Skip to main content

Recent Advances of Asymmetric Catalysis in Flow for Drug Discovery

  • Chapter
  • First Online:
Flow Chemistry in Drug Discovery

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 38))

Abstract

Enantioselective continuous-flow catalysis enables highly efficient synthesis of optically active compounds. The early examples of this field were mainly limited to homogeneous catalysis, and enantioselective heterogeneous flow catalysis remained challenging in terms of activity, selectivity, and lifetime. However, there have been continuous developments in recent years toward highly active and selective chiral heterogeneous catalysts. Besides, technology development enabled in-line workup and analysis of flow reactions to make the process more efficient. This review summarizes the recent achievements of enantioselective flow catalysis mainly focusing on chiral heterogeneous catalysts. Successful examples in recent 5 years are categorized and discussed based on the types of reactions, including transition metal catalysis, organocatalysis, and enzymatic reactions. Multistep-flow synthesis of optically active compounds using enantioselective catalysis is also discussed in the last chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Neal EJ, Lee CH, Brathwaite J, Jensen KF (2015) ACS Catal 5(4):2615–2622

    Article  Google Scholar 

  2. Touge T, Kuwana M, Komatsuki Y, Tanaka S, Nara H, Matsumura K, Sayo N, Kashibuchi Y, Saito T (2019) Org Process Res Dev 23(4):452–461

    Article  CAS  Google Scholar 

  3. Kluson P, Stavarek P, Penkavova V, Vychodilova H, Hejda S, Jaklova N, Curinova P (2019) J Flow Chem 9(4):221–230

    Article  CAS  Google Scholar 

  4. Kluson P, Stavarek P, Penkavova V, Vychodilova H, Hejda S, Bendova M, Došek M (2020) Chem Eng Res Design 153:537–546

    Article  CAS  Google Scholar 

  5. Abrams ML, Buser JY, Calvin JR, Johnson MD, Jones BR, Lambertus G, Landis CR, Martinelli JR, May SA, McFarland AD, Stout JR (2016) Org Process Res Dev 20(5):901–910

    Article  CAS  Google Scholar 

  6. Dai W, Mi Y, Lv Y, Chen B, Li G, Chen G, Gao S (2016) Adv Synth Catal 358(4):667–671

    Article  CAS  Google Scholar 

  7. Fleming GS, Beeler AB (2017) Org Lett 19(19):5268–5271

    Article  CAS  PubMed  Google Scholar 

  8. Wang YF, Jiang ZH, Chu MM, Qi SS, Yin H, te Han H, Xu DQ (2020) Org Biomol Chem 18(26):4927–4931

    Article  CAS  PubMed  Google Scholar 

  9. de Angelis S, de Renzo M, Carlucci C, Degennaro L, Luisi R (2016) Org Biomol Chem 14(18):4304–4311

    Article  PubMed  Google Scholar 

  10. Kisszekelyi P, Alammar A, Kupai J, Huszthy P, Barabas J, Holtzl T, Szente L, Bawn C, Adams R, Szekely G (2019) J Catal 371:255–261

    Article  CAS  Google Scholar 

  11. Schober L, Ratnam S, Yamashita Y, Adebar N, Pieper M, Berkessel A, Hessel V, Gröger H (2019) Synthesis 51(5):1178–1184

    Article  CAS  Google Scholar 

  12. Kondo M, Wathsala HDP, Sako M, Hanatani Y, Ishikawa K, Hara S, Takaai T, Washio T, Takizawa S, Sasai H (2020) Chem Commun 56(8):1259–1262

    Article  CAS  Google Scholar 

  13. Tang XF, Zhao JN, Wu YF, Zheng ZH, Feng SH, Yu ZY, Liu GZ, Meng QW (2019) Org Biomol Chem 17(34):7938–7942

    Article  CAS  PubMed  Google Scholar 

  14. Tang XF, Zhao JN, Wu YF, Feng SH, Yang F, Yu ZY, Meng QW (2019) Adv Synth Catal 361(22):5245–5252

    Article  CAS  Google Scholar 

  15. Cunillera A, Blanco C, Gual A, Marinkovic JM, Garcia-Suarez EJ, Riisager A, Claver C, Ruiz A, Godard C (2019) ChemCatChem 11(8):2195–2205

    Article  CAS  Google Scholar 

  16. Zhang Z, Franciò G, Leitner W (2015) ChemCatChem 7(13):1961–1965

    Article  CAS  Google Scholar 

  17. Geier D, Schmitz P, Walkowiak J, Leitner W, Franciò G (2018) ACS Catalysis 8(4):3297–3303

    Article  CAS  Google Scholar 

  18. Amara Z, Poliakoff M, Duque R, Geier D, Franciò G, Gordon CM, Meadows RE, Woodward R, Leitner W (2016) Org Process Res Dev 20(7):1321–1327

    Article  CAS  Google Scholar 

  19. Madarász J, Nánási B, Kovács J, Balogh S, Farkas G, Bakos J (2018) Monatsh Chem 149(1):19–25

    Article  Google Scholar 

  20. Saito Y, Kobayashi S (2020) J Am Chem Soc:jacs.0c08109

    Google Scholar 

  21. Yasukawa T, Masuda R, Kobayashi S (2019) Nat Catal 2(12):1088–1092

    Article  CAS  Google Scholar 

  22. Kawakami Y, Borissova A, Chapman MR, Goltz G, Koltsova E, Mitrichev I, Blacker AJ (2019) Eur J Org Chem 2019(45):7499–7505

    Article  CAS  Google Scholar 

  23. Gaunt MJ, Johansson CCC, McNally A, Vo NT (2007) Drug Discov Today 12(1–2):8–27

    Article  CAS  PubMed  Google Scholar 

  24. Ötvös SB, Szloszár A, Mándity IM, Fülöp F (2015) Adv Synth Catal 357(16–17):3671–3680

    Article  Google Scholar 

  25. Izquierdo J, Ayats C, Henseler AH, Pericàs MA (2015) Org Biomol Chem 13(14):4204–4209

    Article  CAS  PubMed  Google Scholar 

  26. Sagamanova I, Rodríguez-Escrich C, Molnár IG, Sayalero S, Gilmour R, Pericàs MA (2015) ACS Catalysis 5(11):6241–6248

    Article  CAS  Google Scholar 

  27. Llanes P, Rodríguez-Escrich C, Sayalero S, Pericàs MA (2016) Org Lett 18(24):6292–6295

    Article  CAS  PubMed  Google Scholar 

  28. Lai J, Sayalero S, Ferrali A, Osorio-Planes L, Bravo F, Rodríguez-Escrich C, Pericàs MA (2018) Adv Synth Catal 360(15):2914–2924

    Article  CAS  Google Scholar 

  29. Ochiai H, Nishiyama A, Haraguchi N, Itsuno S (2020) Org Process Res Dev 24(10):2228–2233

    Article  CAS  Google Scholar 

  30. de La Torre AF, Scatena GS, Valdés O, Rivera DG, Paixão MW (2019) Beilstein J Org Chem 15:1210–1216

    Article  PubMed  PubMed Central  Google Scholar 

  31. Canellas S, Ayats C, Henseler AH, Pericàs MA (2017) ACS Catalysis 7(2):1383–1391

    Article  CAS  Google Scholar 

  32. Clot-Almenara L, Rodríguez-Escrich C, Osorio-Planes L, Pericas MA (2016) ACS Catal 6(11):7647–7651

    Article  CAS  Google Scholar 

  33. Chen X, Jiang H, Hou B, Gong W, Liu Y, Cui Y (2017) J Am Chem Soc 139(38):13476–13482

    Article  CAS  PubMed  Google Scholar 

  34. Izquierdo J, Pericàs MA (2016) A recyclable, immobilized analogue of benzotetramisole for catalytic enantioselective domino Michael addition/cyclization reactions in batch and flow. ACS Catalysis 6(1):348–356

    Article  CAS  Google Scholar 

  35. Porta R, Benaglia M, Annunziata R, Puglisi A, Celentano G (2017) Adv Synth Catal 359(14):2375–2382

    Article  CAS  Google Scholar 

  36. Kasaplar P, Ozkal E, Rodríguez-Escrich C, Pericàs MA (2015) Green Chem 17(5):3122–3129

    Article  CAS  Google Scholar 

  37. Osorio-Planes L, Rodríguez-Escrich C, Pericàs MA (2016) Cat Sci Technol 6(13):4686–4689

    Article  CAS  Google Scholar 

  38. Ragno D, di Carmine G, Brandolese A, Bortolini O, Giovannini PP, Massi A (2017) ACS Catalysis 7(9):6365–6375

    Article  CAS  Google Scholar 

  39. Zhao L, Bao X, Hu Q, Wang B, Lu AH (2018) ChemCatChem 10(6):1248–1252

    Article  CAS  Google Scholar 

  40. Neyyappadath RM, