Skip to main content

A Method for Encapsulation and Transplantation into Diabetic Mice of Human Induced Pluripotent Stem Cells (hiPSC)-Derived Pancreatic Progenitors

  • Protocol
  • First Online:
Induced Pluripotent Stem (iPS) Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2454))

Abstract

Pancreatic islet endocrine cells generated from patient-derived induced pluripotent stem cells represent a great strategy for both disease modeling and regenerative medicine. Nevertheless, these cells inherently miss the effects of the intricate network of systemic signals characterizing the living organisms. Xenotransplantation of in vitro differentiating cells into murine hosts substantially compensates for this drawback.

Here we describe our transplantation strategy of encapsulated differentiating pancreatic progenitors into diabetic immunosuppressed (NSG) overtly diabetic mice generated by the total ablation of insulin-producing cells following diphtheria toxin administration. We will detail the differentiation protocol employed, the alginate encapsulation procedure, and the xenotransplantation steps required for a successful and reproducible experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Talchai C, Xuan S, Lin HV, Sussel L, Accili D (2012) Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure. Cell 150(6):1223–1234. https://doi.org/10.1016/j.cell.2012.07.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang Z, York NW, Nichols CG, Remedi MS (2014) Pancreatic beta cell dedifferentiation in diabetes and redifferentiation following insulin therapy. Cell Metab 19(5):872–882. https://doi.org/10.1016/j.cmet.2014.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Collombat P, Hecksher-Sørensen J, Krull J, Berger J, Riedel D, Herrera PL, Serup P, Mansouri A (2007) Embryonic endocrine pancreas and mature beta cells acquire alpha and PP cell phenotypes upon Arx misexpression. J Clin Invest 117(4):961–970. https://doi.org/10.1172/JCI29115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gao T, McKenna B, Li C, Reichert M, Nguyen J, Singh T, Yang C, Pannikar A, Doliba N, Zhang T, Stoffers DA, Edlund H, Matschinsky F, Stein R, Stanger BZ (2014) Pdx1 maintains beta cell identity and function by repressing an alpha cell program. Cell Metab 19(2):259–271. https://doi.org/10.1016/j.cmet.2013.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Spijker HS, Ravelli RB, Mommaas-Kienhuis AM, van Apeldoorn AA, Engelse MA, Zaldumbide A, Bonner-Weir S, Rabelink TJ, Hoeben RC, Clevers H, Mummery CL, Carlotti F, de Koning EJ (2013) Conversion of mature human beta-cells into glucagon-producing alpha-cells. Diabetes 62(7):2471–2480. https://doi.org/10.2337/db12-1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Spijker HS, Song H, Ellenbroek JH, Roefs MM, Engelse MA, Bos E, Koster AJ, Rabelink TJ, Hansen BC, Clark A, Carlotti F, de Koning EJ (2015) Loss of β-cell identity occurs in type 2 diabetes and is associated with islet amyloid deposits. Diabetes 64(8):2928–2938. https://doi.org/10.2337/db14-1752

    Article  CAS  PubMed  Google Scholar 

  7. Bryant DM, Sousounis K, Payzin-Dogru D, Bryant S, Sandoval AGW, Martinez Fernandez J, Mariano R, Oshiro R, Wong AY, Leigh ND, Johnson K, Whited JL (2017) Identification of regenerative roadblocks via repeat deployment of limb regeneration in axolotls. NPJ Regen Med 2:30. https://doi.org/10.1038/s41536-017-0034-z

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sandoval-Guzman T, Wang H, Khattak S, Schuez M, Roensch K, Nacu E, Tazaki A, Joven A, Tanaka EM, Simon A (2014) Fundamental differences in dedifferentiation and stem cell recruitment during skeletal muscle regeneration in two salamander species. Cell Stem Cell 14(2):174–187. https://doi.org/10.1016/j.stem.2013.11.007

    Article  CAS  PubMed  Google Scholar 

  9. Brockes JP, Kumar A (2008) Comparative aspects of animal regeneration. Annu Rev Cell Dev Biol 24:525–549. https://doi.org/10.1146/annurev.cellbio.24.110707.175336

    Article  CAS  PubMed  Google Scholar 

  10. Zhou Q, Melton DA (2018) Pancreas regeneration. Nature 557(7705):351–358. https://doi.org/10.1038/s41586-018-0088-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chera S, Herrera PL (2016) Regeneration of pancreatic insulin-producing cells by in situ adaptive cell conversion. Curr Opin Genet Dev 40:1–10. https://doi.org/10.1016/j.gde.2016.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cigliola V, Thorel F, Chera S, Herrera PL (2016) Stress-induced adaptive islet cell identity changes. Diabetes Obes Metab 18 Suppl 1:87–96. https://doi.org/10.1111/dom.12726

