Skip to main content

GMP-Based Isolation of Full-Term Human Placenta-Derived NK Cells for CAR-NK Cell Therapy in Malignant Melanoma

  • Protocol
  • First Online:
Methods in Molecular Biology

Abstract

Melanoma, a severe type of skin cancer, poses significant management challenges due to its resistance to available treatments. Despite this obstacle, the high immunogenicity of melanoma renders it amenable to immune therapy, and NK cells have been identified as possessing anti-tumor properties in immunotherapy. The development of chimeric antigen receptor (CAR)-modified NK cells, or CAR-NK cells, has shown potential in enhancing immunotherapeutic regimens. To achieve this, researchers have explored various sources of NK cells, including those derived from the placenta, which offers benefits compared to other sources due to their limited ex vivo expansion potential. Recent studies have indicated the capacity to expand functional NK cells from placenta-derived cells in vitro that possess anti-tumor cytolytic properties. This chapter discusses the isolation of full-term human placenta-derived NK cells using Good Manufacturing Practice-based methods for CAR-NK cell therapy in melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

APC:

Allophycocyanin

CARs:

Chimeric Antigen Receptors

CBMPs:

Cell-Based Medicinal Products

CD:

Cluster of Differentiation

CMV:

Cytomegalovirus

EBV:

Epstein–Barr virus

EDQM:

European Directorate for the Quality of Medicines & HealthCare

FACS:

Flow Cytometry Staining Buffer

FITC:

Fluorescein Isothiocyanate

GMP:

Good Manufacturing Practices

HBc Ab:

Hepatitis B Virus Core Antibodies

HBsAg:

Hepatitis B Surface Antigen

HCV:

Hepatitis C Virus

HIV:

Human Immunodeficiency Virus

HTLV:

Human T-cell Lymphotropic Virus

MACS:

Magnetic-Activated Cell Sorting

NK:

Natural Killer

PBS:

Phosphate-Buffered Saline

PE-cy7:

Phycoerythrin- Cyanine7

RBC:

Red Blood Cell

RPR:

Rapid Plasma Reagin

scFv:

Single-Chain Variable Fragment

SOP:

Standard Operating Procedure

UCB:

Umbilical Cord Blood

References

  1. Aghayan HR, Payab M, Mohamadi-Jahani F et al (2021) GMP-compliant production of human placenta-derived mesenchymal stem cells. Stem Cells and Good Manufacturing practices: Methods, Protocols, and Regulations:213–225

    Google Scholar 

  2. Alavi-Moghadam S, Sarvari M, Goodarzi P et al (2020) The importance of cleanroom facility in manufacturing biomedical products. Biomedical Product Development: Bench to Bedside:69–79

    Google Scholar 

  3. Albinger N, Hartmann J, Ullrich E (2021) Current status and perspective of CAR-T and CAR-NK cell therapy trials in Germany. Gene Ther 28(9):513–527. https://doi.org/10.1038/s41434-021-00246-w

    Article  Google Scholar 

  4. Arjmand B, Alavi-Moghadam S, Parhizkar Roudsari P et al (2021) COVID-19 pathology on various organs and regenerative medicine and stem cell-based interventions. Front Cell Dev Biol 9:675310

    Google Scholar 

  5. Arjmand B, Alavi-Moghadam S, Rezaei-Tavirani M et al (2022) GMP-compliant mesenchymal stem cell-derived exosomes for cell-free therapy in cancer. In: Springer

    Google Scholar 

  6. Arjmand B, Hamidpour SK, Tayanloo-Beik A et al (2022) Machine learning: a new prospect in multi-omics data analysis of cancer. Front Genet 13:76

    Google Scholar 

  7. biowest.net/s181a-fetal-bovine-serum-fbs-biopharm-edqm-certified/ (2023)

  8. Catalan-Soares BC, Almeida RT, Carneiro-Proietti AB (2000) Prevalence of HIV-1/2, HTLV-I/II, hepatitis B virus (HBV), hepatitis C virus (HCV), Treponema pallidum and Trypanosoma cruzi among prison inmates at Manhuaçu, Minas Gerais State, Brazil. Rev Soc Bras Med Trop 33(1):27–30. https://doi.org/10.1590/s0037-86822000000100004

    Article  Google Scholar 

  9. Chin L, Garraway LA, Fisher DE (2006) Malignant melanoma: genetics and therapeutics in the genomic era. Genes Dev 20(16):2149–2182

    Google Scholar 

  10. Daher M, Melo Garcia L, Li Y et al (2021) CAR-NK cells: the next wave of cellular therapy for cancer. Clin Transl Immunol 10(4):e1274. https://doi.org/10.1002/cti2.1274

    Article  Google Scholar 

  11. Ebrahimi-Barough S, Ai J, Payab M et al (2021) Standard operating procedure for the good manufacturing practice-compliant production of human endometrial stem cells for multiple sclerosis. Stem Cells and Good Manufacturing Practices: Methods, Protocols, and Regulations:199–212

    Google Scholar 

  12. Garbe C, Eigentler TK, Keilholz U et al (2011) Systematic review of medical treatment in melanoma: current status and future prospects. Oncologist 16(1):5–24

    Google Scholar 

  13. https://www.cherwell-labs.co.uk/cherwell-labs-post/environmental-monitoring-how-to-maintain-a-cleanroom (2023)

  14. https://www.gmpsop.com/what-is-environmental-monitoring-in-pharmaceutical-industry/ (2023)

  15. Klykens J, Pirnay J-P, Verbeken G et al (2013) Cleanrooms and tissue banking how happy I could be with either GMP or GTP? Cell Tissue Bank 14:571–578

    Google Scholar 

  16. Lam BQ, Sugase T, Terai M et al (2019) Abstract 2319: accumulation and anti-tumor effect of chimeric antigen receptor (CAR) NK cells in metastasis uveal melanoma. Cancer Res 79(13_Supplement):2319. https://doi.org/10.1158/1538-7445.am2019-2319

    Article  Google Scholar 

  17. Larijani B, Aghayan H-R, Goodarzi P et al (2015) GMP-grade human fetal liver-derived mesenchymal stem cells for clinical transplantation. Stem Cells and Good Manufacturing Practices: Methods, Protocols, and Regulations:123–136

    Google Scholar 

  18. Laskarin G, Medancic SS, Redzovic A et al (2012) Specific decidual CD14+ cells hamper cognate NK cell proliferation and cytolytic mediator expression after mucin 1 treatment in vitro. J Reprod Immunol 95(1–2):36–45

    Google Scholar 

  19. Lee H, Da Silva IP, Palendira U et al (2021) Targeting NK cells to enhance melanoma response to immunotherapies. Cancers 13(6). https://doi.org/10.3390/cancers13061363

  20. Liu S, Galat V, Galat Y et al (2021) NK cell-based cancer immunotherapy: from basic biology to clinical development. J Hematol Oncol 14(1):7. https://doi.org/10.1186/s13045-020-01014-w

    Article  Google Scholar 

  21. Lorenzo-Herrero S, Sordo-Bahamonde C, González S et al (2020) Evaluation of NK cell cytotoxic activity against malignant cells by the calcein assay. Methods Enzymol 631:483–495. https://doi.org/10.1016/bs.mie.2019.05.036

    Article  Google Scholar 

  22. Mendes R, Bromelow K, Westby M et al (2000) Flow cytometric visualisation of cytokine production by CD3-CD56+ NK cells and CD3+ CD56+ NK–T cells in whole blood. Cytometry 39(1):72–78

    Google Scholar 

  23. Michel T, Poli A, Cuapio A et al (2016) Human CD56bright NK cells: an update. J Immunol 196(7):2923–2931

    Google Scholar 

  24. Peck K (2019) Chapter 10 - Serologic testing of donor products. In: Shaz BH, Hillyer CD, Reyes Gil M (eds) Transfusion medicine and hemostasis, 3rd edn. Elsevier, pp 59–61. https://doi.org/10.1016/B978-0-12-813726-0.00010-6

    Chapter  Google Scholar 

  25. Perera Molligoda Arachchige AS (2021) Human NK cells: from development to effector functions. Innate Immun 27(3):212–229. https://doi.org/10.1177/17534259211001512

    Article  Google Scholar 

  26. Poli A, Michel T, Thérésine M et al (2009) CD56bright natural killer (NK) cells: an important NK cell subset. Immunology 126(4):458–465

    Google Scholar 

  27. Sheikh Hosseini M, Parhizkar Roudsari P, Gilany K et al (2020) Cellular dust as a novel hope for regenerative cancer medicine. Cell Biology and Translational Medicine, Volume 9: Stem Cell-Based Therapeutic Approaches in Disease:139–160

    Google Scholar 

  28. Simon B, Uslu U (2018) CAR-T cell therapy in melanoma: a future success story? Exp Dermatol 27(12):1315–1321. https://doi.org/10.1111/exd.13792

    Article  Google Scholar 

  29. Takahashi E, Kuranaga N, Satoh K et al (2007) Induction of CD16+ CD56bright NK cells with antitumour cytotoxicity not only from CD16− CD56bright NK cells but also from CD16− CD56dim NK cells. Scand J Immunol 65(2):126–138

    Google Scholar 

  30. van Vliet AA, Georgoudaki AM, Raimo M et al (2021) Adoptive NK cell therapy: a promising treatment prospect for metastatic melanoma. Cancers 13(18). https://doi.org/10.3390/cancers13184722

  31. Weigent DA, Stanton GJ, Johnson HM (1983) Interleukin 2 enhances natural killer cell activity through induction of gamma interferon. Infect Immun 41(3):992–997. https://doi.org/10.1128/iai.41.3.992-997.1983

    Article  Google Scholar 

  32. Weiss SA, Wolchok JD, Sznol M (2019) Immunotherapy of melanoma: facts and hopes. Clin Cancer Res 25(17):5191–5201. https://doi.org/10.1158/1078-0432.ccr-18-1550

    Article  Google Scholar 

  33. Wrona E, Borowiec M, Potemski P (2021) CAR-NK cells in the treatment of solid tumors. Int J Mol Sci 22(11). https://doi.org/10.3390/ijms22115899

  34. Xie G, Dong H, Liang Y et al (2020) CAR-NK cells: a promising cellular immunotherapy for cancer. EBioMedicine 59:102975. https://doi.org/10.1016/j.ebiom.2020.102975

    Article  Google Scholar 

  35. Zhang L, Liu M, Yang S et al (2021) Natural killer cells: of-the-shelf cytotherapy for cancer immunosurveillance. Am J Cancer Res 11(4):1770–1791

    Google Scholar 

  36. Zhu L, Kalimuthu S, Gangadaran P et al (2017) Exosomes derived from natural killer cells exert therapeutic effect in melanoma. Theranostics 7(10):2732

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Arjmand .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Roudsari, P.P. et al. (2023). GMP-Based Isolation of Full-Term Human Placenta-Derived NK Cells for CAR-NK Cell Therapy in Malignant Melanoma. In: Methods in Molecular Biology. Springer, New York, NY. https://doi.org/10.1007/7651_2023_503

Download citation

  • DOI: https://doi.org/10.1007/7651_2023_503

  • Published:

  • Publisher Name: Springer, New York, NY

Publish with us

Policies and ethics