Skip to main content

3D Microwell Platform for Cardiomyocyte Differentiation of Human Pluripotent Stem Cells

  • Protocol
  • First Online:
Induced Pluripotent Stem (iPS) Cells

Abstract

The generation of cardiomyocytes (CMs) from human pluripotent stem cells (hPSCs) represents a valuable tool for a myriad of in vitro applications, including drug screening, disease modeling and regenerative medicine. However, the success of these applications is dependent on the establishment of reliable, efficient, simple, and cost-effective differentiation methods. In this chapter, we describe an efficient and robust 3D platform for the generation of hPSC-CMs based on the use of a microwell culture system, which can be applied in any laboratory environment. Additionally, we will also describe protocols for the structural and functional characterization of the obtained CMs for further quality control upon differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Halloin C, Schwanke K, Löbel W, Franke A, Szepes M, Biswanath S, Wunderlich S, Merkert S, Weber N, Osten F et al (2019) Continuous WNT control enables advanced hPSC cardiac processing and prognostic surface marker identification in chemically defined suspension culture. Stem Cell Reports 13:366–379. https://doi.org/10.1016/j.stemcr.2019.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen VC, Ye J, Shukla P, Hua G, Chen D, Lin Z, Liu J, Chai J, Gold J, Wu J et al (2015) Development of a scalable suspension culture for cardiac differentiation from human pluripotent stem cells. Stem Cell Res 15:365–375. https://doi.org/10.1016/j.scr.2015.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ting S, Chen A, Reuveny S, Oh S (2014) An intermittent rocking platform for integrated expansion and differentiation of human pluripotent stem cells to cardiomyocytes in suspended microcarrier cultures. Stem Cell Res 13:202–213. https://doi.org/10.1016/j.scr.2014.06.002

    Article  CAS  PubMed  Google Scholar 

  4. Fonoudi H, Ansari H, Abbasalizadeh S, Larijani MR, Kiani S, Hashemizadeh S, Zarchi AS, Bosman A, Blue GM, Pahlavan S et al (2015) A universal and robust integrated platform for the scalable production of human cardiomyocytes from pluripotent stem cells. Stem Cells Transl Med 4:1482–1494. https://doi.org/10.5966/sctm.2014-0275

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kempf H, Olmer R, Kropp C, Rückert M, Jara-Avaca M, Robles-Diaz D, Franke A, Elliott DA, Wojciechowski D, Fischer M et al (2014) Controlling expansion and cardiomyogenic differentiation of human pluripotent stem cells in scalable suspension culture. Stem Cell Reports 3:1132–1146. https://doi.org/10.1016/j.stemcr.2014.09.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hemmi N, Tohyama S, Nakajima K, Kanazawa H, Suzuki T, Hattori F, Seki T, Kishino Y, Hirano A, Okada M et al (2014) A massive suspension culture system with metabolic purification for human pluripotent stem cell-derived cardiomyocytes. Stem Cells Transl Med 3:1473–1483. https://doi.org/10.5966/sctm.2014-0072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Branco MA, Cotovio JP, Rodrigues CAV, Vaz SH, Fernandes TG, Moreira LM, Cabral JMS, Diogo MM (2019) Transcriptomic analysis of 3D cardiac differentiation of human induced pluripotent stem cells reveals faster cardiomyocyte maturation compared to 2D Culture. Sci Rep 9:1–13. https://doi.org/10.1038/s41598-019-45047-9

    Article  CAS  Google Scholar 

  8. Dahlmann J, Kensah G, Kempf H, Skvorc D, Gawol A, Elliott DA, Dräger G, Zweigerdt R, Martin U, Gruh I (2013) The use of agarose microwells for scalable embryoid body formation and cardiac differentiation of human and murine pluripotent stem cells. Biomaterials 34:2463–2471. https://doi.org/10.1016/j.biomaterials.2012.12.024

    Article  CAS  PubMed  Google Scholar 

  9. Zhang M, Schulte JS, Heinick A, Piccini I, Rao J, Quaranta R, Zeuschner D, Malan D, Kim K-P, Röpke A et al (2015) Universal cardiac induction of human pluripotent stem cells in two and three-dimensional formats: implications for in vitro maturation. Stem Cells 33:1456–1469. https://doi.org/10.1002/stem.1964

    Article  CAS  PubMed  Google Scholar 

  10. Burridge PW, Thompson S, Millrod M a, Weinberg S, Yuan X, Peters A, Mahairaki V, Koliatsos VE, Tung L, Zambidis ET (2011) A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability. PLoS One 6:e18293. https://doi.org/10.1371/journal.pone.0018293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ma Z, Wang J, Loskill P, Huebsch N, Koo S, Svedlund FL, Marks NC, Hua EW, Grigoropoulos CP, Conklin BR et al (2015) Self-organizing human cardiac microchambers mediated by geometric confinement. Nat Commun 6:7413. https://doi.org/10.1038/ncomms8413

    Article  CAS  PubMed  Google Scholar 

  12. Bauwens CL, Song H, Thavandiran N, Ungrin M, Massé S, Nanthakumar K, Seguin C, Zandstra PW (2011) Geometric control of cardiomyogenic induction in human pluripotent stem cells. Tissue Eng 17:1901–1909. https://doi.org/10.1089/ten.TEA.2010.0563

    Article  CAS  Google Scholar 

  13. Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapour M, Hotta A, Ellis J, Keller G (2011) Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8:228–240. https://doi.org/10.1016/j.stem.2010.12.008

    Article  CAS  PubMed  Google Scholar 

  14. Zhang J, Klos M, Wilson GF, Herman AM, Lian X, Raval KK, Barron MR, Hou L, Soerens AG, Yu J et al (2012) Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells. Circ Res 111:1125–1136. https://doi.org/10.1161/CIRCRESAHA.112.273144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hudson J, Titmarsh D, Hidalgo A, Wolvetang E, Cooper-White J (2012) Primitive cardiac cells from human embryonic stem cells. Stem Cells Dev 21:1513–1523. https://doi.org/10.1089/scd.2011.0254

    Article  CAS  PubMed  Google Scholar 

  16. Uosaki H, Fukushima H, Takeuchi A, Matsuoka S, Nakatsuji N, Yamanaka S, Yamashita JK (2011) Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression. PLoS One 6:e23657. https://doi.org/10.1371/journal.pone.0023657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM, Raval KK, Zhang J, Kamp TJ, Palecek SP (2012) Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A 109:E1848–E1857. https://doi.org/10.1073/pnas.1200250109

    Article  PubMed  PubMed Central  Google Scholar 

  18. Laco F, Woo TL, Zhong Q, Szmyd R, Ting S, Khan FJ, Chai CLL, Reuveny S, Chen A, Oh S (2018) Unraveling the inconsistencies of cardiac differentiation efficiency induced by the GSK3β inhibitor CHIR99021 in human pluripotent stem cells. Stem Cell Reports 10:1851–1866. https://doi.org/10.1016/j.stemcr.2018.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dias TP, Fernandes TG, Diogo MM, Cabral JMS (2019) Multifactorial modeling reveals a dominant role of wnt signaling in lineage commitment of human pluripotent stem cells. Bioengineering 6. https://doi.org/10.3390/bioengineering6030071

  20. Dias TP, Pinto SN, Santos JI, Fernandes TG, Fernandes F, Diogo MM, Prieto M, Cabral JMS (2018) Biophysical study of human induced pluripotent stem cell-derived cardiomyocyte structural maturation during long-term culture. Biochem Biophys Res Commun 499:611–617. https://doi.org/10.1016/j.bbrc.2018.03.198

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding from Fundação para a Ciência e a Tecnologia (FCT), Portugal (UIDB/04565/2020) through Programa Operacional Regional de Lisboa 2020 (Project N. 007317) and the project PTDC/EMD-TLM/29728/2017. Mariana A. Branco and João P. Cotovio thank FCT for financial support (PD/BD/128376/2017 and PD/BD135500/2018, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Margarida Diogo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Branco, M.A. et al. (2020). 3D Microwell Platform for Cardiomyocyte Differentiation of Human Pluripotent Stem Cells. In: Nagy, A., Turksen, K. (eds) Induced Pluripotent Stem (iPS) Cells. Methods in Molecular Biology, vol 2454. Humana, New York, NY. https://doi.org/10.1007/7651_2020_336

Download citation

  • DOI: https://doi.org/10.1007/7651_2020_336

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2118-9

  • Online ISBN: 978-1-0716-2119-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics