Skip to main content

Covisualization of Global DNA Methylation/Hydroxymethylation and Protein Biomarkers for Ultrahigh-Definition Epigenetic Phenotyping of Stem Cells

  • Protocol
  • First Online:
Imaging and Tracking Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2150))

Abstract

DNA methylation and DNA hydroxymethylation are genomic-scale key regulatory modifications in cellular differentiation and are skewed in complex diseases. Therefore, analyzing the nuclear distribution of globally methylated and hydroxymethylated DNA in conjunction with relevant cellular components, such as protein biomarkers, may well add cell-by-cell-specific spatial and temporal information to quantitative molecular data for the discovery of signaling networks in stem cell differentiation and their exploitation in the therapeutic reprogramming of cells. Fluorescence imaging provides an optical approach that has become an essential tool in this context. The in situ fluorescent covisualization of globally methylated and hydroxymethylated DNA (5-methylcytosine = 5mC, 5-hydroxymethylcytosine = 5hmC), global DNA (gDNA), and proteins can be challenging, as the immunofluorescence detection of 5mC and 5hmC sites requires thorough denaturing of double-stranded DNA for antigen retrieval. The protocol we present overcomes this obstacle through optimization of the necessary cell processing to delineate cytosine variants and gDNA while preserving the three-dimensional (3-D) structure of the cells and in connection the immunostaining of protein biomarkers and DNA counterstaining, making it suitable for ultrahigh definition (UHD) imaging of single cells by confocal and super-resolution microscopy, 3-D visualization, and high-content cytometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang D, Bodovitz S (2010) Single cell analysis: the new frontier in ‘omics’. Trends Biotechnol 28:281–290

    Article  CAS  Google Scholar 

  2. Chen W, Li S, Kulkarni AS et al (2019) Single cell omics: from assay design to biomedical application. Biotechnol J:e1900262

    Google Scholar 

  3. Tajbakhsh J, Gertych A, Fagg WS et al (2011) Early in vitro differentiation of mouse definitive endoderm is not correlated with progressive maturation of nuclear DNA methylation patterns. PLoS One 6:e21861

    Article  CAS  Google Scholar 

  4. Tajbakhsh J, Stefanovski D, Tang G et al (2015) Dynamic heterogeneity of DNA methylation and hydroxymethylation in embryonic stem cell populations captured by single-cell 3D high-content analysis. Exp Cell Res 332:190–201

    Article  CAS  Google Scholar 

  5. Erlanger BF, Beiser SM (1964) Antibodies specific for ribonucleosides and ribonucleotides and their reaction with DNA. Proc Natl Acad Sci U S A 52:68–74

    Article  CAS  Google Scholar 

  6. Reynaud C, Bruno C, Boullanger P et al (1992) Monitoring of urinary excretion of modified nucleosides in cancer patients using a set of six monoclonal antibodies. Cancer Lett 63:81

    Article  Google Scholar 

  7. Schreck RR, Erlanger BF, Miller OJ (1974) The use of antinucleoside antibodies to probe the organization of chromosomes denatured by ultraviolet irradiation. Exp Cell Res 88:31–39

    Article  CAS  Google Scholar 

  8. Miller OJ, Schnedl W, Allen J et al (1974) 5-Methylcytosine localised in mammalian constitutive heterochromatin. Nature 251:636–637

    Article  CAS  Google Scholar 

  9. Miniou P, Jeanpierre M, Blanquet V et al (1994) Abnormal methylation pattern in constitutive and facultative (X inactive chromosome) heterochromatin of ICF patients. Hum Mol Genet 3:2093–2102

    Article  CAS  Google Scholar 

  10. de Capoa A, Menendez F, Poggesi I et al (1996) Cytological evidence for 5-azacytidine-induced demethylation of the heterochromatic regions of human chromosomes. Chromosome Res 4:271–276

    Article  Google Scholar 

  11. Rougier N, Bourc'his D, Gomes DM et al (1988) Chromosome methylation patterns during mammalian preimplantation development. Genes Dev 12:2108–2113

    Article  Google Scholar 

  12. Bensaada M, Kiefer H, Tachdjian G et al (1998) Altered patterns of DNA methylation on chromosomes from leukemia cell lines: identification of 5-methylcytosines by indirect immunodetection. Cancer Genet Cytogenet 103:101–109

    Article  CAS  Google Scholar 

  13. Montpellier C, Burgeois CA, Kokalj-Vokac N et al (1994) Detection of methylcytosine-rich heterochromatin on banded chromosomes. Application to cells with various status of DNA methylation. Cancer Genet Cytogenet 78:87–93

    Article  CAS  Google Scholar 

  14. Barbin A, Montpellier C, Kokalj-Vokac N et al (1994) New sites of methylcytosine-rich DNA detected on metaphase chromosomes. Hum Genet 94:684–692

    Article  CAS  Google Scholar 

  15. de Capoa A, Grappelli C, Febbo FR et al (1999) Methylation levels of normal and chronic lymphocytic leukemia B lymphocytes: computer-assisted quantitative analysis of anti-5-methylcytosine antibody binding to individual nuclei. Cytometry 36:157–159

    Article  Google Scholar 

  16. de Capoa A, Febbo FR, Giovannelli F et al (1999) Reduced levels of poly(ADP-ribosyl)ation result in chromatin compaction and hypermethylation as shown by cell-by-cell computer-assisted quantitative analysis. FASEB J 13:89–93

    Article  Google Scholar 

  17. de Capoa A, Di Leandro M, Grappelli C et al (1998) Computer-assisted analysis of methylation status of individual interphase nuclei in human cultured cells. Cytometry 31:85–92

    Article  Google Scholar 

  18. Piyathilake CJ, Johanning GL, Frost AR et al (2000) Immunohistochemical evaluation of global DNA methylation: comparison with in vitro radiolabeled methyl incorporation assay. Biotech Histochem 75:251–258

    Article  CAS  Google Scholar 

  19. Piyathilake CJ, Frost AR, Bell WC et al (2001) Altered global methylation of DNA: an epigenetic difference in susceptibility for lung cancer is associated with its progression. Hum Pathol 32:856–862

    Article  CAS  Google Scholar 

  20. Soares J, Pinto AE, Cunha CV et al (1999) Global DNA hypomethylation in breast carcinoma: correlation with prognostic factors and tumor progression. Cancer 85:112–118

    Article  CAS  Google Scholar 

  21. Dolbeare F, Gratzner H, Pallavicini MG et al (1983) Flowcytometric measurement of total DNA content and incorporated bromodeoxyuridine. Proc Natl Acad Sci U S A 80:5573–5577

    Article  CAS  Google Scholar 

  22. Mayer W, Niveleau A, Walter J et al (2000) Demethylation of the zygotic paternal genome. Nature 403:501–502

    Article  CAS  Google Scholar 

  23. Barton SC, Arney KL, Shi W et al (2001) Genome-wide methylation patterns in normal and uniparental early mouse embryos. Hum Mol Genet 10:2983–2987

    Article  CAS  Google Scholar 

  24. Santos F, Hendrich B, Reik W et al (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241:172–182

    Article  CAS  Google Scholar 

  25. Santos F, Zakhartchenko V, Stojkovic M et al (2003) Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Curr Biol 13:1116–1121

    Article  CAS  Google Scholar 

  26. Sasaki K, Adachi S, Yamamoto T et al (1988) Effects of denaturation with HCl on the immunological staining of bromodeoxyuridine incorporated into DNA. Cytometry 9:93–96

    Article  CAS  Google Scholar 

  27. Kennedy BK, Barbie DA, Classon M et al (2000) Nuclear organization of DNA replication in primary mammalian cells. Genes Dev 14:2855–2868

    Article  CAS  Google Scholar 

  28. Tajbakhsh J (2013) Covisualization of methylcytosine, global DNA, and protein biomarkers for in situ 3D DNA methylation phenotyping of stem cells. Methods Mol Biol 1052:77–88

    Article  CAS  Google Scholar 

  29. Ito S, D’Alessio AC, Taranova OV et al (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466:1129–1133

    Article  CAS  Google Scholar 

  30. Gertych A, Wawrowsky KA, Lindsley EH et al (2009) Automated quantification of DNA demethylation effects in cells via 3D mapping of nuclear signatures and population homogeneity assessment. Cytometry A 75:569–583

    Article  Google Scholar 

  31. Gertych A, Farkas DL, Tajbakhsh J (2010) Measuring topology of low-intensity DNA methylation sites for high-throughput assessment of epigenetic drug-induced effects in cancer cells. Exp Cell Res 316:3150–3160

    Article  CAS  Google Scholar 

  32. Gertych A, Oh JH, Wawrowsky KA et al (2013) 3-D DNA methylation phenotypes correlate with cytotoxicity levels in prostate and liver cancer cell models. BMC Pharmacol Toxicol 14:11

    Article  CAS  Google Scholar 

  33. Oh JH, Gertych A, Tajbakhsh J (2013) Nuclear DNA methylation and chromatin condensation phenotypes are distinct between normally proliferating/aging, rapidly growing/immortal, and senescent cells. Oncotarget 4:474–493

    Article  Google Scholar 

  34. Tajbakhsh J, Wawrowsky K (2015) Using 3D high-content analysis and epigenetic phenotyping of cells in the characterization of human prostate tissue heterogeneity. Single Cell Biol 4:1

    Google Scholar 

  35. Gertych A, Ma Z, Tajbakhsh J et al (2016) Rapid 3-D delineation of cell nuclei for high-content screening platforms. Comput Biol Med 69:328–338

    Article  Google Scholar 

  36. Stefanovski D, Tang G, Wawrowsky K et al (2017) Prostate cancer diagnosis using epigenetic biomarkers, 3D high-content imaging and probabilistic cell-by-cell classifiers. Oncotarget 8:57278–57301

    Article  Google Scholar 

  37. Zaitseva L, Myers R, Fassati A (2006) tRNAs promote nuclear import of HIV-1 intracellular reverse transcription complexes. PLoS Biol 4:e332

    Article  Google Scholar 

  38. Jin SG, Kadam S, Pfeifer GP (2010) Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine. Nucleic Acids Res 38:e125

    Article  Google Scholar 

  39. Tao L, Wang W, Kramer PM et al (2004) Modulation of DNA hypomethylation as a surrogate endpoint biomarker for chemoprevention of colon cancer. Mol Carcinog 39:79–84

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Kolja Wawrowsky (Cedars-Sinai) and Carlos Alonso (Leica Microsystems Inc.) for advice and assistance with confocal and 3D-GSD imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Tajbakhsh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tajbakhsh, J. (2019). Covisualization of Global DNA Methylation/Hydroxymethylation and Protein Biomarkers for Ultrahigh-Definition Epigenetic Phenotyping of Stem Cells. In: Turksen, K. (eds) Imaging and Tracking Stem Cells. Methods in Molecular Biology, vol 2150. Humana, New York, NY. https://doi.org/10.1007/7651_2019_276

Download citation

  • DOI: https://doi.org/10.1007/7651_2019_276

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0626-1

  • Online ISBN: 978-1-0716-0627-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics