Skip to main content

Variation in Angiosperm Wood Structure and Its Physiological and Evolutionary Significance

  • Chapter
  • First Online:

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 21))

Abstract

Angiosperms show extensive variation in wood structure that reflects their evolutionary diversification and adaptation to a wide range of environments. Evolutionary shifts between an herbaceous and woody habit are common and have produced a wide array of growth forms, including herbs, lianas, succulents, trees and shrubs. As angiosperms moved into new environments, wood structure changed to reflect a balance between functions in water transport and storage, carbohydrate and mineral nutrient storage, and mechanical support. The extent and timing of wood production were modified and new cell types were produced in varying proportions and spatial arrangements. In particular, taxonomic variation in water conducting elements and parenchyma distribution affect a plant’s ability to withstand drought and freezing temperatures. In this chapter, I interpret the evolutionary significance of variation in angiosperm wood structure with references to biogeography, phylogenetics, molecular development, ecophysiology and paleobotany. Cell type-specific techniques in gene expression will continue to be key to the study of these processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agusti J, Lichtenberger R, Schwarz M, Nehlin L, Greb T. Characterization of transcriptome remodeling during cambium formation identifies MOL1 and RUL1 as opposing regulators of secondary growth. PLoS Genet. 2011;7(2). doi:10.1371/journal.pgen.1001312.

    Google Scholar 

  • Almeida-Rodriguez AM, Hacke UG. Cellular localization of aquaporin mRNA in hybrid poplar stems. Am J Bot. 2012;99(7):1249–54. doi:10.3732/ajb.1200088.

    Article  CAS  PubMed  Google Scholar 

  • Alves G, Decourteix M, Fleurat-Lessard P, Sakr S, Bonhomme M, Ameglio T, Lacointe A, Julien JL, Petel G, Guilliot A. Spatial activity and expression of plasma membrane H+−ATPase in stem xylem of walnut during dormancy and growth resumption. Tree Physiol. 2007;27(10):1471–80.

    Article  CAS  PubMed  Google Scholar 

  • Ameglio T, Decourteix M, Alves G, Valentin V, Sakr S, Julien JL, Petel G, Guilliot A, Lacointe A. Temperature effects on xylem sap osmolarity in walnut trees: evidence for a vitalistic model of winter embolism repair. Tree Physiol. 2004;24(7):785–93.

    Article  CAS  PubMed  Google Scholar 

  • Andersson-Gunneras S, Mellerowicz EJ, Love J, Segerman B, Ohmiya Y, Coutinho PM, Nilsson P, Henrissat B, Moritz T, Sundberg B. Biosynthesis of cellulose-enriched tension wood in Populus: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis. Plant J. 2006;45(2):144–65. doi:10.1111/j.1365-313X.2005.02584.x.

    Article  PubMed  CAS  Google Scholar 

  • Angyalossy V, Angeles G, Pace MR, Lima AC, Dias-Leme CL, Lohmann LG, Madero-Vega C. An overview of the anatomy, development and evolution of the vascular system of lianas. Plant Ecolog Divers. 2012;5(2):167–82. doi:10.1080/17550874.2011.615574.

    Article  Google Scholar 

  • APG. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc. 2016;181(1):1–20. doi:10.1111/boj.12385.

    Article  Google Scholar 

  • Arber A. Monocotyledons: a morphological study. Cambridge: Cambridge University Press; 1925 (digitally reprinted 2010).

    Google Scholar 

  • Baas P, Wheeler EA. Parallelism and reversibility in xylem evolution a review. IAWA J. 1996;17(4):351–64 http://dx.doi.org/10.1163/22941932-90000633.

    Article  Google Scholar 

  • Bailey IW. The cambium and its derivative tissues – II. Size variations of cambial initials in gymnosperms and angiosperms. Am J Bot. 1920;7(9):355–67.

    Article  Google Scholar 

  • Bailey IW. The comparative morphology of the Winteraceae III. Wood. J Arnold Arbor. 1944a;25:97–103.

    Google Scholar 

  • Bailey IW. The development of vessels in angiosperms and its significance in morphological research. Am J Bot. 1944b;31:421–8.

    Article  Google Scholar 

  • Bailey IW, Nast CG. Morphology and relationships of Trochodendron and Tertracentron, I. Stem, root, and leaf. J Arnold Arbor. 1945;26:143–54.

    Google Scholar 

  • Bailey IW, Sinnott EW. The origin and dispersal of herbaceous angiosperms. Ann Bot. 1914;28:547–600.

    Google Scholar 

  • Bailey IW, Swamy BGL. Amborella trichopoda Baill., a new morphological type of vesselless dicotyledon. J Arnold Arbor. 1948;24:245–53.

    Google Scholar 

  • Baldwin BG. Adaptive radiation of shrubby tarweeds (Deinandra) in the California Islands parallels diversification of the Hawaiian silversword alliance (Compositae-Madiinae). Am J Bot. 2007;94(2):237–48. doi:10.3732/ajb.94.2.237.

    Article  PubMed  Google Scholar 

  • Baldwin BG, Kyhos DW, Dvorak J, Carr GD. Chloroplast DNA evidence for a North American origin of the Hawaiian silversword alliance (Asteraceae). Proc Natl Acad Sci U S A. 1991;88(5):1840–3. doi:10.1073/pnas.88.5.1840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballard HE, Sytsma KJ. Evolution and biogeography of the woody Hawaiian violets (Viola, Violaceae): arctic origins, herbaceous ancestry and bird dispersal. Evolution. 2000;54(5):1521–32.

    Article  PubMed  Google Scholar 

  • Bamber RK, Fukazawa K. Sapwood and heartwood: a review. For Prod Abstr. 1985;8:265–78.

    Google Scholar 

  • Barghoorn JES. The ontogenetic development and phylogenetic specialization of rays in the xylem of dicotyledons. I. The primitive ray structure. Am J Bot. 1940;27:918–28.

    Article  Google Scholar 

  • Barghoorn JES. The ontogenetic development and phylogenetic specialization of rays in the xylem of dicotyledons. II Modification of the multiseriate and uniseriate rays. Am J Bot. 1941;28:273–82.

    Article  Google Scholar 

  • Basson PW, Bierhorst DW. An analysis of differential lateral growth in the stem of Bauhinia surinamensis. Bull Torrey Bot Club. 1967;94(5):404–11.

    Article  Google Scholar 

  • Beaulieu JM, O’Meara BC, Donoghue MJ. Identifying hidden rate changes in the evolution of a binary morphological character: the evolution of plant habit in campanulid angiosperms. Syst Biol. 2013;62(5):725–37. doi:10.1093/sysbio/syt034.

    Article  PubMed  Google Scholar 

  • Beck CB. The origin of secondary tissue systems and the effect of their formation on the primary body in seed plants. In: Plant structure and development. Cambridge: Cambridge University Press; 2005. p. 154–79.

    Google Scholar 

  • Bhandari S, Fujino T, Thammanagowda S, Zhang DY, Xu FY, Joshi CP. Xylem-specific and tension stress-responsive coexpression of KORRIGAN endoglucanase and three secondary wall-associated cellulose synthase genes in aspen trees. Planta. 2006;224(4):828–37. doi:10.1007/s00425-006-0269-1.

    Article  CAS  PubMed  Google Scholar 

  • Bohle UR, Hilger HH, Martin WF. Island colonization and evolution of the insular woody habit in Echium L (Boraginaceae). Proc Natl Acad Sci U S A. 1996;93(21):11740–5. doi:10.1073/pnas.93.21.11740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolton AJ, Knowles SJ, Vianez BF. The role of intervessel pits and vessel plugs in determining flow pathways through and between vessels in sycamore (Acer pseudoplatanus L.). J Exp Bot. 1987;38(196):1857–65.

    Article  Google Scholar 

  • Bond WJ. The tortoise and the hare - ecology of angiosperm dominance and gymnosperm persistence. Biol J Linn Soc. 1989;36(3):227–49. doi:10.1111/j.1095-8312.1989.tb00492.x.

    Article  Google Scholar 

  • Borsch T, Loehne C, Wiersema J. Phylogeny and evolutionary patterns in Nymphaeales: integrating genes, genomes and morphology. Taxon. 2008;57(4):1052–81.

    Google Scholar 

  • Brodersen C, McElrone A. Maintenance of xylem network transport capacity: a review of embolism repair in vascular plants. Front Plant Sci. 2013;4. doi:10.3389/fpls.2013.00108.

  • Brodersen CR, McElrone AJ, Choat B, Matthews MA, Shackel KA. The dynamics of embolism repair in xylem: in vivo visualizations using high-resolution computed tomography. Plant Physiol. 2010;154(3):1088–95. doi:10.1104/pp.110.162396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodersen CR, Lee EF, Choat B, Jansen S, Phillips RJ, Shackel KA, McElrone AJ, Matthews MA. Automated analysis of three-dimensional xylem networks using high-resolution computed tomography. New Phytol. 2011;191(4):1168–79. doi:10.1111/j.1469-8137.2011.03754.x.

    Article  CAS  PubMed  Google Scholar 

  • Brodersen CR, McElrone AJ, Choat B, Lee EF, Shackel KA, Matthews MA. In vivo visualizations of drought-induced embolism spread in Vitis vinifera. Plant Physiol. 2013;161(4):1820–9. doi:10.1104/pp.112.212712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butterfield BG. Vessel element differentiation. In: Iqbal M, editor. The cambial derivatives. Berlin: G. Borntraeger; 1995. p. 93–106.

    Google Scholar 

  • Butterfield BG, Meylan BA. Cell wall hydrolysis in the tracheary elements of the secondary xylem. In: Baas P, editor. New perspectives in wood anatomy. The Hague: Martinus Nijhoff Publishers; 1982. p. 71–84.

    Chapter  Google Scholar 

  • Caballé G. Liana structure, function and selection: a comparative study of xylem cylinders of tropical rainforest species in Africa and America. Bot J Linn Soc. 1993;113(1):41–60.

    Article  Google Scholar 

  • Carlquist S. Studies on Madinae: anatomy, cytology, and evolutionary relationships. Aliso. 1959;4(2):171–236.

    Article  Google Scholar 

  • Carlquist S. A theory of paedomorphosis in dicotyledenous woods. Phytomorphology. 1962;12(1):30–45.

    Google Scholar 

  • Carlquist S. Wood anatomy of Goodeniaceae and the problem of insular woodiness. Ann Mo Bot Gard. 1969;56:358–90.

    Article  Google Scholar 

  • Carlquist S. Wood anatomy of insular species of Plantago and the problem of raylessness. Bull Torrey Bot Club. 1970;97(6):353–61.

    Article  Google Scholar 

  • Carlquist S. Island biology. New York: Columbia University Press; 1974.

    Book  Google Scholar 

  • Carlquist S. Wood anatomy of Bubbia (Winteraceae), with comments on origin of vessels in dicotyledons. Am J Bot. 1983;70(4):578–90.

    Article  Google Scholar 

  • Carlquist S. Vessel grouping in dicotyledon wood: significance and relationship to imperforate tracheary elements. Aliso. 1984;10(4):505–25.

    Article  Google Scholar 

  • Carlquist S. Wood anatomy of Begoniaceae, with comments on raylessness, pedomorphosis, relationships, vessel diameter, and ecology. Bull Torrey Bot Club. 1985;112(1):59–69. doi:10.2307/2996105.

    Article  Google Scholar 

  • Carlquist S. Diagonal and tangential vessel aggregations in wood: function and relationship to vasicentric tracheids. Aliso. 1987a;11(4):451–62.

    Article  Google Scholar 

  • Carlquist S. Presence of vessels in wood of Sarcandra (Chloranthaceae); comments on vessel origins in angiosperms. Am J Bot. 1987b;74(12):1765–71. doi:10.2307/2443959.

    Article  Google Scholar 

  • Carlquist S. Wood anatomy of Tasmannia; summary of wood anatomy of Winteraceae. Aliso. 1989;12(2):257–75.

    Article  Google Scholar 

  • Carlquist S. Anatomy of vine and liana stems: a review and synthesis. In: Putz FE, Mooney HA, editors. The biology of vines. Cambridge: Cambridge University Press; 1991. p. 53–71.

    Google Scholar 

  • Carlquist S. Wood anatomy and stem of Chloranthus: a summary of wood anatomy of Chloranthaceae, with comments on relationships, vessellessness, and the origin of monocotyledons. IAWA Bull. 1992a;13(1):3–16.

    Article  Google Scholar 

  • Carlquist S. Wood anatomy of sympetalous dicotyledon families: a summary, with comments on systematic relationships and evolution of the woody habit. Ann Mo Bot Gard. 1992b;79(2):303–32.

    Article  Google Scholar 

  • Carlquist S. Wood and bark anatomy of Aristolochiaceae – systematic and habital correlations. IAWA J. 1993;14(4):341–57.

    Article  Google Scholar 

  • Carlquist S. Wood and bark anatomy of Ranunculaceae (including Hydrastis) and Glaucidiaceae. Aliso. 1995;14(2):65–84.

    Article  Google Scholar 

  • Carlquist S. Wood anatomy of primitive angiosperms: new perspectives and syntheses. In: Taylor DW, Hickey LJ, editors. Flowering plant origin, evolution, and phylogeny. New York: Chapman & Hall; 1996a. p. 68–90.

    Chapter  Google Scholar 

  • Carlquist S. Wood and stem anatomy of Menispermaceae. Aliso. 1996b;14(3):155–70.

    Article  Google Scholar 

  • Carlquist S. Wood and bark anatomy of Takhtajania (Winteraceae); Phylogenetic and ecological implications. Ann Mo Bot Gard. 2000;87(3):317–22. doi:10.2307/2666191.

    Article  Google Scholar 

  • Carlquist S. Axial parenchyma. In: Comparative wood anatomy. Springer Series in Wood Science, 2nd edn. Berlin: Springer; 2001a. p. 157–81.

    Google Scholar 

  • Carlquist S. Cambial variants (anomalous secondary growth). In: Comparative wood anatomy. Berlin: Springer Series in Wood Science. Springer; 2001b. p. 271–95.

    Chapter  Google Scholar 

  • Carlquist S. Imperforate tracheary elements. In: Comparative wood anatomy, Springer Series in Wood Science. Berlin: Springer; 2001c. p. 107–55.

    Chapter  Google Scholar 

  • Carlquist S. Wood and bark anatomy of Salvadoraceae: ecology, relationships, histology of interxylary phloem. J Torrey Bot Soc. 2002;129(1):10–20.

    Article  Google Scholar 

  • Carlquist S. Successive cambia revisited: ontogeny, histology, diversity, and functional significance. J Torrey Bot Soc. 2007;134(2):301–32.

    Article  Google Scholar 

  • Carlquist S. Non-random vessel distribution in woods: patterns, modes, diversity, and correlations. Aliso. 2009a;27:39–58.

    Article  Google Scholar 

  • Carlquist S. Xylem heterochrony: an unappreciated key to angiosperm origin and diversifications. Bot J Linn Soc. 2009b;161(1):26–65.

    Article  Google Scholar 

  • Carlquist S. More woodiness/less woodiness: evolutionary avenues, ontogenetic mechanisms. Int J Plant Sci. 2013;174(7):964–91. doi:10.1086/670400.

    Article  Google Scholar 

  • Carlquist S. Fibre dimorphism: cell type diversification as an evolutionary strategy in angiosperm woods. Bot J Linn Soc. 2014;174(1):44–67. doi:10.1111/boj.12107.

    Article  Google Scholar 

  • Carlquist S. Living cells in wood. 1. Absence, scarcity and histology of axial parenchyma as keys to function. Bot J Linn Soc. 2015a;177(3):291–321. doi:10.1111/boj.12247.

    Article  Google Scholar 

  • Carlquist S. Living cells in wood. 2. Raylessness: histology and evolutionary significance. Bot J Linn Soc. 2015b;178(4):529–55. doi:10.1111/boj.12291.

    Article  Google Scholar 

  • Carlquist S. Wood anatomy of Brassicales: new information, new evolutionary concepts. Bot Rev. 2016;82(1):24–90. doi:10.1007/s12229-016-9161-2.

    Article  Google Scholar 

  • Carlquist S, EL S. Vegetative anatomy of the New Caledonian endemic Amborella trichopoda: relationships with the Illiciales and implications for vessel origin. Pac Sci. 2001;55(3):305–12.

    Article  Google Scholar 

  • Carlquist S, Hoekman DA. Ecological wood anatomy of the woody southern Californian flora. Int Assoc Wood Anat Bull. 1985a;6(4):319–47.

    Google Scholar 

  • Carlquist S, Hoekman DA. Wood anatomy of Staphyleaceae – ecology, statistical correlations, and systematics. Flora. 1985b;177(3–4):195–216.

    Article  Google Scholar 

  • Carlquist S, Zona S. Wood anatomy of Papaveraceae, with comments on vessel restriction patterns. IAWA J. 1988;9(3):253–67 http://dx.doi.org/10.1163/22941932-90001073.

    Article  Google Scholar 

  • Carlquist S, Dauer K, Nishimura SY. Wood and stem anatomy of Saururaceae with reference to ecology, phylogeny, and origin of the monocotyledons. IAWA J. 1995;16(2):133–50.

    Article  Google Scholar 

  • Carraro N, Tisdale-Orr TE, Clouse RM, Knoller AS, Spicer R. Diversification and expression of the PIN, AUX/LAX and ABCB families of putative auxin transporters in Populus. Frontiers in Plant Science. 2012;3:1–17.

    Google Scholar 

  • Celedon JM, Chiang A, Yuen MMS, Diaz-Chavez ML, Madilao LL, Finnegan PM, Barbour EL, Bohlmann J. Heartwood-specific transcriptome and metabolite signatures of tropical sandalwood (Santalum album) reveal the final step of (Z)-santalol fragrance biosynthesis. Plant J. 2016;86(4):289–99. doi:10.1111/tpj.13162.

    Article  CAS  PubMed  Google Scholar 

  • Chaffey N, Cholewa E, Regan S, Sundberg B. Secondary xylem development in Arabidopsis: a model for wood formation. Physiol Plant. 2002;114(4):594–600. doi:10.1034/j.1399-3054.2002.1140413.x.

    Article  CAS  PubMed  Google Scholar 

  • Chalk L, Chattaway MM. Identification of woods with included phloem. Trop Woods. 1937;50:1–33.

    Google Scholar 

  • Chapotin SM, Razanameharizaka JH, Holbrook NM. A biomechanical perspective on the role of large stem volume and high water content in baobab trees (Adansonia spp.; Bombacaceae). Am J Bot. 2006;93(9):1251–64. doi:10.3732/ajb.93.9.1251.

    Article  PubMed  Google Scholar 

  • Chattaway MM. The development of tyloses and secretion of gum in heartwood formation. Aus J Sci Res Ser B Biol Sci. 1949;2:227–40.

    Google Scholar 

  • Chattaway MM. Morphological and functional variation in the rays of pored timbers. Australian Journal of Scientific Research, Series B, Biological Sciences. 1951;4:12–27.

    Google Scholar 

  • Chattaway M. The sapwood-heartwood transition. Aust For. 1952;16:25–34.

    Article  Google Scholar 

  • Cheadle VI. Secondary growth by means of a thickening ring in certain monocotyledons. Bot Gaz. 1937;98(3):535–55.

    Article  Google Scholar 

  • Choat B, Jansen S, Zwieniecki MA, Smets E, Holbrook NM. Changes in pit membrane porosity due to deflection and stretching: the role of vestured pits. J Exp Bot. 2004;55(402):1569–75.

    Article  CAS  PubMed  Google Scholar 

  • Choat B, Cobb AR, Jansen S. Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function. New Phytol. 2008;177(3):608–25. doi:10.1111/j.1469-8137.2007.02317.x.

    Article  PubMed  Google Scholar 

  • Chowdhury KA. Terminal and initial parenchyma cells in the wood of Terminalia tomentosa W. A. New Phytol. 1936;35:351–8.

    Article  Google Scholar 

  • Chowdhury MQ, Kitin P, De Ridder M, Delvaux C, Beeckman H. Cambial dormancy induced growth rings in Heritiera fomes Buch.- Ham.: a proxy for exploring the dynamics of Sundarbans, Bangladesh. Trees. 2016;30(1):227–39. doi:10.1007/s00468-015-1292-2.

    Article  Google Scholar 

  • Christensen-Dalsgaard KK, Ennos AR, Fournier M. Are radial changes in vascular anatomy mechanically induced or an ageing process? Evidence from observations on buttressed tree root systems. Trees Struct Funct. 2008a;22(4):543–50. doi:10.1007/s00468-008-0214-y.

    Article  Google Scholar 

  • Christensen-Dalsgaard KK, Ennos AR, Fournier M. Interrelations between hydraulic and mechanical stress adaptations in woody plants. Plant Signal Behav. 2008b;3(7):463–5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Christman MA, Sperry JS, Adler FR. Testing the ‘rare pit’ hypothesis for xylem cavitation resistance in three species of Acer. New Phytol. 2009;182(3):664–74. doi:10.1111/j.1469-8137.2009.02776.x.

    Article  PubMed  Google Scholar 

  • Cirelli D, Jagels R, Tyree MT. Toward an improved model of maple sap exudation: the location and role of osmotic barriers in sugar maple, butternut and white birch. Tree Physiol. 2008;28(8):1145–55.

    Article  PubMed  Google Scholar 

  • Clair B, Ruelle J, Beauchene J, Prevost MF, Fournier M. Tension wood and opposite wood in 21 tropical rain forest species 1. Occurrence and efficiency of the G-layer. IAWA J. 2006;27(3):329–38.

    Google Scholar 

  • Clair B, Gril J, Di Renzo F, Yamamoto H, Quignard F. Characterization of a gel in the cell wall to elucidate the paradoxical shrinkage of tension wood. Biomacromolecules. 2008;9(2):494–8. doi:10.1021/bm700987q.

    Article  CAS  PubMed  Google Scholar 

  • Clerivet A, Deon V, Alami I, Lopez F, Geiger J-P, Nicole M. Tyloses and gels associated with cellulose accumulation in vessels are responses of plane tree seedlings (Platanus x acerifolia) to the vascular fungus Ceratocystis fimbriata f. sp. platani. Trees. 2000;15:25–31.

    Article  CAS  Google Scholar 

  • Cochard H, Tyree MT. Xylem dysfunction in Quercus: vessel sizes, tyloses, cavitation and seasonal changes in embolism. Tree Physiol. 1990;6:393–407.

    Article  CAS  PubMed  Google Scholar 

  • Cochard H, Cruiziat P, Tyree MT. Use of positive pressures to establish vulnerability curves: further support for the air-seeding hypothesis and implications for pressure-volume analysis. Plant Physiol. 1992;100(1):205–9. doi:10.2307/4274614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crook MJ, Ennos AR, Banks JR. The function of buttress roots: a comparative study of the anchorage systems of buttressed (Aglaia and Nephelium ramboutan species) and non-buttressed (Mallotus wrayi) tropical trees. J Exp Bot. 1997;48(314):1703–16. doi:10.1093/jexbot/48.314.1703.

    Article  CAS  Google Scholar 

  • Davies TJ, Daru BH, van der Bank M, Maurin O, Bond WJ. Multiple routes underground? Frost alone cannot explain the evolution of underground trees. New Phytol. 2016;209(3):910–2.

    Article  PubMed  Google Scholar 

  • Davis SD, Sperry JS, Hacke UG. The relationship between xylem conduit diameter and cavitation caused by freezing. Am J Bot. 1999;86(10):1367–72. doi:10.2307/2656919.

    Article  CAS  PubMed  Google Scholar 

  • De Micco V, Balzano A, Wheeler EA, Baas P. Tyloses and gums: a review of structure, function and occurrence of vessel occlusions. IAWA J. 2016;37(2):186–205 http://dx.doi.org/10.1163/22941932-20160130.

    Article  Google Scholar 

  • Decourteix M, Alves G, Bonhomme M, Peuch M, Ben Baaziz K, Brunel N, Guilliot A, Rageau R, Ameglio T, Petel G, Sakr S. Sucrose (JrSUT1) and hexose (JrHT1 and JrHT2) transporters in walnut xylem parenchyma cells: their potential role in early events of growth resumption. Tree Physiol. 2008;28(2):215–24.

    Article  CAS  PubMed  Google Scholar 

  • den Outer RW, van Veenendaal WHL. Development of included phloem in the stem of Combretum nigricans (Combretaceae). IAWA J. 1995;16(2):151–8.

    Article  Google Scholar 

  • Dickison WC. Stem and leaf anatomy of Saruma henryi Oliv, including observations on raylessness in the Aristolochiaceae. Bull Torrey Bot Club. 1996;123(4):261–7. doi:10.2307/2996773.

    Article  Google Scholar 

  • Dobbins DR, Fisher JB. Wound responses in girdled stems of lianas. Bot Gaz. 1986;147(3):278–89.

    Article  Google Scholar 

  • Dodd ME, Silvertown J, Chase MW. Phylogenetic analysis of trait evolution and species diversity variation among angiosperm families. Evolution. 1999;53(3):732–44. doi:10.2307/2640713.

    Article  PubMed  Google Scholar 

  • Domec J-C, Gartner BL. Age- and position-related changes in hydraulic versus mechanical dysfunction of xylem: inferring design criteria for Douglas-fir wood structure. Tree Physiol. 2002;22:91–104.

    Article  CAS  PubMed  Google Scholar 

  • Domec J-C, Lachenbruch B, Pruyn M, Spicer R. Effects of age-related increases in sapwood area, leaf area, and xylem conductivity on height-related hydraulic costs in two contrasting coniferous species. Ann For Sci. 2012;69(1):17–27. doi:10.1007/s13595-011-0154-3.

    Article  Google Scholar 

  • Doyle JA. Paleobotany, relationships, and geographic history of Winteraceae. Ann Mo Bot Gard. 2000;87(3):303–16. doi:10.2307/2666190.

    Article  Google Scholar 

  • Doyle JA, Donoghue MJ. Seed plant phylogeny and the origin of angiosperms – an experimental cladistic approach. Bot Rev. 1986;52(4):321–431. doi:10.1007/bf02861082.

    Article  Google Scholar 

  • Doyle JA, Endress PK. Morphological phylogenetic analysis of basal angiosperms: comparison and combination with molecular data. Int J Plant Sci. 2000;161(6):S121–53. doi:10.1086/317578.

    Article  CAS  Google Scholar 

  • Du J, Groover A. Transcriptional regulation of secondary growth and wood formation. J Integr Plant Biol. 2010;52(1):17–27. doi:10.1111/j.1744-7909.2010.00901.x.

    Article  CAS  PubMed  Google Scholar 

  • Du S, Yamamoto F. An overview of the biology of reaction wood formation. J Integr Plant Biol. 2007;49(2):131–43. doi:10.1111/j.1744-7909.2007.00427.

    Article  CAS  Google Scholar 

  • Du JA, Miura E, Robischon M, Martinez C, Groover A. The Populus class III HD ZIP transcription factor POPCORONA affects cell differentiation during secondary growth of woody stems. PLoS One. 2011;6(2). doi:10.1371/journal.pone.0017458.

    Google Scholar 

  • Dumbroff EB, Elmore HW. Living fibers are a principal feature of xylem in seedlings of Acer saccharum Marsh. Ann Bot. 1977;41(172):471–2.

    Article  Google Scholar 

  • Eames AJ, MacDaniels LH. The origin and development of the secondary body and its relation to the primary body. In: Sinnott EW, editor. An introduction to plant anatomy. New York: McGraw-Hill Book Company, Inc.; 1947. p. 175–203.

    Google Scholar 

  • Ehleringer JR, Dawson TE. Water uptake by plants: perspectives from stable isotope composition. Plant Cell Environ. 1992;15:1073–82.

    Article  CAS  Google Scholar 

  • Ellmore GS, Ewers FW. Hydraulic conductivity in trunk xylem of elm, Ulmus americana. IAWA Bull. 1985;6(4):303–7.

    Article  Google Scholar 

  • Ellmore GS, Ewers FW. Fluid flow in the outermost xylem increment of a ring-porous tree, Ulmus americana. Am J Bot. 1986;73(12):1771–4.

    Article  Google Scholar 

  • Ellmore GS, Zanne AE, Orians CM. Comparative sectoriality in temperate hardwoods: hydraulics and xylem anatomy. Bot J Linn Soc. 2006;150(1):61–71. doi:10.1111/j.1095-8339.2006.00510.x.

    Article  Google Scholar 

  • Esau K. Origin and development of primary vascular tissues in seed plants. Bot Rev. 1943;9(3):125–206.

    Article  Google Scholar 

  • Esau K. The anatomy of seed plants. New York: John Wiley & Sons, Inc.; 1960.

    Google Scholar 

  • Esau K. Initiation of the vascular system in the shoot. In: Vascular differentiation in plants. Holt/New York: Rinehart & Winston; 1965. p. 37–60.

    Google Scholar 

  • Esau K, Cheadle VI. Secondary growth in bougainvillea. Ann Bot. 1969;33(132):807.

    Article  Google Scholar 

  • Ewers FW, Fisher JB. Why vines have narrow stems – histological trends in Bauhinia (Fabaceae). Oecologia. 1991;88(2):233–7.

    Article  PubMed  Google Scholar 

  • Fahn A, Leshem B. Wood fibres with living protoplasts. New Phytol. 1963;62(1):91–8.

    Article  Google Scholar 

  • Fang CH, Clair B, Gril J, Liu SQ. Growth stresses are highly controlled by the amount of G-layer in poplar tension wood. IAWA J. 2008;29(3):237–46.

    Article  Google Scholar 

  • Feild TS, Arens NC. The ecophysiology of early angiosperms. Plant Cell Environ. 2007;30(3):291–309. doi:10.1111/j.1365-3040.2006.01625.x.

    Article  CAS  PubMed  Google Scholar 

  • Feild TS, Zweiniecki MA, Brodribb T, Jaffre T, Donoghue MJ, Holbrook NM. Structure and function of tracheary elements in Amborella trichopoda. Int J Plant Sci. 2000a;161(5):705–12.

    Article  Google Scholar 

  • Feild TS, Zwieniecki MA, Holbrook NM. Winteraceae evolution: an ecophysiological perspective. Ann Mo Bot Gard. 2000b;87(3):323–34.

    Article  Google Scholar 

  • Feild TS, Brodribb T, Holbrook M. Hardly a relict: freezing and the evolution of vesselless wood in winteraceae. Evolution. 2002;56(3):464–78.

    Article  PubMed  Google Scholar 

  • Feild TS, Arens NC, Doyle JA, Dawson TE, Donoghue MJ. Dark and disturbed: a new image of early angiosperm ecology. Paleobiology. 2004;30(1):82–107.

    Article  Google Scholar 

  • Fisher JB. Wound healing by exposed secondary xylem in Adansonia (Bombacaceae). IAWA Bull. 1981;2(4):193–9.

    Article  Google Scholar 

  • Fisher JB, Ewers FW. Wound healing in stems of lianas after twisting and girdling injuries. Bot Gaz. 1989;150(3):251–65.

    Article  Google Scholar 

  • Fisher JB, Ewers FW. Structural responses to stem injury in vines. In: Putz FE, Mooney HA, editors. The biology of vines. Cambridge: Cambridge University Press; 1991. p. 99–124.

    Google Scholar 

  • Fisher JB, Stevenson JW. Occurence of reaction wood in branches of dicotyledons and its role in tree architecture. Bot Gaz. 1981;142(1):82–95.

    Article  Google Scholar 

  • Fuchs M, Ehlers K, Will T, van Bel AJE. Immunolocalization indicates plasmodesmal trafficking of storage proteins during cambial reactivation in Populus nigra. Ann Bot. 2010;106(3):385–94. doi:10.1093/aob/mcq130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasson P, Dobbins DR. Wood anatomy of the Bignoniaceae, with a comparison of trees and lianas. IAWA Bull. 1991;12(4):389–417.

    Article  Google Scholar 

  • Gebauer T, Horna V, Leuschner C. Variability in radial sap flux density patterns and sapwood area among seven co-occurring temperate broad-leaved tree species. Tree Physiol. 2008;28(12):1821–30.

    Article  PubMed  Google Scholar 

  • Gorshkova T, Mokshina N, Chernova T, Ibragimova N, Salnikov V, Mikshina P, Tryfona T, Banasiak A, Immerzeel P, Dupree P, Mellerowicz EJ. Aspen tension wood fibers contain beta-(1 -> 4)-galactans and acidic arabinogalactans retained by cellulose microfibrils in gelatinous walls. Plant Physiol. 2015;169(3):2048–63. doi:10.1104/pp.15.00690.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goswami L, Dunlop JWC, Jungnikl K, Eder M, Gierlinger N, Coutand C, Jeronimidis G, Fratzl P, Burgert I. Stress generation in the tension wood of poplar is based on the lateral swelling power of the G-layer. Plant J. 2008;56(4):531–8. doi:10.1111/j.1365-313X.2008.03617.x.

    Article  CAS  PubMed  Google Scholar 

  • Goue N, Lesage-Descauses MC, Mellerowicz EJ, Magel E, Label P, Sundberg B. Microgenomic analysis reveals cell type-specific gene expression patterns between ray and fusiform initials within the cambial meristem of Populus. New Phytol. 2008;180(1):45–56. doi:10.1111/j.1469-8137.2008.02556.x.

    Article  CAS  PubMed  Google Scholar 

  • Goue N, Noel-Boizot N, Vallance M, Magel E, Label P. Microdissection to isolate vascular cambium cells in poplar. Silva Fenn. 2012;46(1):5–16. doi:10.14214/sf.62.

    Article  Google Scholar 

  • Gregory RA. Living elements of the conducting secondary xylem of sugar maple (Acer saccharum Marsh.). IAWA J. 1978;4:65–9.

    Google Scholar 

  • Grillos SJ, Smith FH. The secondary phloem of Douglas-fir. For Sci. 1959;5(4):377–88.

    Google Scholar 

  • Groover A. Gravitropisms and reaction woods of forest trees - evolution, functions and mechanisms. New Phytol. 2016. doi: 10.1111/nph.13968 (Early View).

    PubMed  Google Scholar 

  • Groover AT, Mansfield SD, DiFazio SP, Dupper G, Fontana JR, Millar R, Wang Y. The Populus homeobox gene ARBORKNOX1 reveals overlapping mechanisms regulating the shoot apical meristem and the vascular cambium. Plant Mol Biol. 2006;61(6):917–32. doi: 10.1007/s11103-006-0059-y.

    Article  CAS  PubMed  Google Scholar 

  • Hacke UG, Sperry JS, Wheeler JK, Castro L. Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol. 2006;26(6):689–701.

    Article  PubMed  Google Scholar 

  • Hacke UG, Sperry JS, Feild TS, Sano Y, Sikkema EH, Pittermann J. Water transport in vesselless angiosperms: conducting efficiency and cavitation safety. Int J Plant Sci. 2007;168(8):1113–26. doi:10.1086/520724.

    Article  Google Scholar 

  • Hacke UG, Spicer R, Schreiber SG, Plavcova L. An ecophysiological and developmental perspective on variation in vessel diameter. Plant Cell Environ. 2016. doi: 10.1111/pce.12777.

    Google Scholar 

  • Hargrave KR, Kolb KJ, Ewers FW, Davis SD. Conduit diameter and drought-induced embolism in Salvia mellifera Greene (Labiatae). New Phytol. 1994;126:695–705.

    Article  Google Scholar 

  • Harrar ES. Notes on starch grains in septate fiber-tracheids. Trop Woods. 1946;85:1–9.

    Google Scholar 

  • He ZY, Tang Y, Deng XB, Cao M. Buttress trees in a 20-hectare tropical dipterocarp rainforest in Xishuangbanna, SW China. J Plant Ecol. 2013;6(2):187–92. doi:10.1093/jpe/rts031.

    Google Scholar 

  • Hearn DJ. Descriptive anatomy and evolutionary patterns of anatomical diversification in Adenia (Passifloraceae). Aliso. 2009a;27:13–38.

    Article  Google Scholar 

  • Hearn DJ. Developmental patterns in anatomy are shared among separate evolutionary origins of stem succulent and storage root-bearing growth habits in Adenia (Passifloraceae). Am J Bot. 2009b;96(11):1941–56.

    Article  PubMed  Google Scholar 

  • Hearn DJ, Poulsen T, Spicer R. The evolution of growth forms with expanded root and shoot parenchymatous storage is correlated across the eudicots. Int J Plant Sci. 2013;174(7):1049–61. doi:10.1086/671745.

    Article  Google Scholar 

  • Hoadley RB. Identifying wood: accurate results with simple tools. Newtown: Taunton Press; 1990.

    Google Scholar 

  • Holbrook NM, Zwieniecki MA, Melcher PJ. The dynamics of “dead” wood: hydrogel-mediated changes in xylem hydraulic properties. Am Zool. 2000;40(6):1062.

    Google Scholar 

  • Höll W. Radial transport in rays. In: Zimmermann MH, Milburn JA, editors. Transport in plants I. Phloem transport. Encyclopedia of plant physiology. Berlin/Heidelburg/New York: Springer 1975. p. 432–50.

    Google Scholar 

  • Höll W. Distribution, fluctuation and metabolism of food reserves in the wood of trees. In: Savidge R, Barnett J, Napier R, editors. Cell & molecular biology of wood formation. Oxford: BIOS Scientific Publishers, Ltd.; 2000. p. 347–62.

    Google Scholar 

  • Hudson PJ, Razanatsoa J, Feild TS. Early vessel evolution and the diversification of wood function: insights from Malagasy Canellales. Am J Bot. 2010;97(1):80–93. doi:10.3732/ajb.0900130.

    Article  PubMed  Google Scholar 

  • IAWA. IAWA list of microscropic features for hardwood identification. IAWA J. 1989;10:219–332.

    Article  Google Scholar 

  • Isnard S, Speck T, Rowe NP. Mechanical architecture and development in Clematis: implications for canalised evolution of growth forms. New Phytol. 2003;158(3):543–59. doi:10.1046/j.1469-8137.2003.00771.x.

    Article  Google Scholar 

  • Isnard S, Prosperi J, Wanke S, Wagner ST, Samain MS, Trueba S, Frenzke L, Neinhuis C, Rowe NP. Growth form evolution in Piperales and its relevance for understanding angiosperm diversification: an integrative approach combining plant architecture, anatomy, and biomechanics. Int J Plant Sci. 2012;173(6):610–39. doi:10.1086/665821.

    Article  Google Scholar 

  • Itabashi T, Yokota S, Yoshizawa N. The seasonal occurrence and histology of septate fibers in Kalopanax pictus. IAWA J. 1999;20(4):395–404.

    Article  Google Scholar 

  • Jacobsen AL, Pratt RB, Tobin MF, Hacke UG, Ewers FW. A global analysis of xylem vessel length in woody plants. Am J Bot. 2012;99(10):1583–91. doi:10.3732/ajb.1200140.

    Article  PubMed  Google Scholar 

  • Jacobsen AL, Rodriguez-Zaccaro FD, Lee TF, Valdovinos JT, Toschi HS, Martinez JA, Pratt RB. Grapevine xylem development, architecture and function. In: Hacke U, editor. Functional and ecological xylem anatomy. Cham: Springer International; 2015. p. 133–62.

    Google Scholar 

  • Jane FW. Terminal and initial parenchyma in wood. Nature. 1934;133:534.

    Article  Google Scholar 

  • Jeje AA, Zimmermann MH. Resistance to water-flow in xylem vessels. J Exp Bot. 1979;30(117):817–27. doi:10.1093/jxb/30.4.817.

    Article  Google Scholar 

  • Johnson RW, Tyree MT. Effect of stem water-content on sap flow from dormant maple and butternut stems - induction of sap flow in butternut. Plant Physiol. 1992;100(2):853–8. doi:10.1104/pp.100.2.853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jud NA. Fossil evidence for a herbaceous diversification of early eudicot angiosperms during the Early Cretaceous. Proc Biol Sci/R Soc. 2015;282(1814). doi:10.1098/rspb.2015.1045.

    Google Scholar 

  • Jura-Morawiec J, Tulik M, Iqbal M. Lateral meristems responsible for secondary growth of the monocotyledons: a survey of the state of the art. Bot Rev. 2015;81:150–61.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kidner C, Groover A, Thomas DC, Emelianova K, Soliz-Gamboa C, Lens F. First steps in studying the origins of secondary woodiness in Begonia (Begoniaceae): combining anatomy, phylogenetics, and stem transcriptomics. Biol J Linn Soc. 2016;117(1):121–38. doi:10.1111/bij.12492.

    Article  Google Scholar 

  • Kim S, Soltis DE, Soltis PS, Zanis MJ, Suh Y. Phylogenetic relationships among early-diverging eudicots based on four genes: were the eudicots ancestrally woody? Mol Phylogenet Evol. 2004;31(1):16–30. doi:10.1016/j.ympev.2003.07.017.

    Article  CAS  PubMed  Google Scholar 

  • Ko JH, Han KH, Park S, Yang JM. Plant body weight-induced secondary growth in Arabidopsis and its transcription phenotype revealed by whole-transcriptome profiling. Plant Physiol. 2004;135(2):1069–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuroda K, Fujiwara T, Hashida K, Imai T, Kushi M, Saito K, Fukushima K. The accumulation pattern of ferruginol in the heartwood-forming Cryptomeria japonica xylem as determined by time-of-flight secondary ion mass spectrometry and quantity analysis. Ann Bot. 2014;113(6):1029–36. doi:10.1093/aob/mcu028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lancashire JR, Ennos AR. Modelling the hydrodynamic resistance of bordered pits. J Exp Bot. 2002;53(373):1485–93.

    Article  CAS  PubMed  Google Scholar 

  • Larson PR. The vascular cambium: development and structure. Springer Series in Wood Science. Berlin: Springer; 1994.

    Book  Google Scholar 

  • Lee J, Holbrook NM, Zwieniecki MA. Ion induced changes in the structure of bordered pit membranes. Front Plant Sci. 2012;3:55. doi:10.3389/fpls.2012.00055.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lens F, Groeninckx I, Smets E, Dessein S. Woodiness within the Spermacoceae-Knoxieae alliance (Rubiaceae): retention of the basal woody condition in Rubiaceae or recent innovation? Ann Bot. 2009;103(7):1049–64. doi:10.1093/aob/mcp048.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lens F, Eeckhout S, Zwartjes R, Smets E, Janssens SB. The multiple fuzzy origins of woodiness within Balsaminaceae using an integrated approach. Where do we draw the line? Ann Bot. 2012a;109(4):783–99. doi:10.1093/aob/mcr310.

    Article  PubMed  Google Scholar 

  • Lens F, Smets E, Melzer S. Stem anatomy supports Arabidopsis thaliana as a model for insular woodiness. New Phytol. 2012b;193(1):12–7. doi:10.1111/j.1469-8137.2011.03888.x.

    Article  PubMed  Google Scholar 

  • Lens F, Davin N, Smets E, del Arco M. Insular woodiness on the canary islands: a remarkable case of convergent evolution. Int J Plant Sci. 2013;174(7):992–1013. doi:10.1086/670259.

    Article  Google Scholar 

  • Lev-Yadun S. Induction of sclereid differentiation in the pith of Arabidopsis thaliana (L) Heynh. J Exp Bot. 1994;45(281):1845–9. doi:10.1093/jxb/45.12.1845.

    Article  CAS  Google Scholar 

  • Li H-F, Chaw S-M, Du C-M, Ren Y. Vessel elements present in the secondary xylem of Trochodendron and Tetracentron (Trochodendraceae). Flora. 2011;206(6):595–600. doi:10.1016/j.flora.2010.11.018.

    Article  Google Scholar 

  • Li H, Wang W, Lin L, Zhu X, Zhu X, Li J, Chen Z. Diversification of the phaseoloid legumes: effects of climate change, range expansion and habit shift. Front Plant Sci. 2013;4:386. doi:10.3389/fpls.2013.00386.

    PubMed  PubMed Central  Google Scholar 

  • Lima AC, Pace MR, Angyalossy V. Seasonality and growth rings in lianas of Bignoniaceae. Trees Struct Funct. 2010;24(6):1045–60. doi:10.1007/s00468-010-0476-z.

    Article  Google Scholar 

  • Loepfe L, Martinez-Vilalta J, Pinol J, Mencuccini M. The relevance of xylem network structure for plant hydraulic efficiency and safety. J Theor Biol. 2007;247(4):788–803. doi:10.1016/j.jtbi.2007.03.036.

    Article  PubMed  Google Scholar 

  • Lopez L, Villalba R. Reliable estimates of radial growth for eight tropical species based on wood anatomical patterns. J Trop For Sci. 2016;28(2):139–52.

    Google Scholar 

  • Mabberley DJ. On Dr. Carlquist’s defense of paedomorphosis. New Phytol. 1982;90(4):751–5. doi:10.1111/j.1469-8137.1982.tb03284.x.

    Article  Google Scholar 

  • Magel EA. Biochemistry and physiology of heartwood formation. In: Savidge R, Barnett J, Napier R, editors. Cell & molecular biology of wood formation. Oxford: BIOS Scientific Publishers, Ltd.; 2000. p. 363–76.

    Google Scholar 

  • Maurin O, Davies TJ, Burrows JE, Daru BH, Yessoufou K, Muasya AM, van der Bank M, Bond WJ. Savanna fire and the origins of the ‘underground forests’ of Africa. New Phytol. 2014;204(1):201–14. doi:10.1111/nph.12936.

    Article  PubMed  Google Scholar 

  • Mauseth JD. The structure of photosynthetic succulent stems in plants other than cacti. Int J Plant Sci. 2004;165(1):1–9. doi:10.1086/380978.

    Article  Google Scholar 

  • McCulloh K, Sperry JS, Lachenbruch B, Meinzer FC, Reich PB, Voelker S. Moving water well: comparing hydraulic efficiency in twigs and trunks of coniferous, ring-porous, and diffuse-porous saplings from temperate and tropical forests. New Phytol. 2010;186(2):439–50. doi:10.1111/j.1469-8137.2010.03181.x.

    Article  PubMed  Google Scholar 

  • Mellerowicz EJ, Gorshkova TA. Tensional stress generation in gelatinous fibres: a review and possible mechanism based on cell-wall structure and composition. J Exp Bot. 2012;63(2):551–65. doi:10.1093/jxb/err339.

    Article  CAS  PubMed  Google Scholar 

  • Melzer S, Lens F, Gennen J, Vanneste S, Rohde A, Beeckman T. Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nat Genet. 2008;40(12):1489–92. doi:10.1038/ng.253.

    Article  CAS  PubMed  Google Scholar 

  • Meylan BA, Butterfield BG. Perforation plate differentiation in the vessels of hardwoods. In: Barnett J, editor. Xylem cell development. Kent: Castle House Publications, Ltd.; 1981. p. 96–114.

    Google Scholar 

  • Milburn JA, O’Malley PER. Freeze-induced sap absorption in Acer pseudoplatanus - a possible mechanism. Can J Bot. 1984;62(10):2101–6.

    Article  Google Scholar 

  • Moniodis J, Jones CG, Barbour EL, Plummer JA, Ghisalberti EL, Bohlmann J. The transcriptome of sesquiterpenoid biosynthesis in heartwood xylem of Western Australian sandalwood (Santalum spicatum). Phytochemistry. 2015;113:79–86. doi:10.1016/j.phytochem.2014.12.009.

    Article  CAS  PubMed  Google Scholar 

  • Morris H, Plavcova L, Cvecko P, Fichtler E, Gillingham MAF, Martinez-Cabrera HI, McGlinn DJ, Wheeler E, Zheng JM, Zieminska K, Jansen S. A global analysis of parenchyma tissue fractions in secondary xylem of seed plants. New Phytol. 2016;209(4):1553–65. doi:10.1111/nph.13737.

    Article  CAS  PubMed  Google Scholar 

  • Moyers BT, Rieseberg LH. Divergence in gene expression is uncoupled from divergence in coding sequence in a secondarily woody sunflower. Int J Plant Sci. 2013;174(7):1079–89. doi:10.1086/671197.

    Article  CAS  Google Scholar 

  • Nakaba S, Begum S, Yamagishi Y, Jin HO, Kubo T, Funada R. Differences in the timing of cell death, differentiation and function among three different types of ray parenchyma cells in the hardwood Populus sieboldii x P. grandidentata. Trees Struct Funct. 2012;26(3):743–50. doi:10.1007/s00468-011-0640-0.

    Article  Google Scholar 

  • Nakaba S, Takata N, Yoshida M, Funada R. Continuous expression of genes for xylem cysteine peptidases in long-lived ray parenchyma cells in Populus. Plant Biotechnol. 2015;32(1):21–9. doi:10.5511/plantbiotechnology.14.1208a.

    Article  CAS  Google Scholar 

  • Nakaba S, Arakawa I, Morimoto H, Nakada R, Bito N, Imai T, Funada R. Agatharesinol biosynthesis-related changes of ray parenchyma in sapwood sticks of Cryptomeria japonica during cell death. Planta. 2016;243(5):1225–36. doi:10.1007/s00425-016-2473-y.

    Article  CAS  PubMed  Google Scholar 

  • Nardini A, Salleo S, Jansen S. More than just a vulnerable pipeline: xylem physiology in the light of ion-mediated regulation of plant water transport. J Exp Bot. 2011;62(14):4701–18. doi:10.1093/jxb/err208.

    Article  CAS  PubMed  Google Scholar 

  • Nishikubo N, Awano T, Banasiak A, Bourquin V, Ibatullin F, Funada R, Brumer H, Teeri TT, Hayashi T, Sundberg B, Mellerowicz EJ. Xyloglucan endo-transglycosylase (XET) functions in gelatinous layers of tension wood fibers in poplar – a glimpse into the mechanism of the balancing act of trees. Plant Cell Physiol. 2007;48(6):843–55. doi:10.1093/pcp/pcm055.

    Article  CAS  PubMed  Google Scholar 

  • O’Malley PER, Milburn JA. Freeze-induced fluctuations in xylem sap pressure in Acer pseudoplatanus. Can J Bot. 1983;61(12):3100–6.

    Article  Google Scholar 

  • Ogburn RM, Edwards EJ. The ecological water-use strategies of succulent plants. In: Kader JC, Delseny M, editors. Advances in botanical research, vol 55; 2010. p. 179–225. doi:10.1016/s0065-2296(10)55004-3.

  • Ogburn RM, Edwards EJ. Quantifying succulence: a rapid, physiologically meaningful metric of plant water storage. Plant Cell Environ. 2012;35(9):1533–42. doi:10.1111/j.1365-3040.2012.02503.x.

    Article  PubMed  Google Scholar 

  • Olson ME. Stem and leaf anatomy of the arborescent Cucurbitaceae Dendrosicyos socotrana with comments on the evolution of pachycauls from lianas. Plant Syst Evol. 2003;239(3–4):199–214. doi:10.1007/s00606-003-0006-1.

    Article  Google Scholar 

  • Olson ME, Carlquist S. Stem and root anatomical correlations with life form diversity, ecology, and systematics in Moringa (Moringaceae). Bot J Linn Soc. 2001;2001(135):315–48.

    Article  Google Scholar 

  • Orians C, van Vuuren MMI, Harris NL, Babst BA, Ellmore GS. Differential sectoriality in long-distance transport in temperate tree species: evidence from dye flow, 15N transport, and vessel element pitting. Trees. 2004;18:501–9.

    Article  Google Scholar 

  • Pace MR, Angyalossy V. Wood anatomy and evolution: a case study in the Bignoniaceae. Int J Plant Sci. 2013;174(7):1014–48. doi:10.1086/670258.

    Article  Google Scholar 

  • Pace MR, Lohmann LG, Angyalossy V. The rise and evolution of the cambial variant in Bignonieae (Bignoniaceae). Evol Dev. 2009;11(5):465–79. doi:10.1111/j.1525-142X.2009.00355.x.

    Article  PubMed  Google Scholar 

  • Pace MR, Lohmann LG, Angyalossy V. Evolution of disparity between the regular and variant phloem in Bignonieae (Bignoniaceae). Am J Bot. 2011;98(4):602–18. doi:10.3732/ajb.1000269.

    Article  PubMed  Google Scholar 

  • Pace MR, Alcantara S, Lohmann LG, Angyalossy V. Secondary phloem diversity and evolution in Bignonieae (Bignoniaceae). Ann Bot. 2015a;116(3):333–58. doi:10.1093/aob/mcv106.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pace MR, Lohmann LG, Olmstead RG, Angyalossy V. Wood anatomy of major Bignoniaceae clades. Plant Syst Evol. 2015b;301(3):967–95. doi:10.1007/s00606-014-1129-2.

    Article  Google Scholar 

  • Panshin AJ, de Zeeuw C. Textbook of wood technology. Part 1. Formation, anatomy, and properties of wood. 4 ed. New York: McGraw-Hill; 1980.

    Google Scholar 

  • Pate JS. Exchange of solutes between phloem and xylem and circulation in the whole plant. In: Zimmermann MH, Milburn JA, editors. Transport in plants I. Phloem transport, Encyclopedia of Plant Physiology. Berlin/Heidelburg/New York: Springer; 1975. p. 451–73.

    Chapter  Google Scholar 

  • Patten AM, Davin LB, Lewis NG. Relationship of dirigent protein and 18 s RNA transcript localization to heartwood formation in western red cedar. Phytochemistry. 2008;69(18):3032–7. doi:10.1016/j.phytochem.2008.06.020.

    Article  CAS  PubMed  Google Scholar 

  • Paul-Victor C, Rowe N. Effect of mechanical perturbation on the biomechanics, primary growth and secondary tissue development of inflorescence stems of Arabidopsis thaliana. Ann Bot. 2011;107(2):209–18. doi:10.1093/aob/mcq227.

    Article  CAS  PubMed  Google Scholar 

  • Philippe M, Gomez B, Girard V, Coiffard C, Daviero-Gomez V, Thevenard F, Billon-Bruyat J-P, Guiomar M, Latil J-L, Le loeuff J, Néraudeau D, Olivero D, Schlögl J. Woody or not woody? Evidence for early angiosperm habit from the Early Cretaceous fossil wood record of Europe. Palaeoworld. 2008;17(2):142–52 http://dx.doi.org/10.1016/j.palwor.2008.06.001.

    Article  Google Scholar 

  • Philipson WR, Ward JM. The ontogeny of the vascular cambium in the stem of seed plants. Biol Rev. 1965;40:534–79.

    Article  Google Scholar 

  • Philipson WR, Ward JM, Butterfield BG. The thickening of stems in monocotyledons. In: The vascular cambium. London: Chapman & Hall; 1971. p. 111–20.

    Google Scholar 

  • Phillips N, Oren R, Zimmermann R. Radial patterns of xylem sap flow in non-, diffuse- and ring- porous tree species. Plant Cell Environ. 1996;19:983–90.

    Article  Google Scholar 

  • Pittermann J, Sperry JS. Tracheid diameter is the key trait determining the extent of freezing-induced embolism in conifers. Tree Physiol. 2003;23:907–14.

    Article  PubMed  Google Scholar 

  • Pittermann J, Sperry JS. Analysis of freeze-thaw embolism in conifers. The interaction between cavitation pressure and tracheid size. Plant Physiol. 2006;140(1):374–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plavcova L, Hoch G, Morris H, Ghiasi S, Jansen S. The amount of parenchyma and living fibers affects storage of nonstructural carbohydrates in young stems and roots of temperate trees. Am J Bot. 2016;103(4):603–12. doi:10.3732/ajb.1500489.

    Article  CAS  PubMed  Google Scholar 

  • Pool A. A review of the genus Pyrostegia (Bignoniaceae). Ann Mo Bot Gard. 2008;95(3):495–510. doi:10.3417/2003090.

    Article  Google Scholar 

  • Pratt RB, Percolla MI, Jacobsen AL. Integrative xylem analysis of chaparral. In: Hacke U, editor. Functional and Ecological Xylem Anatomy. Cham: Springer International; 2015. p. 189–207.

    Google Scholar 

  • Putz FE, Holbrook NM. Biomechanical studies of vines. In: Putz FE, Mooney HA, editors. The biology of vines. Cambridge: Cambridge University Press; 1991. p. 73–97.

    Google Scholar 

  • Rajput KS, Rao KS. Cambial anatomy and absence of rays in the stem of Boerhaavia species (Nyctaginaceae). Ann Bot Fenn. 1998;35(2):131–5.

    Google Scholar 

  • Rajput KS, Rao KS. Secondary growth in the stem of some species of Alternanthera and Achyranthes aspera (Amaranthaceae). IAWA J. 2000;21(4):417–24 http://dx.doi.org/10.1163/22941932-90000257.

    Article  Google Scholar 

  • Rajput KS, Rao KS. Cambial variant and xylem structure in the stem of Cocculus hirsutus (Menispermaceae). IAWA J. 2003;24(4):411–20.

    Article  Google Scholar 

  • Rajput KS, Patil VS, Shah DG. Formation of successive cambia and stem anatomy of Sesuvium sesuvioides (Aizoaceae). Bot J Linn Soc. 2008;158(3):548–55. doi:10.1111/j.1095-8339.2008.00867.x.

    Article  Google Scholar 

  • Rajput KS, Fiamengui MB, Marcati CR. Stem anatomy and development of successive cambia in the neotropical liana Securidaca rivinifolia (Polygalaceae). IAWA J. 2012a;33(4):391–402.

    Article  Google Scholar 

  • Rajput KS, Romeiro D, Longui EL, Marcati CR. Development of successive cambia and structure of wood in Gallesia integrifolia (Spreng.) Harms (Phytolaccaceae). Trees Struct Funct. 2012b;26(6):1943–50. doi:10.1007/s00468-012-0762-z.

    Article  Google Scholar 

  • Ramesh Rao K, Dyal R. The secondary xylem of Aquilaria agallocha (Thymelaeaceae) and the formation of ‘agar’. IAWA J. 1992;13(2):163–72.

    Article  Google Scholar 

  • Robert EMR, Schmitz N, Boeren I, Driessens T, Herremans K, De Mey J, Van de Casteele E, Beeckman H, Koedam N. Successive cambia: a developmental oddity or an adaptive structure? PLoS One. 2011;6(1):e16558. doi:10.1371/journal.pone.0016558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robischon M, Du JA, Miura E, Groover A. The Populus class III HD ZIP, popREVOLUTA, influences cambium initiation and patterning of woody stems. Plant Physiol. 2011;155(3):1214–25. doi:10.1104/pp.110.167007.

    Article  CAS  PubMed  Google Scholar 

  • Robson DJ, Petty JA. Freezing in conifer xylem 1. Pressure changes and growth velocity of ice. J Exp Bot. 1987;38(196):1901–8. doi:10.1093/jxb/38.11.1901.

    Article  Google Scholar 

  • Robson DJ, McHardy WJ, Petty JA. Freezing in conifer xylem 2. Pit aspiration and bubble formation. J Exp Bot. 1988;39(208):1617–21. doi:10.1093/jxb/39.11.1617.

    Article  Google Scholar 

  • Rosell JA, Olson ME, Aguirre-Hernandez R, Carlquist S. Logistic regression in comparative wood anatomy: tracheid types, wood anatomical terminology, and new inferences from the Carlquist and Hoekman southern Californian data set. Bot J Linn Soc. 2007;154(3):331–51. doi:10.1111/j.1095-8339.2007.00667.x.

    Article  Google Scholar 

  • Rowe N, Paul-Victor C. Herbs and secondary woodiness – keeping up the cambial habit. New Phytol. 2012;193(1):3–5. doi:10.1111/j.1469-8137.2011.03980.x.

    Article  PubMed  Google Scholar 

  • Rowe N, Isnard S, Speck T. Diversity of mechanical architectures in climbing plants: an evolutionary perspective. J Plant Growth Regul. 2004;23(2):108–28. doi:10.1007/s00344-004-0044-0.

    Article  CAS  Google Scholar 

  • Rudall P. Lateral meristems and stem thickening growth in monocotyledons. Bot Rev. 1991;57(2):150–63.

    Article  Google Scholar 

  • Ruelle J. Morphology, anatomy and ultrastructure of reaction wood. In: Gardiner B, Barnett J, Saranpaa P, Gril J, editors. The biology of reaction wood. Heidelberg: Springer; 2014. p. 13–36.

    Chapter  Google Scholar 

  • Saitoh T, Ohtani J, Fukazawa K. The occurrence and morphology of tyloses and gums in the vessels of Japanese hardwoods. IAWA Bull. 1993;14(4):359–72.

    Article  Google Scholar 

  • Sakr S, Alves G, Morillon RL, Maurel K, Decourteix M, Guilliot A, Fleurat-Lessard P, Julien JL, Chrispeels MJ. Plasma membrane aquaporins are involved in winter embolism recovery in walnut tree. Plant Physiol. 2003;133(2):630–41. doi:10.1104/pp.103.027797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salleo S, Lo Gullo MA, Trifilo P, Nardini A. New evidence for a role of vessel-associated cells and phloem in the rapid xylem refilling of cavitated stems of Lauris nobilis, L. Plant Cell Environ. 2004;27:1065–76.

    Article  Google Scholar 

  • Salleo S, Trifilo P, Esposito S, Nardini A, Lo Gullo MA. Starch-to-sugar conversion in wood parenchyma of field-growing Laurus nobilis plants: a component of the signal pathway for embolism repair? Funct Plant Biol. 2009;36(9):815–25. doi:10.1071/fp09103.

    Article  Google Scholar 

  • Sano Y. Inter- and intraspecific structural variations among intervascular pit membranes, as revealed by field-emission scanning electron microscopy. Am J Bot. 2005;92(7):1077–84.

    Article  PubMed  Google Scholar 

  • Sano Y, Ohta T, Jansen S. The distribution and structure of pits between vessels and imperforate tracheary elements in angiosperm woods. IAWA J. 2008;29(1):1–15.

    Article  Google Scholar 

  • Sano Y, Morris H, Shimada H, De Craene LPR, Jansen S. Anatomical features associated with water transport in imperforate tracheary elements of vessel-bearing angiosperms. Ann Bot. 2011;107(6):953–64. doi:10.1093/aob/mcr042.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sauter JJ, Kloth S. Plasmodesmatal frequency and radial translocation rates in ray cells of popular (Populus x Canadensis Moench ‘robusta’). Planta. 1986;168:337–80.

    Article  Google Scholar 

  • Sauter JJ, Iten WI, Zimmermann MH. Studies on the release of sugar into the vessels of sugar maple (Acer saccharum). Can J Bot. 1973;51:1–8.

    Article  CAS  Google Scholar 

  • Schenck H. Beiträge zur Biologie und Anatomie der Lianen, im Besonderen der in Brasilien einheimischen Arten. II. Beiträge zur Anatomie der Lianen. In: Schimper AFW, editor. Botanische Mittheilungen aus den Tropen. Jena: Gustav Fischer Verlag; 1893;1–271.

    Google Scholar 

  • Schmitz N, Robert EMR, Verheyden A, Kairo JG, Beeckman H, Koedam N. A patchy growth via successive and simultaneous cambia: Key to success of the most widespread mangrove species Avicennia marina? Ann Bot. 2008;101(1):49–58. doi:10.1093/aob/mcm280.

    Article  PubMed  Google Scholar 

  • Schrader J, Baba K, May ST, Palme K, Bennett M, Bhalerao RP, Sandberg G. Polar auxin transport in the wood-forming tissues of hybrid aspen is under simultaneous control of developmental and environmental signals. Proc Natl Acad Sci U S A. 2003;100(17):10096–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrader J, Moyle R, Bhalerao R, Hertzberg M, Lundeberg J, Nilsson P, Bhalerao RP. Cambial meristem dormancy in trees involves extensive remodelling of the transcriptome. Plant J. 2004a;40(2):173–87.

    Article  CAS  PubMed  Google Scholar 

  • Schrader J, Nilsson J, Mellerowicz EJ, Berglund A, Nilsson P, Hertzberg M, Sandberg G. A high-resolution transcript profile across wood-forming meristem of Poplar identifies potential regulators of cambial stem cell identity. Plant Cell. 2004b;16:2278–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott DH, Brebner G. On the anatomy and histogeny of strychnos. Ann Bot. 1889;3(11):275–304.

    Article  Google Scholar 

  • Secchi F, Zwieniecki MA. Sensing embolism in xylem vessels: the role of sucrose as a trigger for refilling. Plant Cell Environ. 2011;34(3):514–24. doi:10.1111/j.1365-3040.2010.02259.x.

    Article  CAS  PubMed  Google Scholar 

  • Secchi F, Zwieniecki MA. Analysis of xylem sap from functional (nonembolized) and nonfunctional (embolized) vessels of Populus nigra: chemistry of refilling. Plant Physiol. 2012;160(2):955–64. doi:10.1104/pp.112.200824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Secchi F, Gilbert ME, Zwieniecki MA. Transcriptome response to embolism formation in stems of Populus trichocarpa provides insight into signaling and the biology of refilling. Plant Physiol. 2011;157(3):1419–29. doi:10.1104/pp.111.185124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sehr EM, Agusti J, Lehner R, Farmer EE, Schwarz M, Greb T. Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signalling in cambium formation. Plant J. 2010;63(5):811–22. doi:10.1111/j.1365-313X.2010.04283.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sevanto S, Holbrook NM, Ball MC. Freeze/thaw-induced embolism: probability of critical bubble formation depends on speed of ice formation. Front Plant Sci. 2012:3. doi:10.3389/fpls.2012.00107.

  • Simon MF, Pennington T. Evidence for adaptation to fire regimes in the tropical savannas of the Brazilian cerrado. Int J Plant Sci. 2012;173(6):711–23. doi:10.1086/665973.

    Article  Google Scholar 

  • Singh B. The origin and distribution of interxylary and intraxylary phloem in Leptadenia. Proc Indian Acad Sci Sec B. 1943;18:14–9.

    Google Scholar 

  • Singh B. A contribution to the anatomy of Salvadora persica L. with special reference to the origin of the included phloem. J Indian Bot Soc. 1944;23:71–8.

    Google Scholar 

  • Sinnott EW. Reaction wood and regulation of tree form. Am J Bot. 1952;39:69–78.

    Article  Google Scholar 

  • Sinnott EW, Bailey IW. The evolution of herbaceous plants and its bearing on certain problems of geology and climatology. J Geol. 1915;23(4):289–306.

    Article  Google Scholar 

  • Sinnott EW, Bloch R. Changes in intercellular relationships during the growth and differentiation of living plant tissues. Am J Bot. 1939;26(8):625–34. doi:10.2307/2436801.

    Article  Google Scholar 

  • Smith AP. Buttressing of tropical trees: a descriptive model and new hypotheses. Am Nat. 1972;106(947):32–46. doi:10.1086/282749.

    Article  Google Scholar 

  • Snegireva A, Chernova T, Ageeva M, Lev-Yadun S, Gorshkova T. Intrusive growth of primary and secondary phloem fibres in hemp stem determines fibre-bundle formation and structure. Aob Plants. 2015;7. doi:10.1093/aobpla/plv061.

    Google Scholar 

  • Soltis DE, Mort ME, Latvis M, Mavrodiev EV, O’Meara BC, Soltis PS, Burleigh JG, de Casas RR. Phylogenetic relationships and character evolution analysis of Saxifragales using a supermatrix approach. Am J Bot. 2013;100(5):916–29. doi:10.3732/ajb.1300044.

    Article  PubMed  Google Scholar 

  • Sperry JS. Evolution of water transport and xylem structure. Int J Plant Sci. 2003;164(3):S115–27. doi:10.1086/368398.

    Article  Google Scholar 

  • Sperry JS, Sullivan JEM. Xylem embolism in response to freeze-thaw cycles and water-stress in ring-porous, diffuse-porous, and conifer species. Plant Physiol. 1992;100(2):605–13. doi:10.1104/pp.100.2.605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperry JS, Nichols KL, Sullivan JEM, Eastlack SE. Xylem embolism in ring-porous, diffuse- porous, and coniferous trees of northern Utah and interior Alaska. Ecology. 1994;75(6):1736–52.

    Article  Google Scholar 

  • Sperry JS, Hacke UG, Wheeler JK. Comparative analysis of end wall resistivity in xylem conduits. Plant Cell Environ. 2005;28(4):456–65. doi:10.1111/j.1365-3040.2005.01287.x.

    Article  Google Scholar 

  • Sperry JS, Hacke UG, Pittermann J. Size and function in conifer tracheids and angiosperm vessels. Am J Bot. 2006;93(10):1490–500.

    Article  PubMed  Google Scholar 

  • Sperry JS, Hacke UG, Feild TS, Sano Y, Sikkema EH. Hydraulic consequences of vessel evolution in angiosperms. Int J Plant Sci. 2007;168(8):1127–39. doi:10.1086/520726.

    Article  Google Scholar 

  • Spicer R. Senescence in secondary xylem: heartwood formation as an active developmental program. In: Holbrook NM, Zwieniecki MA, editors. Vascular transport in plants. Boston: Elsevier; 2005. p. 457–75.

    Chapter  Google Scholar 

  • Spicer R. Symplasmic networks in secondary vascular tissues: parenchyma distribution and activity supporting long-distance transport. J Exp Bot. 2014;65:1829–48.

    Article  CAS  PubMed  Google Scholar 

  • Spicer R, Groover A. Evolution of development of vascular cambia and secondary growth. New Phytol. 2010;186(3):577–92. doi:10.1111/j.1469-8137.2010.03236.x.

    Article  CAS  PubMed  Google Scholar 

  • Spicer R, Holbrook NM. Within-stem oxygen concentration and sap flow in four temperate tree species: does long-lived xylem parenchyma experience hypoxia? Plant Cell Environ. 2005;28:192–201.

    Article  Google Scholar 

  • Spicer R, Holbrook NM. Effects of carbon dioxide and oxygen on sapwood respiration in five temperate tree species. J Exp Bot. 2007a;58(6):1313–20.

    Article  CAS  PubMed  Google Scholar 

  • Spicer R, Holbrook NM. Parenchyma cell respiration and survival in secondary xylem: does metabolic activity decline with cell age? Plant Cell Environ. 2007b;30:934–43.

    Article  CAS  PubMed  Google Scholar 

  • Stebbins GL. The probable growth habit of the earliest flowering plants. Ann Mo Bot Gard. 1965;52(3):457–68. doi:10.2307/2394810.

    Article  Google Scholar 

  • Swamy BGL, Bailey IW. Sarcandra, a vesselless genus of the Chloranthaceae. J Arnold Arbor. 1950;31:117–29.

    Google Scholar 

  • terSteege H, terWelle BJH, Laming PB. The possible function of buttresses in Caryocar nuciferum (Caryocaraceae) in Guyana: ecological and wood anatomical observations. IAWA J. 1997;18(4):415–31.

    Article  Google Scholar 

  • Tomlinson PB, Zimmermann MH. The “wood” of monocotyledons. IAWA Bull. 1967;2:4–24.

    Google Scholar 

  • Tyree MT. Maple sap uptake, exudation, and pressure changes correlated with freezing exotherms and thawing endotherms. Plant Physiol. 1983;73(2):277–85. doi:10.1104/pp.73.2.277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyree MT, Sperry JS. Vulnerability of xylem to cavitation and embolism. Annu Rev. Plant Physiol Plant Mol Biol. 1989;40:19–38.

    Article  Google Scholar 

  • Tyree MT, Davis SD, Cochard H. Biophysical perspectives of xylem evolution: is there a tradeoff of hydraulic efficiency for vulnerability to disfunction? IAWA J. 1994;15(4):335–60.

    Article  Google Scholar 

  • Umebayashi T, Utsumi Y, Koga S, Inoue S, Fujikawa S, Arakawa K, Matsumura J, Oda K. Conducting pathways in north temperate deciduous broadleaved trees. IAWA J. 2008;29(3):247–63.

    Article  Google Scholar 

  • Utsumi Y, Sano Y, Ohtani J, Fujikawa S. Seasonal changes in the distribution of water in the outer growth rings of Fraxinus mandshurica var. japonica: a study by cryo-scanning electron microscopy. IAWA J. 1996;17(2):113–24.

    Article  Google Scholar 

  • van Bel AJE. Xylem-phloem exchange via the rays: the undervalued route of transport. J Exp Bot. 1990;41(227):631–44.

    Google Scholar 

  • van der Schoot C, van Bel AJE. Architecture of the internodal xylem of tomato (Solanum lycopersicum) with reference to longitudinal and lateral transfer. Am J Bot. 1989;76(4):487–503. doi:10.2307/2444344.

    Article  Google Scholar 

  • van Doorn WG, Hiemstra T, Fanourakis D. Hydrogel regulation of xylem water flow: an alternative hypothesis. Plant Physiol. 2011;157(4):1642–9. doi:10.1104/pp.111.185314.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Veenendaal WLH, Denouter RW. Development of included phloem and organization of the phloem network in the stem of Strychnos millepunctata (Loganiaceae). IAWA J. 1993;14(3):253–65.

    Article  Google Scholar 

  • Wagner ST, Isnard S, Rowe NP, Samain MS, Neinhuis C, Wanke S. Escaping the lianoid habit: evolution of shrub-like growth forms in Aristolochia subgenus isotrema (Aristolochiaceae). Am J Bot. 2012;99(10):1609–29. doi:10.3732/ajb.1200244.

    Article  PubMed  Google Scholar 

  • Wagner ST, Hesse L, Isnard S, Samain M-S, Bolin J, Maass E, Neinhuis C, Rowe NP, Wanke S. Major trends in stem anatomy and growth forms in the perianth-bearing Piperales, with special focus on Aristolochia. Ann Bot. 2014;113(7):1139–54. doi:10.1093/aob/mcu044.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weidlich WH. The organization of the vascular system in the stems of the Nymphaeaceae. II. Nymphaea subgenera Anecphya, Lotos, and Brachyceras. Am J Bot. 1976;63(10):1365–79. doi:10.2307/2441845.

    Article  Google Scholar 

  • Wenham MW, Cusick F. The growth of secondary wood fibres. New Phytol. 1975;74(2):247–61.

    Article  Google Scholar 

  • Wheeler EA. Inside wood – a web resource for hardwood anatomy. IAWA J. 2011;32(2):199–211.

    Article  Google Scholar 

  • Wheeler JK, Sperry JS, Hacke UG, Hoang N. Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport. Plant Cell Environ. 2005;28(6):800–12. doi:10.1111/j.1365-3040.2005.01330.x.

    Article  Google Scholar 

  • Williamson PS, Schneider EL. Nelumbonaceae. In: Kubitzki K, JG R, Bittrich V, editors. The families and Genera of vascular plants. II. Flowering plants: dicotyledons, magnoliid, hamamelid and caryophyllid families. Berlin: Springer; 1993.

    Google Scholar 

  • Wing SL, Boucher LD. Ecological aspects of the Cretaceous flowering plant radiation. Annu Rev. Earth Planet Sci. 1998;26:379–421. doi:10.1146/annurev.earth.26.1.379.

    Article  CAS  Google Scholar 

  • Wloch W, Polap E. The intrusive growth of initial cells in re-arrangement of cells in cambium of Tilia cordata Mill. Acta Soc Bot Pol. 1994;63(2):109–16.

    Article  Google Scholar 

  • Yaghmaie M, Catling D. The occurrence of vascular tracheids in Betula and some other Betulaceae genera. Plant Syst Evol. 1984;147(1–2):125–31. doi:10.1007/bf00984585.

    Article  Google Scholar 

  • Yamada Y, Awano T, Fujita M, Takabe K. Living wood fibers act as large-capacity “single-use” starch storage in black locust (Robinia pseudoacacia). Trees Struct Funct. 2011;25(4):607–16. doi:10.1007/s00468-010-0537-3.

    Article  Google Scholar 

  • Yamamoto H, Abe K, Arakawa Y, Okuyama T, Gril J. Role of the gelatinous layer (G-layer) on the origin of the physical properties of the tension wood of Acer sieboldianum. J Wood Sci. 2005;51(3):222–33. doi:10.1007/s10086-004-0639-x.

    Article  CAS  Google Scholar 

  • Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, McGlinn DJ, O’Meara BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IJ, Aarssen L, Bertin RI, Calaminus A, Govaerts R, Hemmings F, Leishman MR, Oleksyn J, Soltis PS, Swenson NG, Warman L, Beaulieu JM. Three keys to the radiation of angiosperms into freezing environments. Nature. 2014;506(7486):89–92. doi:10.1038/nature12872.

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Xi ML, Lu YZ, Lu Y, Shi JS. Transcriptional analysis provides new insights into cold- and dehydration-tolerance signaling pathways and on regulation of stem cell activity in the vascular cambium of poplar. Plant Mol Biol Rep. 2013;31(1):75–86. doi:10.1007/s11105-012-0478-7.

    Article  CAS  Google Scholar 

  • Zimmermann MH, Jeje AA. Vessel-length distribution in stems of some American woody plants. Can J Bot. 1981;59(10):1882–92.

    Article  Google Scholar 

  • Zwieniecki MA, Melcher PJ, Holbrook NM. Hydrogel control of xylem hydraulic resistance in plants. Science. 2001;291:1059–62.

    Article  CAS  PubMed  Google Scholar 

  • Zwieniecki MA, Orians CM, Melcher PJ, Holbrook NM. Ionic control of the lateral exchange of water between vascular bundles in tomato. J Exp Bot. 2003;54(386):1399–405.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I gratefully acknowledge Elisabeth Wheeler for her help in obtaining images from the InsideWood database, as well as Shuichi Noshiro, Peter Gasson, Pieter Baas, Frederic Lens and Marcelo Pace for their help in obtaining images. Hugh Morris and Mark Olson provided thoughtful discussion. This work was generously supported by NSF IOS RUI 1257872 awarded to R. Spicer.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Spicer, R. (2016). Variation in Angiosperm Wood Structure and Its Physiological and Evolutionary Significance. In: Groover, A., Cronk, Q. (eds) Comparative and Evolutionary Genomics of Angiosperm Trees. Plant Genetics and Genomics: Crops and Models, vol 21. Springer, Cham. https://doi.org/10.1007/7397_2016_28

Download citation

Publish with us

Policies and ethics