Muldoon MF, Sved AF (2003) Blunted fenfluramine-evoked prolactin secretion in hypertensive rats. Hypertension 42:719–724

    Article  PubMed  CAS  Google Scholar 

  • Streissguth AP, Sampson PD, Olson HC, Bookstein FL, Barr HM, Scott M, Feldman J, Mirsky AF (1994) Maternal drinking during pregnancy: attention and short-term memory in 14-year-old offspring – a longitudinal prospective study. Alcohol Clin Exp Res 18:202–218

    Article  PubMed  CAS  Google Scholar 

  • Sutherland KR, Alsop B, McNaughton N, Hyland BI, Tripp G, Wickens JR (2009) Sensitivity to delay of reinforcement in two animal models of attention deficit hyperactivity disorder (ADHD). Behav Brain Res 205:372–376

    Article  PubMed  Google Scholar 

  • Thanos PK, Ivanov I, Robinson JK, Michaelides M, Wang GJ, Swanson JM, Newcorn JH, Volkow ND (2010) Dissociation between spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats in baseline performance and methylphenidate response on measures of attention, impulsivity and hyperactivity in a visual stimulus position discrimination task. Pharmacol Biochem Behav 94:374–379

    Google Scholar 

  • Thompson CC, Potter GB (2000) Thyroid hormone action in neural development. Cereb Cortex 10:939–945

    Article  PubMed  CAS  Google Scholar 

  • Todd RD, Sitdhiraksa N, Reich W, Ji TH, Joyner CA, Heath AC, Neuman RJ (2002) Discrimination of DSM-IV and latent class attention-deficit/hyperactivity disorder subtypes by educational and cognitive performance in a population-based sample of child and adolescent twins. J Am Acad Child Adolesc Psychiatry 41:820–828

    Article  PubMed  Google Scholar 

  • Todd RD, Lobos EA, Sun LW, Neuman RJ (2003) Mutational analysis of the nicotinic acetylcholine receptor alpha 4 subunit gene in attention deficit/hyperactivity disorder: evidence for association of an intronic polymorphism with attention problems. Mol Psychiatry 8:103–108

    Article  PubMed  CAS  Google Scholar 

  • Trommer BL, Hoeppner JA, Lorber R, Armstrong KJ (1988) The go-no-go paradigm in attention deficit disorder. Ann Neurol 24:610–614

    Article  PubMed  CAS  Google Scholar 

  • Turner DC, Robbins TW, Clark L, Aron AR, Dowson J, Sahakian BJ (2003a) Cognitive enhancing effects of modafinil in healthy volunteers. Psychopharmacology (Berl) 165:260–269

    CAS  Google Scholar 

  • Turner DC, Robbins TW, Clark L, Aron AR, Dowson J, Sahakian BJ (2003b) Relative lack of cognitive effects of methylphenidate in elderly male volunteers. Psychopharmacology (Berl) 168:455–464

    Article  CAS  Google Scholar 

  • Vaidya CJ, Austin G, Kirkorian G, Ridlehuber HW, Desmond JE, Glover GH, Gabrieli JD (1998) Selective effects of methylphenidate in attention deficit hyperactivity disorder: a functional magnetic resonance study. Proc Natl Acad Sci USA 95:14494–14499

    Article  PubMed  CAS  Google Scholar 

  • Valera EM, Faraone SV, Murray KE, Seidman LJ (2007) Meta-analysis of structural imaging findings in attention-deficit/hyperactivity disorder. Biol Psychiatry 61:1361–1369

    Article  PubMed  Google Scholar 

  • van den Bergh FS, Bloemarts E, Chan JS, Groenink L, Olivier B, Oosting RS (2006) Spontaneously hypertensive rats do not predict symptoms of attention-deficit hyperactivity disorder. Pharmacol Biochem Behav 83:380–390

    Article  PubMed  CAS  Google Scholar 

  • van Gaalen MM, Brueggeman RJ, Bronius PF, Schoffelmeer AN, Vanderschuren LJ (2006) Behavioral disinhibition requires dopamine receptor activation. Psychopharmacology (Berl) 187:73–85

    Article  CAS  Google Scholar 

  • Viggiano D, Vallone D, Welzl H, Sadile AG (2002) The Naples High- and Low-Excitability rats: selective breeding, behavioral profile, morphometry, and molecular biology of the mesocortical dopamine system. Behav Genet 32:315–333

    Article  PubMed  Google Scholar 

  • Wallis D, Russell HF, Muenke M (2008) Review: Genetics of attention deficit/hyperactivity disorder. J Pediatr Psychol 33:1085–1099

    Article  PubMed  Google Scholar 

  • Watanabe Y, Fujita M, Ito Y, Okada T, Kusuoka H, Nishimura T (1997) Brain dopamine transporter in spontaneously hypertensive rats. J Nucl Med 38:470–474

    PubMed  CAS  Google Scholar 

  • Whalen CK, Henker B (1976) Psychostimulants and children: a review and analysis. Psychol Bull 83:1113–1130

    Article  PubMed  CAS  Google Scholar 

  • Wilens TE, Vitulano M, Upadhyaya H, Adamson J, Sawtelle R, Utzinger L, Biederman J (2008) Cigarette smoking associated with attention deficit hyperactivity disorder. J Pediatr 153(3):414–419

    Article  PubMed  Google Scholar 

  • Wilkinson RT (1963) Interaction of noise with knowledge of results and sleep deprivation. J Exp Psychol 66:332–337

    Article  PubMed  CAS  Google Scholar 

  • Willner P (1986) Validation criteria for animal models of human mental disorders: learned helplessness as a paradigm case. Prog Neuropsychopharmacol Biol Psychiatry 10:677–690

    Article  PubMed  CAS  Google Scholar 

  • Wilson MC (2000) Coloboma mouse mutant as an animal model of hyperkinesis and attention deficit hyperactivity disorder. Neurosci Biobehav Rev 24:51–57

    Article  PubMed  CAS  Google Scholar 

  • Winstanley CA, Theobald DE, Cardinal RN, Robbins TW (2004) Contrasting roles of basolateral amygdala and orbitofrontal cortex in impulsive choice. J Neurosci 24:4718–4722

    Article  PubMed  CAS  Google Scholar 

  • Winstanley CA, Eagle DM, Robbins TW (2006) Behavioral models of impulsivity in relation to ADHD: translation between clinical and preclinical studies. Clin Psychol Rev 26:379–395

    Article  PubMed  Google Scholar 

  • Wultz B, Sagvolden T, Moser EI, Moser MB (1990) The spontaneously hypertensive rat as an animal model of attention-deficit hyperactivity disorder: effects of methylphenidate on exploratory behavior. Behav Neural Biol 53:88–102

    Article  PubMed  CAS  Google Scholar 

  • Wyss JM, Fisk G, van Groen T (1992) Impaired learning and memory in mature spontaneously hypertensive rats. Brain Res 592:135–140

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Shen RY (2001) Amphetamine normalizes the electrical activity of dopamine neurons in the ventral tegmental area following prenatal ethanol exposure. J Pharmacol Exp Ther 297:746–752

    PubMed  CAS  Google Scholar 

  • Zelazo PD, Mueller U (2002) Executive function in typical and atypical development. In: Goswami U (ed) Handbook of childhood cognitive development. Blackwell, London, pp 445–469

    Chapter  Google Scholar 

  • Zhang K, Tarazi FI, Baldessarini RJ (2001) Role of dopamine D(4) receptors in motor hyperactivity induced by neonatal 6-hydroxydopamine lesions in rats. Neuropsychopharmacology 25:624–632

    Article  PubMed  CAS  Google Scholar 

  • Zhang K, Davids E, Tarazi FI, Baldessarini RJ (2002) Effects of dopamine D4 receptor-selective antagonists on motor hyperactivity in rats with neonatal 6-hydroxydopamine lesions. Psychopharmacology (Berl) 161:100–106

    Article  CAS  Google Scholar 

  • Zimering RT, Burright RG, Donovick PJ (1982) Effects of pre-natal and continued lead exposure on activity levels in the mouse. Neurobehav Toxicol Teratol 4:9–14

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bari, A., Robbins, T.W. (2011). Animal Models of ADHD. In: Hagan, J. (eds) Molecular and Functional Models in Neuropsychiatry. Current Topics in Behavioral Neurosciences, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2010_102

Download citation

Publish with us

Policies and ethics