    Article  CAS  PubMed  Google Scholar 

  13. Cigliola V, Ghila L, Chera S, Herrera PL (2020) Tissue repair brakes: a common paradigm in the biology of regeneration. Stem Cells 38(3):330–339. https://doi.org/10.1002/stem.3118

    Article  PubMed  Google Scholar 

  14. Cigliola V, Ghila L, Thorel F, van Gurp L, Baronnier D, Oropeza D, Gupta S, Miyatsuka T, Kaneto H, Magnuson MA, Osipovich AB, Sander M, Wright CEV, Thomas MK, Furuyama K, Chera S, Herrera PL (2018) Pancreatic islet-autonomous insulin and smoothened-mediated signalling modulate identity changes of glucagon. Nat Cell Biol 20(11):1267–1277. https://doi.org/10.1038/s41556-018-0216-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chakravarthy H, Gu X, Enge M, Dai X, Wang Y, Damond N, Downie C, Liu K, Wang J, Xing Y, Chera S, Thorel F, Quake S, Oberholzer J, MacDonald PE, Herrera PL, Kim SK (2017) Converting adult pancreatic islet alpha cells into beta cells by targeting both Dnmt1 and Arx. Cell Metab 25(3):622–634. https://doi.org/10.1016/j.cmet.2017.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Furuyama K, Chera S, van Gurp L, Oropeza D, Ghila L, Damond N, Vethe H, Paulo JA, Joosten AM, Berney T, Bosco D, Dorrell C, Grompe M, Ræder H, Roep BO, Thorel F, Herrera PL (2019) Diabetes relief in mice by glucose-sensing insulin-secreting human α-cells. Nature 567(7746):43–48. https://doi.org/10.1038/s41586-019-0942-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rezania A, Bruin JE, Arora P, Rubin A, Batushansky I, Asadi A, O'Dwyer S, Quiskamp N, Mojibian M, Albrecht T, Yang YH, Johnson JD, Kieffer TJ (2014) Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol 32(11):1121–1133. https://doi.org/10.1038/nbt.3033

    Article  CAS  PubMed  Google Scholar 

  18. Pagliuca FW, Millman JR, Gurtler M, Segel M, Van Dervort A, Ryu JH, Peterson QP, Greiner D, Melton DA (2014) Generation of functional human pancreatic beta cells in vitro. Cell 159(2):428–439. https://doi.org/10.1016/j.cell.2014.09.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Russ HA, Parent AV, Ringler JJ, Hennings TG, Nair GG, Shveygert M, Guo T, Puri S, Haataja L, Cirulli V, Blelloch R, Szot GL, Arvan P, Hebrok M (2015) Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro. EMBO J 34(13):1759–1772. https://doi.org/10.15252/embj.201591058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aguayo-Mazzucato C, DiIenno A, Hollister-Lock J, Cahill C, Sharma A, Weir G, Colton C, Bonner-Weir S (2015) MAFA and T3 drive maturation of both fetal human islets and insulin-producing cells differentiated from hESC. J Clin Endocrinol Metab 100(10):3651–3659. https://doi.org/10.1210/jc.2015-2632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bruin JE, Erener S, Vela J, Hu X, Johnson JD, Kurata HT, Lynn FC, Piret JM, Asadi A, Rezania A, Kieffer TJ (2014) Characterization of polyhormonal insulin-producing cells derived in vitro from human embryonic stem cells. Stem Cell Res 12(1):194–208. https://doi.org/10.1016/j.scr.2013.10.003

    Article  CAS  PubMed  Google Scholar 

  22. Saber N, Bruin JE, O'Dwyer S, Schuster H, Rezania A, Kieffer TJ (2018) Sex differences in maturation of human embryonic stem cell-derived beta cells in mice. Endocrinology 159(4):1827–1841. https://doi.org/10.1210/en.2018-00048

    Article  CAS  PubMed  Google Scholar 

  23. Bruin JE, Asadi A, Fox JK, Erener S, Rezania A, Kieffer TJ (2015) Accelerated maturation of human stem cell-derived pancreatic progenitor cells into insulin-secreting cells in immunodeficient rats relative to mice. Stem Cell Rep 5(6):1081–1096. https://doi.org/10.1016/j.stemcr.2015.10.013

    Article  CAS  Google Scholar 

  24. Briant LJB, Reinbothe TM, Spiliotis I, Miranda C, Rodriguez B, Rorsman P (2018) Delta-cells and beta-cells are electrically coupled and regulate alpha-cell activity via somatostatin. J Physiol 596(2):197–215. https://doi.org/10.1113/JP274581

    Article  CAS  PubMed  Google Scholar 

  25. Carvalho CP, Barbosa HC, Britan A, Santos-Silva JC, Boschero AC, Meda P, Collares-Buzato CB (2010) Beta cell coupling and connexin expression change during the functional maturation of rat pancreatic islets. Diabetologia 53(7):1428–1437. https://doi.org/10.1007/s00125-010-1726-8

    Article  CAS  PubMed  Google Scholar 

  26. Legoy TA, Mathisen AF, Salim Z, Vethe H, Bjorlykke Y, Abadpour S, Paulo JA, Scholz H, Raeder H, Ghila L, Chera S (2020) In vivo environment swiftly restricts human pancreatic progenitors toward mono-hormonal identity via a HNF1A/HNF4A mechanism. Front Cell Dev Biol 8:109. https://doi.org/10.3389/fcell.2020.00109

    Article  PubMed  PubMed Central  Google Scholar 

  27. Vethe H, Bjorlykke Y, Ghila LM, Paulo JA, Scholz H, Gygi SP, Chera S, Raeder H (2017) Probing the missing mature beta-cell proteomic landscape in differentiating patient iPSC-derived cells. Sci Rep 7(1):4780. https://doi.org/10.1038/s41598-017-04979-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Legøy TA, Ghila L, Vethe H, Abadpour S, Mathisen AF, Paulo JA, Scholz H, Ræder H, Chera S (2020) In vivo hyperglycaemia exposure elicits distinct period-dependent effects on human pancreatic progenitor differentiation, conveyed by oxidative stress. Acta Physiol (Oxf) 228(4):e13433. https://doi.org/10.1111/apha.13433

    Article  CAS  PubMed Central  Google Scholar 

  29. Thorel F, Nepote V, Avril I, Kohno K, Desgraz R, Chera S, Herrera PL (2010) Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 464(7292):1149–1154. https://doi.org/10.1038/nature08894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chera S, Baronnier D, Ghila L, Cigliola V, Jensen JN, Gu G, Furuyama K, Thorel F, Gribble FM, Reimann F, Herrera PL (2014) Diabetes recovery by age-dependent conversion of pancreatic δ-cells into insulin producers. Nature 514(7523):503–507. https://doi.org/10.1038/nature13633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. King M, Pearson T, Rossini AA, Shultz LD, Greiner DL (2008) Humanized mice for the study of type 1 diabetes and beta cell function. Ann N Y Acad Sci 1150:46–53. https://doi.org/10.1196/annals.1447.009

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lim F, Sun AM (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210(4472):908–910

    Article  CAS  Google Scholar 

  33. Kim J, Sachdev P, Sidhu K (2013) Alginate microcapsule as a 3D platform for the efficient differentiation of human embryonic stem cells to dopamine neurons. Stem Cell Res 11(3):978–989. https://doi.org/10.1016/j.scr.2013.06.005

    Article  CAS  PubMed  Google Scholar 

  34. Formo K, Cho CH, Vallier L, Strand BL (2015) Culture of hESC-derived pancreatic progenitors in alginate-based scaffolds. J Biomed Mater Res A 103(12):3717–3726. https://doi.org/10.1002/jbm.a.35507

    Article  CAS  PubMed  Google Scholar 

  35. Legoy TA, Vethe H, Abadpour S, Strand BL, Scholz H, Paulo JA, Raeder H, Ghila L, Chera S (2020) Encapsulation boosts islet-cell signature in differentiating human induced pluripotent stem cells via integrin signalling. Sci Rep 10(1):414. https://doi.org/10.1038/s41598-019-57305-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Andersen T, Auk-Emblem P, Dornish M (2015) 3D cell culture in alginate hydrogels. Microarrays (Basel) 4(2):133–161. https://doi.org/10.3390/microarrays4020133

    Article  CAS  Google Scholar 

  37. Yang C, Loehn M, Jurczyk A, Przewozniak N, Leehy L, Herrera PL, Shultz LD, Greiner DL, Harlan DM, Bortell R (2015) Lixisenatide accelerates restoration of normoglycemia and improves human beta-cell function and survival in diabetic immunodeficient NOD-scid IL-2rg(null) RIP-DTR mice engrafted with human islets. Diabetes Metab Syndr Obes 8:387–398. https://doi.org/10.2147/DMSO.S87253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Berit L. Strand for expert advice and support on establishing the encapsulation method. The authors also acknowledge research funding received from the Research Council of Norway (NFR 247577 and 251041), the Novo Nordisk Foundation (NNF15OC0015054), and the Norwegian Diabetesforbundet forskningfond.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Chera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ghila, L., Legøy, T.A., Chera, S. (2021). A Method for Encapsulation and Transplantation into Diabetic Mice of Human Induced Pluripotent Stem Cells (hiPSC)-Derived Pancreatic Progenitors. In: Nagy, A., Turksen, K. (eds) Induced Pluripotent Stem (iPS) Cells. Methods in Molecular Biology, vol 2454. Humana, New York, NY. https://doi.org/10.1007/7651_2021_356

Download citation

  • DOI: https://doi.org/10.1007/7651_2021_356

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2118-9

  • Online ISBN: 978-1-0716-2119-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics