Skip to main content

Molecular Imaging in Parkinson’s Disease

  • Protocol
  • First Online:
Molecular Imaging in the Clinical Neurosciences

Part of the book series: Neuromethods ((NM,volume 71))

Abstract

Parkinson’s disease (PD) is manifested clinically by bradykinesia, muscular rigidity, and sometimes rest tremor. The pathological hallmark of PD is the degeneration of dopaminergic cells within the substantia nigra-pars compacta (SNc) and the subsequent dopamine depletion of the striatum. Besides disturbances in motor performance, other symptoms like REM sleep behavior disorder, autonomic dysfunction, depression, and cognitive deficits can play a role in PD.

It can be difficult to distinguish PD from other neurodegenerative brain diseases, but early diagnosis is important because prognosis and treatment options differ. Structural imaging is in general not helpful at early disease stages. However, nuclear imaging methods not only can display striatal dopaminergic activity in PD but also visualize brain perfusion and glucose metabolism to show disease-related changes in local brain function or identify cholinergic deficits associated with cognitive dysfunction. Presynaptic dopaminergic imaging either with PET or SPECT is the gold standard to differentiate between patients with parkinsonian features associated with and without a presynaptic dopaminergic deficit. In order to differentiate between PD and other neurodegenerative brain diseases, specific disease-related metabolic patterns identified with FDG-PET imaging could be of great assistance in the individual clinical diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. de Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5:525–535

    Article  PubMed  Google Scholar 

  2. Litvan I et al (2003) Movement Disorders Society Scientific Issues Committee report: SIC Task Force appraisal of clinical diagnostic criteria for Parkinsonian disorders. Mov Disord 18:467–486

    Article  PubMed  Google Scholar 

  3. Alexander GE et al (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  PubMed  CAS  Google Scholar 

  4. DeLong M, Wichmann T (2009) Update on models of basal ganglia function and dysfunction. Parkinsonism Relat Disord 15(Suppl 3):S237–S240

    Article  PubMed  Google Scholar 

  5. Groenewegen HJ, van Dongen YC (2008) Role of the basal ganglia. In: Wolters ECh, van Laar T, Berendse HW (eds) Parkinsonism and related disorders. VU University press, Amsterdam

    Google Scholar 

  6. DeLong MR, Wichmann T (2007) Circuits and circuit disorders of the basal ganglia. Arch Neurol 64:20–24

    Article  PubMed  Google Scholar 

  7. Bartels AL, Leenders KL (2009) Parkinson’s disease: the syndrome, the pathogenesis and pathophysiology. Cortex 45:915–921

    Article  PubMed  Google Scholar 

  8. Groenewegen HJ (2003) The basal ganglia and motor control. Neural Plast 10:107–120

    Article  PubMed  Google Scholar 

  9. Horstink M et al (2006) Review of the therapeutic management of Parkinson’s disease. Report of a joint task force of the European Federation of Neurological Societies and the Movement Disorder Society-European Section. Part I: early (uncomplicated) Parkinson’s disease. Eur J Neurol 13:1170–1185

    Article  PubMed  CAS  Google Scholar 

  10. Limousin P et al (1998) Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 339:1105–1111

    Article  PubMed  CAS  Google Scholar 

  11. Asanuma K et al (2006) Network modulation in the treatment of Parkinson’s disease. Brain 129:2667–2678

    Article  PubMed  Google Scholar 

  12. Gilman S et al (2008) Second consensus statement on the diagnosis of multiple system atrophy. Neurology 71:670–676

    Article  PubMed  CAS  Google Scholar 

  13. McKeith IG (2006) Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the Consortium on DLB International Workshop. J Alzheimers Dis 9:417–423

    PubMed  Google Scholar 

  14. Galpern WR, Lang AE (2006) Interface between tauopathies and synucleinopathies: a tale of two proteins. Ann Neurol 59:449–458

    Article  PubMed  CAS  Google Scholar 

  15. Litvan I et al (1996) Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology 47:1–9

    Article  PubMed  CAS  Google Scholar 

  16. Mahapatra RK et al (2004) Corticobasal degeneration. Lancet Neurol 3:736–743

    Article  PubMed  Google Scholar 

  17. Leenders KL et al (1984) Positron emission tomography of the brain: new possibilities for the investigation of human cerebral pathophysiology. Prog Neurobiol 23:1–38

    Article  PubMed  CAS  Google Scholar 

  18. Hilker R et al (2005) Dementia in Parkinson disease: functional imaging of cholinergic and dopaminergic pathways. Neurology 65:1716–1722

    Article  PubMed  CAS  Google Scholar 

  19. Leenders KL et al (1990) The nigrostriatal dopaminergic system assessed in vivo by positron emission tomography in healthy volunteer subjects and patients with Parkinson’s disease. Arch Neurol 47:1290–1298

    Article  PubMed  CAS  Google Scholar 

  20. Innis RB et al (1993) Single photon emission computed tomographic imaging demonstrates loss of striatal dopamine transporters in Parkinson disease. Proc Natl Acad Sci USA 90:11965–11969

    Article  PubMed  CAS  Google Scholar 

  21. Piccini P, Whone A (2004) Functional brain imaging in the differential diagnosis of Parkinson’s disease. Lancet Neurol 3:284–290

    Article  PubMed  Google Scholar 

  22. Garnett ES et al (1983) Dopamine visualized in the basal ganglia of living man. Nature 305:137–138

    Article  PubMed  CAS  Google Scholar 

  23. Leenders KL et al (1986) Brain dopamine metabolism in patients with Parkinson’s disease measured with positron emission tomography. J Neurol Neurosurg Psychiatry 49:853–860

    Article  PubMed  CAS  Google Scholar 

  24. Otsuka M et al (1996) Differences in the reduced 18F-Dopa uptakes of the caudate and the putamen in Parkinson’s disease: correlations with the three main symptoms. J Neurol Sci 136:169–173

    Article  PubMed  CAS  Google Scholar 

  25. Rinne JO et al (1995) Striatal dopamine transporter in different disability stages of Parkinson’s disease studied with [(123)I]beta-CIT SPECT. Parkinsonism Relat Disord 1:47–51

    Article  PubMed  CAS  Google Scholar 

  26. Booij J et al (1997) [123I]FP-CIT SPECT shows a pronounced decline of striatal dopamine transporter labelling in early and advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry 62:133–140

    Article  PubMed  CAS  Google Scholar 

  27. Rinne JO et al (1999) Striatal uptake of a novel PET ligand, [18F]beta-CFT, is reduced in early Parkinson’s disease. Synapse 31:119–124

    Article  PubMed  CAS  Google Scholar 

  28. Volkow ND et al (1995) A new PET ligand for the dopamine transporter: studies in the human brain. J Nucl Med 36:2162–2168

    PubMed  CAS  Google Scholar 

  29. Tissingh G et al (1998) Iodine-123-N-omega-fluoropropyl-2beta-carbomethoxy-3beta-(4-iod ophenyl)tropane SPECT in healthy controls and early-stage, drug-naive Parkinson’s disease. J Nucl Med 39:1143–1148

    PubMed  CAS  Google Scholar 

  30. Eshuis SA et al (2009) Direct comparison of FP-CIT SPECT and F-DOPA PET in patients with Parkinson’s disease and healthy controls. Eur J Nucl Med Mol Imaging 36:454–462

    Article  PubMed  CAS  Google Scholar 

  31. Lee CS et al (2000) In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson’s disease. Ann Neurol 47:493–503

    Article  PubMed  CAS  Google Scholar 

  32. Au WL et al (2005) Parkinson’s disease: in vivo assessment of disease progression using positron emission tomography. Brain Res Mol Brain Res 134:24–33

    Article  PubMed  CAS  Google Scholar 

  33. Gerschlager W et al (2002) [123I]beta-CIT SPECT distinguishes vascular parkinsonism from Parkinson’s disease. Mov Disord 17:518–523

    Article  PubMed  Google Scholar 

  34. Marshall VL et al (2006) Two-year follow-up in 150 consecutive cases with normal dopamine transporter imaging. Nucl Med Commun 27:933–937

    Article  PubMed  Google Scholar 

  35. Brooks DJ et al (2003) Assessment of neuroimaging techniques as biomarkers of the progression of Parkinson’s disease. Exp Neurol 184(Suppl 1):S68–S79

    Article  PubMed  CAS  Google Scholar 

  36. Volkow ND et al (1998) Association between decline in brain dopamine activity with age and cognitive and motor impairment in healthy individuals. Am J Psychiatry 155:344–349

    PubMed  CAS  Google Scholar 

  37. Pavese N et al (2009) Neuroprotection and imaging studies in Parkinson’s disease. Parkinsonism Relat Disord 15(Suppl 4):S33–S37

    Article  PubMed  Google Scholar 

  38. Hilker R et al (2005) Disease progression continues in patients with advanced Parkinson’s disease and effective subthalamic nucleus stimulation. J Neurol Neurosurg Psychiatry 76:1217–1221

    Article  PubMed  CAS  Google Scholar 

  39. Morrish PK et al (1998) Measuring the rate of progression and estimating the preclinical period of Parkinson’s disease with [18F]dopa PET. J Neurol Neurosurg Psychiatry 64:314–319

    Article  PubMed  CAS  Google Scholar 

  40. Pirker W et al (2003) Measuring the rate of progression of Parkinson’s disease over a 5-year period with beta-CIT SPECT. Mov Disord 18:1266–1272

    Article  PubMed  Google Scholar 

  41. Group PS (2000) Pramipexole vs levodopa as initial treatment for Parkinson disease: a randomized controlled trial. JAMA 284:1931–1938

    Article  Google Scholar 

  42. Whone AL et al (2003) Slower progression of Parkinson’s disease with ropinirole versus levodopa: the REAL-PET study. Ann Neurol 54:93–101

    Article  PubMed  CAS  Google Scholar 

  43. Fahn S (2005) Does levodopa slow or hasten the rate of progression of Parkinson’s disease? J Neurol 252(Suppl 4):IV37–IV42

    Google Scholar 

  44. Ma Y et al (2010) Dopamine cell implantation in Parkinson’s disease: long-term clinical and (18)F-FDOPA PET outcomes. J Nucl Med 51:7–15

    Article  PubMed  Google Scholar 

  45. Farde L et al (1985) Substituted benzamides as ligands for visualization of dopamine receptor binding in the human brain by positron emission tomography. Proc Natl Acad Sci USA 82:3863–3867

    Article  PubMed  CAS  Google Scholar 

  46. Kung HF et al (1990) In vivo SPECT imaging of CNS D-2 dopamine receptors: initial studies with iodine-123-IBZM in humans. J Nucl Med 31:573–579

    PubMed  CAS  Google Scholar 

  47. Antonini A et al (1997) Long-term changes of striatal dopamine D2 receptors in patients with Parkinson’s disease: a study with positron emission tomography and [11C]raclopride. Mov Disord 12:33–38

    Article  PubMed  CAS  Google Scholar 

  48. Brooks DJ et al (1992) Striatal D2 receptor status in patients with Parkinson’s disease, striatonigral degeneration, and progressive supranuclear palsy, measured with 11C-raclopride and positron emission tomography. Ann Neurol 31:184–192

    Article  PubMed  CAS  Google Scholar 

  49. Schwarz J et al (1994) Comparison of 123I-IBZM SPECT and 11C-raclopride PET findings in patients with parkinsonism. Nucl Med Commun 15:806–813

    Article  PubMed  CAS  Google Scholar 

  50. Schwarz J et al (1993) 123I-iodobenzamide-SPECT in 83 patients with de novo parkinsonism. Neurology 43:S17–S20

    PubMed  CAS  Google Scholar 

  51. Pavese N et al (2006) Clinical correlates of levodopa-induced dopamine release in Parkinson disease: a PET study. Neurology 67:1612–1617

    Article  PubMed  CAS  Google Scholar 

  52. Sokoloff L et al (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    Article  PubMed  CAS  Google Scholar 

  53. Sokoloff L (1977) Relation between physiological function and energy metabolism in the central nervous system. J Neurochem 29:13–26

    Article  PubMed  CAS  Google Scholar 

  54. Frackowiak RS et al (1980) Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr 4:727–736

    Article  PubMed  CAS  Google Scholar 

  55. Leenders KL et al (1984) Cerebral blood flow and oxygen metabolism measurement with positron emission tomography in Parkinson’s disease. Monogr Neural Sci 11:180–186

    PubMed  CAS  Google Scholar 

  56. Leenders KL et al (1985) The effects of L-DOPA on regional cerebral blood flow and oxygen metabolism in patients with Parkinson’s disease. Brain 108(Pt 1):171–191

    Article  PubMed  Google Scholar 

  57. Holmes RA et al (1985) Cerebral uptake and retention of 99Tcm-hexamethylpropyleneamine oxime (99Tcm-HM-PAO). Nucl Med Commun 6:443–447

    Article  PubMed  CAS  Google Scholar 

  58. Leonard JP et al (1986) Technetium-99m-d, 1-HM-PAO: a new radiopharmaceutical for imaging regional brain perfusion using SPECT–a comparison with iodine-123 HIPDM. J Nucl Med 27:1819–1823

    PubMed  CAS  Google Scholar 

  59. Kwong KK et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89:5675–5679

    Article  PubMed  CAS  Google Scholar 

  60. Reivich M et al (1979) The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44:127–137

    Article  PubMed  CAS  Google Scholar 

  61. Eckert T et al (2005) FDG PET in the differential diagnosis of Parkinsonian disorders. Neuroimage 26:912–921

    Article  PubMed  Google Scholar 

  62. Juh R et al (2004) Different metabolic patterns analysis of Parkinsonism on the 18F-FDG PET. Eur J Radiol 51:223–233

    Article  PubMed  Google Scholar 

  63. Teune LK et al (2010) Typical cerebral metabolic patterns in neurodegenerative brain diseases. Mov Disord 25:2395–2404

    Article  PubMed  Google Scholar 

  64. Eidelberg D et al (1994) The metabolic topography of parkinsonism. J Cereb Blood Flow Metab 14:783–801

    Article  PubMed  CAS  Google Scholar 

  65. Ma Y et al (2007) Abnormal metabolic network activity in Parkinson’s disease: test-retest reproducibility. J Cereb Blood Flow Metab 27:597–605

    Article  PubMed  Google Scholar 

  66. Eggers C et al (2009) High resolution positron emission tomography demonstrates basal ganglia dysfunction in early Parkinson’s disease. J Neurol Sci 276:27–30

    Article  PubMed  CAS  Google Scholar 

  67. Huang C et al (2007) Changes in network activity with the progression of Parkinson’s disease. Brain 130:1834–1846

    Article  PubMed  Google Scholar 

  68. Hilker R et al (2004) Subthalamic nucleus stimulation restores glucose metabolism in associative and limbic cortices and in cerebellum: evidence from a FDG-PET study in advanced Parkinson’s disease. J Cereb Blood Flow Metab 24:7–16

    Article  PubMed  CAS  Google Scholar 

  69. Hilker R et al (2008) STN-DBS activates the target area in Parkinson disease: an FDG-PET study. Neurology 71:708–713

    Article  PubMed  CAS  Google Scholar 

  70. Eckert T, Eidelberg D (2004) The role of functional neuroimaging in the differential diagnosis of idiopathic Parkinson’s disease and multiple system atrophy. Clin Auton Res 14:84–91

    Article  PubMed  Google Scholar 

  71. Klein RC et al (2005) Direct comparison between regional cerebral metabolism in progressive supranuclear palsy and Parkinson’s disease. Mov Disord 20:1021–1030

    Article  PubMed  Google Scholar 

  72. Yong SW et al (2007) A comparison of cerebral glucose metabolism in Parkinson’s disease, Parkinson’s disease dementia and dementia with Lewy bodies. Eur J Neurol 14:1357–1362

    Article  PubMed  CAS  Google Scholar 

  73. Klein JC et al (2010) Neurotransmitter changes in dementia with Lewy bodies and Parkinson disease dementia in vivo. Neurology 74:885–892

    Article  PubMed  CAS  Google Scholar 

  74. Otsuka M et al (1997) Differentiating between multiple system atrophy and Parkinson’s disease by positron emission tomography with 18F-dopa and 18F-FDG. Ann Nucl Med 11:251–257

    Article  PubMed  CAS  Google Scholar 

  75. Eckert T et al (2008) Abnormal metabolic networks in atypical parkinsonism. Mov Disord 23(5):727–33

    Article  PubMed  Google Scholar 

  76. Tang CC et al (2010) Differential diagnosis of parkinsonism: a metabolic imaging study using pattern analysis. Lancet Neurol 9:149–158

    Article  PubMed  Google Scholar 

  77. Ehrt U et al (2010) Use of drugs with anticholinergic effect and impact on cognition in Parkinson’s disease: a cohort study. J Neurol Neurosurg Psychiatry 81:160–165

    Article  PubMed  Google Scholar 

  78. Emre M et al (2007) Rivastigmine in dementia associated with Parkinson’s disease and Alzheimer’s disease: similarities and differences. J Alzheimers Dis 11:509–519

    PubMed  CAS  Google Scholar 

  79. Kikuchi T et al (2010) In vivo evaluation of N-[18F]fluoroethylpiperidin-4ylmethyl acetate in rats compared with MP4A as a probe for measuring cerebral acetylcholinesterase activity. Synapse 64:209–215

    Article  PubMed  CAS  Google Scholar 

  80. Teismann P et al (2003) Pathogenic role of glial cells in Parkinson’s disease. Mov Disord 18:121–129

    Article  PubMed  Google Scholar 

  81. Ouchi Y et al (2005) Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann Neurol 57:168–175

    Article  PubMed  CAS  Google Scholar 

  82. Gerhard A et al (2006) In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis 21:404–412

    Article  PubMed  CAS  Google Scholar 

  83. Bartels AL et al (2010) [11C]-PK11195 PET: quantification of neuroinflammation and a monitor of anti-inflammatory treatment in Parkinson’s disease? Parkinsonism Relat Disord 16:57–59

    Article  PubMed  CAS  Google Scholar 

  84. Jarvis MF et al (1989) [3H]CGS 21680, a selective A2 adenosine receptor agonist directly labels A2 receptors in rat brain. J Pharmacol Exp Ther 251:888–893

    PubMed  CAS  Google Scholar 

  85. Fredholm BB, Svenningsson P (2003) Adenosine-dopamine interactions: development of a concept and some comments on therapeutic possibilities. Neurology 61:S5–S9

    Article  PubMed  CAS  Google Scholar 

  86. Jenner P et al (2009) Adenosine, adenosine A 2A antagonists, and Parkinson’s disease. Parkinsonism Relat Disord 15:406–413

    Article  PubMed  CAS  Google Scholar 

  87. Mishina M et al (2007) Evaluation of distribution of adenosine A(2A) receptors in normal human brain measured with [C-11]TMSX PET. Synapse 61:778–784

    Article  PubMed  CAS  Google Scholar 

  88. Nakajima K et al (2008) Iodine-123-MIBG sympathetic imaging in Lewy-body diseases and related movement disorders. Q J Nucl Med Mol Imaging 52:378–387

    PubMed  CAS  Google Scholar 

  89. Braune S et al (1999) Cardiac uptake of [123I]MIBG separates Parkinson’s disease from multiple system atrophy. Neurology 53:1020–1025

    Article  PubMed  CAS  Google Scholar 

  90. Chung EJ et al (2009) MIBG scintigraphy for differentiating Parkinson’s disease with autonomic dysfunction from Parkinsonism-predominant multiple system atrophy. Mov Disord 24:1650–1655

    Article  PubMed  Google Scholar 

  91. Ishibashi K et al (2010) Validation of cardiac (123)I-MIBG scintigraphy in patients with Parkinson’s disease who were diagnosed with dopamine PET. Eur J Nucl Med Mol Imaging 37:3–11

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura K. Teune .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Teune, L.K., Leenders, K.L. (2012). Molecular Imaging in Parkinson’s Disease. In: Gründer, G. (eds) Molecular Imaging in the Clinical Neurosciences. Neuromethods, vol 71. Humana Press, Totowa, NJ. https://doi.org/10.1007/7657_2012_51

Download citation

  • DOI: https://doi.org/10.1007/7657_2012_51

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-988-4

  • Online ISBN: 978-1-61779-989-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics