Skip to main content

A Cleanup Method for Mass Spectrometric Analysis of Sphingosine- and Ceramide-1-Phosphate in Blood and Solid Tissue Using a Phosphate Capture Molecule

  • Protocol
  • First Online:
Sphingosine-1-Phosphate

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1697))

Abstract

Cleanup technology and mass spectrometric determination of sphingosine-1-phosphate (S1P) using a phosphate capture molecule are shown. The protocol is rapid, requires neither thin-layer chromatography nor liquid chromatography, and is applicable to both blood and solid tissue samples. The mass spectrometric method is also applicable to ceramide-1-phosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Murph M, Tanaka T, Pang J et al (2007) Liquid chromatography mass spectrometry for quantifying plasma lysophospholipids: potential biomarkers for cancer diagnosis. Methods Enzymol 433:1–25

    Article  CAS  PubMed  Google Scholar 

  2. Tokumura A, Carbone LD, Yoshioka Y et al (2009) Elevated serum levels of arachidonoyl-lysophosphatidic acid and sphingosine 1-phosphate in systemic sclerosis. J Med Sci 6:168–176

    CAS  Google Scholar 

  3. Morishige J, Urikura M, Takagi H et al (2010) A clean-up technology for the simultaneous determination of lysophosphatidic acid and sphingosine-1-phosphate by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using a phosphate-capture molecule, Phos-tag. Rapid Commun Mass Spectrom 24:1075–1084

    Article  CAS  PubMed  Google Scholar 

  4. Kinoshita E, Takahashi M, Takeda H et al (2004) Recognition of phosphate monoester dianon by an alkoxide-bridged dinuclear zinc(II) complex. Dalton Trans 1189–1193

    Google Scholar 

  5. Takeda H, Kawasaki A, Takahashi M et al (2003) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of phosphorylated compound using a novel phosphate capture molecule. Rapid Commun Mass Spectrom 17:2075–2081

    Article  CAS  PubMed  Google Scholar 

  6. Tanaka T, Tsutsui K, Hirano K et al (2004) Quantitative analysis of lysophosphatidic acid by time-of-flight mass spectrometry using a phosphate capture molecule. J Lipid Res 45:2145–2150

    Article  CAS  PubMed  Google Scholar 

  7. Hirano K, Matsui T, Tanaka T et al (2004) Production of 1,2-didocosahexaenoyl phosphatidylcholine by bonito muscle lysophosphatidylcholine/transacylase. J Biochem 136:477–483

    Article  CAS  PubMed  Google Scholar 

  8. Morishige J, Touchika K, Tanaka T et al (2007) Production of bioactive lysophosphatidic acid by lysophospholipase D in hen egg white. Biochim Biophys Acta 1771:491–499

    Article  CAS  PubMed  Google Scholar 

  9. Tanaka T, Horiuchi G, Matsuoka M et al (2009) Formation of lysophosphatidic acid, a wound-healing lipid, during digestion of cabbage leaves. Biosci Biotechnol Biochem 73:1293–1300

    Article  CAS  PubMed  Google Scholar 

  10. http://www.phos-tag.com/english/index.html

  11. Bartlett GR (1959) Phosphorus assay in column chromatography. J Biol Chem 234:466–468

    CAS  PubMed  Google Scholar 

  12. Chalvardjian A, Rudnicki E (1970) Determination of lipid phosphorus in the nanomolar range. Anal Biochem 36:225–230

    Article  CAS  PubMed  Google Scholar 

  13. Liu H, Sugiura M, Nava VE et al (2000) Molecular cloning and functional characterization of a novel mammalian sphingosine kinase type 2 isoform. J Biol Chem 275:19513–19520

    Article  CAS  PubMed  Google Scholar 

  14. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  15. Yamashita R, Tabata Y, Iga E et al (2016) Analysis of molecular species profiles of ceramide-1-phosphate and sphingomyelin using MALDI-TOF mass spectrometry. Lipids 51:263–270

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Professor Yoh Takuwa for kind donation of SphK-overexpressed cells. This work was supported by the Strategic Support Project of Research Infrastructure Formation for Private Universities from the MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamotsu Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Morishige, Ji., Yamashita, R., Tanaka, T., Satouchi, K. (2017). A Cleanup Method for Mass Spectrometric Analysis of Sphingosine- and Ceramide-1-Phosphate in Blood and Solid Tissue Using a Phosphate Capture Molecule. In: Pébay, A., Turksen, K. (eds) Sphingosine-1-Phosphate. Methods in Molecular Biology, vol 1697. Humana Press, New York, NY. https://doi.org/10.1007/7651_2017_6

Download citation

  • DOI: https://doi.org/10.1007/7651_2017_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7412-2

  • Online ISBN: 978-1-4939-7413-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics