Skip to main content

Isolation and Quantitative Analysis of Axonal Small Noncoding RNAs

  • Protocol
  • First Online:
MicroRNA Technologies

Part of the book series: Neuromethods ((NM,volume 128))

Abstract

The success of axonal regeneration of injured neurons depends largely on the intrinsic capacity for intra-axonal protein synthesis that is precisely regulated in a spatial and temporal manner. Recent studies have uncovered important roles of small noncoding RNAs in injury responses of axons during regeneration, particularly via translational regulation of axonally localized mRNAs. Several different approaches have been primarily focused on in vitro such as a modified Boyden chamber, a Campenot chamber, and a microfluidic device to study the miRNA profiles of axonal compartments because of contamination from non-neuronal cells in vivo. However, the in vivo studies include the ability to reflect all the possible consequences of reciprocal cellular interactions of the reinnervating injury axons and the denervated targets that cannot be replicated faithfully in culture. Here, we discuss an in-depth method for isolating axoplasm from rat sciatic nerve to purity for analyses of axonal miRNA content. We further show how this method can be used to quantitatively analyze specific miRNAs whose levels in axon is altered in response to injury, providing a means to understand how intra-axonal protein synthesis is regulated during regenerative processes. Reliable and reproducible methodologies to purify axoplasm from whole nerve would ultimately provide novel mechanistic insights into axonal injury and regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Eva R et al (2012) Intrinsic mechanisms regulating axon regeneration: an integrin perspective. Int Rev Neurobiol 106:75–104

    Article  CAS  PubMed  Google Scholar 

  2. Ferreira LM et al (2012) Neural regeneration: lessons from regenerating and non-regenerating systems. Mol Neurobiol 46(2):227–241

    Google Scholar 

  3. Pernet V, Schwab ME (2014) Lost in the jungle: new hurdles for optic nerve axon regeneration. Trends Neurosci 37(7):381–387

    Article  CAS  PubMed  Google Scholar 

  4. Snider WD et al (2002) Signaling the pathway to regeneration. Neuron 35(1):13–16

    Article  CAS  PubMed  Google Scholar 

  5. Chen ZL et al (2007) Peripheral regeneration. Annu Rev Neurosci 30:209–233

    Article  PubMed  Google Scholar 

  6. Baleriola J, Hengst U (2015) Targeting axonal protein synthesis in neuroregeneration and degeneration. Neurotherapeutics 12(1):57–65

    Article  CAS  PubMed  Google Scholar 

  7. Wu D, Murashov AK (2013) Molecular mechanisms of peripheral nerve regeneration: emerging roles of microRNAs. Front Physiol 4:55

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yoo S et al (2010) Dynamics of axonal mRNA transport and implications for peripheral nerve regeneration. Exp Neurol 223(1):19–27

    Article  CAS  PubMed  Google Scholar 

  9. Ben-Yaakov K et al (2012) Axonal transcription factors signal retrogradely in lesioned peripheral nerve. EMBO J 31(6):1350–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hanz S et al (2003) Axoplasmic importins enable retrograde injury signaling in lesioned nerve. Neuron 40(6):1095–1104

    Article  CAS  PubMed  Google Scholar 

  11. Perry RB et al (2012) Subcellular knockout of importin beta1 perturbs axonal retrograde signaling. Neuron 75(2):294–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yudin D et al (2008) Localized regulation of axonal RanGTPase controls retrograde injury signaling in peripheral nerve. Neuron 59(2):241–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Perlson E et al (2005) Vimentin-dependent spatial translocation of an activated MAP kinase in injured nerve. Neuron 45(5):715–726

    Article  CAS  PubMed  Google Scholar 

  14. Verma P et al (2005) Axonal protein synthesis and degradation are necessary for efficient growth cone regeneration. J Neurosci 25(2):331–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Donnelly CJ et al (2011) Limited availability of ZBP1 restricts axonal mRNA localization and nerve regeneration capacity. EMBO J 30(22):4665–4677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Donnelly CJ et al (2013) Axonally synthesized beta-actin and GAP-43 proteins support distinct modes of axonal growth. J Neurosci 33(8):3311–3322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yoo S et al (2013) A HuD-ZBP1 ribonucleoprotein complex localizes GAP-43 mRNA into axons through its 3′ untranslated region AU-rich regulatory element. J Neurochem 126(6):792–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Merianda TT et al (2015) Axonal amphoterin mRNA is regulated by translational control and enhances axon outgrowth. J Neurosci 35(14):5693–5706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Merianda TT et al (2013) Axonal transport of neural membrane protein 35 mRNA increases axon growth. J Cell Sci 126(Pt 1):90–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Martin KC, Ephrussi A (2009) mRNA localization: gene expression in the spatial dimension. Cell 136(4):719–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Besse F, Ephrussi A (2008) Translational control of localized mRNAs: restricting protein synthesis in space and time. Nat Rev Mol Cell Biol 9(12):971–980

    Article  CAS  PubMed  Google Scholar 

  22. Jung H et al (2014) Remote control of gene function by local translation. Cell 157(1):26–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jung H et al (2012) Axonal mRNA localization and local protein synthesis in nervous system assembly, maintenance and repair. Nat Rev Neurosci 13(5):308–324

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23:175–205

    Article  CAS  PubMed  Google Scholar 

  25. Schratt G (2009) Fine-tuning neural gene expression with microRNAs. Curr Opin Neurobiol 19(2):213–219

    Article  CAS  PubMed  Google Scholar 

  26. Liu NK, Xu XM (2011) MicroRNA in central nervous system trauma and degenerative disorders. Physiol Genomics 43(10):571–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ishizu H et al (2012) Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines. Genes Dev 26(21):2361–2373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kosik KS (2006) The neuronal microRNA system. Nat Rev Neurosci 7(12):911–920

    Article  CAS  PubMed  Google Scholar 

  30. Kye MJ et al (2014) SMN regulates axonal local translation via miR-183/mTOR pathway. Hum Mol Genet 23(23):6318–6331

    Google Scholar 

  31. Kar AN et al (2013) Intra-axonal synthesis of eukaryotic translation initiation factors regulates local protein synthesis and axon growth in rat sympathetic neurons. J Neurosci 33(17):7165–7174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu CM et al (2013) MicroRNA-138 and SIRT1 form a mutual negative feedback loop to regulate mammalian axon regeneration. Genes Dev 27(13):1473–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang Y et al (2013) The MicroRNA-17-92 cluster enhances axonal outgrowth in embryonic cortical neurons. J Neurosci 33(16):6885–6894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Taylor AM et al (2009) Axonal mRNA in uninjured and regenerating cortical mammalian axons. J Neurosci 29(15):4697–4707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zivraj KH et al (2010) Subcellular profiling reveals distinct and developmentally regulated repertoire of growth cone mRNAs. J Neurosci 30(46):15464–15478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gumy LF et al (2011) Transcriptome analysis of embryonic and adult sensory axons reveals changes in mRNA repertoire localization. RNA 17(1):85–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Natera-Naranjo O et al (2010) Identification and quantitative analyses of microRNAs located in the distal axons of sympathetic neurons. RNA 16(8):1516–1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sasaki Y et al (2014) Identification of axon-enriched microRNAs localized to growth cones of cortical neurons. Dev Neurobiol 74(3):397–406

    Article  CAS  PubMed  Google Scholar 

  39. Wu D et al (2011) MicroRNA machinery responds to peripheral nerve lesion in an injury-regulated pattern. Neuroscience 190:386–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yu B et al (2011) Altered microRNA expression following sciatic nerve resection in dorsal root ganglia of rats. Acta Biochim Biophys Sin (Shanghai) 43(11):909–915

    Article  CAS  Google Scholar 

  41. Dajas-Bailador F et al (2012) microRNA-9 regulates axon extension and branching by targeting Map1b in mouse cortical neurons. Nat Neurosci 15:697–699

    Google Scholar 

  42. Phay M et al (2015) Dynamic change and target prediction of axon-specific microRNAs in regenerating sciatic nerve. PLoS One 10(9):e0137461

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yu B et al (2011) Profile of microRNAs following rat sciatic nerve injury by deep sequencing: implication for mechanisms of nerve regeneration. PLoS One 6(9):e24612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brady ST et al (1985) Video microscopy of fast axonal transport in extruded axoplasm: a new model for study of molecular mechanisms. Cell Motil 5(2):81–101

    Article  CAS  PubMed  Google Scholar 

  45. Schmied R et al (1993) Endogenous axoplasmic proteins and proteins containing nuclear localization signal sequences use the retrograde axonal transport/nuclear import pathway in Aplysia neurons. J Neurosci 13(9):4064–4071

    CAS  PubMed  Google Scholar 

  46. Perlson E et al (2004) Differential proteomics reveals multiple components in retrogradely transported axoplasm after nerve injury. Mol Cell Proteomics 3(5):510–520

    Article  CAS  PubMed  Google Scholar 

  47. Rishal I et al (2010) Axoplasm isolation from peripheral nerve. Dev Neurobiol 70(2):126–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kanemaru H et al (2011) The circulating microRNA-221 level in patients with malignant melanoma as a new tumor marker. J Dermatol Sci 61(3):187–193

    Article  CAS  PubMed  Google Scholar 

  49. Liu R et al (2011) A five-microRNA signature identified from genome-wide serum microRNA expression profiling serves as a fingerprint for gastric cancer diagnosis. Eur J Cancer 47(5):784–791

    Article  CAS  PubMed  Google Scholar 

  50. Mestdagh P et al (2009) A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol 10(6):R64

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The methods presented here were developed using funds from the National Institutes of Health (P20-GM103464 and R21-NS085691 to SY). This work was also partially supported by Delaware INBRE Core Center Access Award (SY) from an Institutional Development Award (IDeA) Network of Biomedical Research Excellence program (INBRE; P20-GM103446) of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soonmoon Yoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kim, H.H., Phay, M., Yoo, S. (2016). Isolation and Quantitative Analysis of Axonal Small Noncoding RNAs. In: Kye, M. (eds) MicroRNA Technologies. Neuromethods, vol 128. Humana Press, New York, NY. https://doi.org/10.1007/7657_2016_8

Download citation

  • DOI: https://doi.org/10.1007/7657_2016_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7173-2

  • Online ISBN: 978-1-4939-7175-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics