Skip to main content

Ussing Chamber Methods to Study the Esophageal Epithelial Barrier

  • Protocol
  • First Online:
Permeability Barrier

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2367))

Abstract

The Ussing chamber was developed in 1949 by Hans Ussing and quickly became a powerful tool to study ion and solute transport in epithelia. The chamber has two compartments strictly separating the apical and basolateral sides of the tissue under study. The two sides of the tissue are connected via electrodes to a modified electrometer/pulse generator that allows measurement of electrical parameters, namely, transepithelial voltage, current, and resistance. Simultaneously, permeability of the tissue to specific solutes or markers can be monitored by using tracers or isotopes to measure transport from one side of the tissue to the other. In this chapter, we will describe the use of the Ussing chamber to study the barrier properties of the mouse esophageal epithelium. We will also briefly describe the use of the modified Ussing chamber to simultaneously study transepithelial and cellular electrophysiology in the rabbit esophageal epithelium. Lastly, we will cover the use of the Ussing chamber to study bicarbonate secretion in the pig esophagus. These examples highlight the versatility of the Ussing chamber technique in investigating the physiology and pathophysiology of epithelia including human biopsies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ussing HH (1949) The active ion transport through the isolated frog skin in the light of tracer studies. Acta Physiol Scand 17(1):1–37. https://doi.org/10.1111/j.1748-1716.1949.tb00550.x

    Article  CAS  PubMed  Google Scholar 

  2. Fromter E (1979) The Feldberg Lecture 1976. Solute transport across epithelia: what can we learn from micropuncture studies in kidney tubules? J Physiol 288:1–31

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Higgins JT Jr, Cesaro L, Gebler B, Fromter E (1975) Electrical properties of amphibian urinary bladder epithelia. I Inverse relationship between potential difference and resistance in tightly mounted preparations. Pflugers Arch 358(1):41–56. https://doi.org/10.1007/bf00584568

    Article  CAS  PubMed  Google Scholar 

  4. Schreiber R, Murle B, Sun J, Kunzelmann K (2002) Electrolyte transport in the mouse trachea: no evidence for a contribution of luminal K(+) conductance. J Membr Biol 189(2):143–151. https://doi.org/10.1007/s00232-002-1009-5

    Article  CAS  PubMed  Google Scholar 

  5. Herrmann JR, Turner JR (2016) Beyond Ussing’s chambers: contemporary thoughts on integration of transepithelial transport. Am J Physiol Cell Physiol 310(6):C423–C431. https://doi.org/10.1152/ajpcell.00348.2015

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kalman SM, Ussing HH (1955) Active sodium uptake by the toad and its response to the antidiuretic hormone. J Gen Physiol 38(3):361–370. https://doi.org/10.1085/jgp.38.3.361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schwartz CJ, Kimberg DV, Sheerin HE, Field M, Said SI (1974) Vasoactive intestinal peptide stimulation of adenylate cyclase and active electrolyte secretion in intestinal mucosa. J Clin Invest 54(3):536–544. https://doi.org/10.1172/jci107790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Flemstrom G, Sachs TG (1975) Ion transport by amphibian antrum in vitro. I General characteristics. Am J Physiol 228(4):1188–1198. https://doi.org/10.1152/ajplegacy.1975.228.4.1188

    Article  CAS  PubMed  Google Scholar 

  9. Powell DW, Morris SM, Boyd DD (1975) Water and electrolyte transport by rabbit esophagus. Am J Physiol 229(2):438–443

    Article  CAS  PubMed  Google Scholar 

  10. Orlando RC, Powell DW, Carney CN (1981) Pathophysiology of acute acid injury in rabbit esophageal epithelium. J Clin Invest 68(1):286–293. https://doi.org/10.1172/jci110246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tobey NA, Hosseini SS, Caymaz-Bor C, Wyatt HR, Orlando GS, Orlando RC (2001) The role of pepsin in acid injury to esophageal epithelium. Am J Gastroenterol 96(11):3062–3070

    Article  CAS  PubMed  Google Scholar 

  12. Nakhoul NL, Tu CL, Brown KL, Islam MT, Hodges AG, Abdulnour-Nakhoul SM (2020) Calcium-sensing receptor deletion in the mouse esophagus alters barrier function. Am J Physiol Gastrointest Liver Physiol 318(1):G144–G161. https://doi.org/10.1152/ajpgi.00021.2019

    Article  CAS  PubMed  Google Scholar 

  13. Koefoed-Johnsen V, Ussing HH (1958) The nature of the frog skin potential. Acta Physiol Scand 42(3–4):298–308. https://doi.org/10.1111/j.1748-1716.1958.tb01563.x

    Article  CAS  PubMed  Google Scholar 

  14. Marques-Pereira JP, Leblond CP (1965) Mitosis and differentiation in the stratified squamous epithelium of the rat esophagus. Am J Anat 117(1):73–87. https://doi.org/10.1002/aja.1001170106

    Article  CAS  PubMed  Google Scholar 

  15. Lipkin M (1973) Proliferation and differentiation of gastrointestinal cells. Physiol Rev 53(4):891–915

    Article  CAS  PubMed  Google Scholar 

  16. Pan Q, Nicholson AM, Barr H, Harrison LA, Wilson GD, Burkert J, Jeffery R, Alison MR, Looijenga L, Lin WR, McDonald SAC, Wright NA, Harrison R, Peppelenbosch MP, Jankowski JA (2013) Identification of lineage-uncommitted, long-lived, label-retaining cells in healthy human esophagus and stomach, and in metaplastic esophagus. Gastroenterology 144(4):761–770. https://doi.org/10.1053/j.gastro.2012.12.022

    Article  PubMed  Google Scholar 

  17. Goldstein BG, Chao HH, Yang Y, Yermolina YA, Tobias JW, Katz JP (2007) Overexpression of Kruppel-like factor 5 in esophageal epithelia in vivo leads to increased proliferation in basal but not suprabasal cells. Am J Physiol Gastrointest Liver Physiol 292(6):G1784–G1792

    Article  CAS  PubMed  Google Scholar 

  18. Marchetti M, Caliot E, Pringault E (2003) Chronic acid exposure leads to activation of the cdx2 intestinal homeobox gene in a long-term culture of mouse esophageal keratinocytes. J Cell Sci 116(Pt 8):1429–1436

    Article  CAS  PubMed  Google Scholar 

  19. Katz JP, Kaestner KH (2002) Cellular and molecular mechanisms of carcinogenesis. Gastroenterol Clin North Am 31(2):379–394

    Article  PubMed  Google Scholar 

  20. Orlando RC (2010) The integrity of the esophageal mucosa. Balance between offensive and defensive mechanisms. Best Pract Res Clin Gastroenterol 24(6):873–882. https://doi.org/10.1016/j.bpg.2010.08.008

    Article  PubMed  PubMed Central  Google Scholar 

  21. Abdulnour-Nakhoul S, Bor S, Imeryuz N, Orlando RC (1999) Mechanisms of basolateral Na+ transport in rabbit esophageal epithelial cells. Am J Physiol 276(2 Pt 1):G507–G517

    CAS  PubMed  Google Scholar 

  22. Abdulnour-Nakhoul S, Nakhoul NL, Caymaz-Bor C, Orlando RC (2002) Chloride transport in rabbit esophageal epithelial cells. Am J Physiol Gastrointest Liver Physiol 282(4):G663–G675. https://doi.org/10.1152/ajpgi.00085.2001

    Article  CAS  PubMed  Google Scholar 

  23. Meyers RL, Orlando RC (1992) In vivo bicarbonate secretion by human esophagus. Gastroenterology 103(4):1174–1178

    Article  CAS  PubMed  Google Scholar 

  24. Helm JF, Dodds WJ, Hogan WJ, Soergel KH, Egide MS, Wood CM (1982) Acid neutralizing capacity of human saliva. Gastroenterology 83(1 Pt 1):69–74

    Article  CAS  PubMed  Google Scholar 

  25. Mertz-Nielsen A, Hillingso J, Bukhave K, Rask-Madsen J (1997) Reappraisal of bicarbonate secretion by the human oesophagus. Gut 40(5):582–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Abdulnour-Nakhoul S, Nakhoul NL, Orlando RC (2000) Lumen-to-surface pH gradients in opossum and rabbit esophagi: role of submucosal glands. Am J Physiol Gastrointest Liver Physiol 278(1):G113–G120

    Article  CAS  PubMed  Google Scholar 

  27. Jamieson JR, Stein HJ, DeMeester TR, Bonavina L, Schwizer W, Hinder RA, Albertucci M (1992) Ambulatory 24-h esophageal pH monitoring: normal values, optimal thresholds, specificity, sensitivity, and reproducibility. Am J Gastroenterol 87(9):1102–1111

    CAS  PubMed  Google Scholar 

  28. Goetsch E (1910) The structure of the mammalian oesophagus. Am J Anat 10(1):1–39

    Article  Google Scholar 

  29. Abdulnour-Nakhoul S, Nakhoul NL, Wheeler SA, Wang P, Swenson ER, Orlando RC (2005) HCO3-secretion in the esophageal submucosal glands. Am J Physiol Gastrointest Liver Physiol 288(4):G736–G744. https://doi.org/10.1152/ajpgi.00055.2004

    Article  CAS  PubMed  Google Scholar 

  30. Abdulnour-Nakhoul S, Nakhoul HN, Kalliny MI, Gyftopoulos A, Rabon E, Doetjes R, Brown K, Nakhoul NL (2011) Ion transport mechanisms linked to bicarbonate secretion in the esophageal submucosal glands. Am J Physiol Regul Integr Comp Physiol 301(1):R83–R96. https://doi.org/10.1152/ajpregu.00648.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Abdulnour-Nakhoul S, Nakhoul NL, Wheeler SA, Haque S, Wang P, Brown K, Orlando G, Orlando RC (2007) Characterization of esophageal submucosal glands in pig tissue and cultures. Dig Dis Sci 52(11):3054–3065. https://doi.org/10.1007/s10620-006-9739-3

    Article  PubMed  Google Scholar 

  32. Tobey NA, Hosseini SS, Argote CM, Dobrucali AM, Awayda MS, Orlando RC (2004) Dilated intercellular spaces and shunt permeability in nonerosive acid-damaged esophageal epithelium. Am J Gastroenterol 99(1):13–22

    Article  CAS  PubMed  Google Scholar 

  33. Khuri RN, Agulian SK, Kalloghlian A (1972) Intracellular potassium in cells of the distal tubule. Pflugers Arch 335(4):297–308. https://doi.org/10.1007/bf00586220

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solange M. Abdulnour-Nakhoul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Abdulnour-Nakhoul, S.M., Nakhoul, N.L. (2020). Ussing Chamber Methods to Study the Esophageal Epithelial Barrier. In: Turksen, K. (eds) Permeability Barrier. Methods in Molecular Biology, vol 2367. Humana, New York, NY. https://doi.org/10.1007/7651_2020_324

Download citation

  • DOI: https://doi.org/10.1007/7651_2020_324

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1672-7

  • Online ISBN: 978-1-0716-1673-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics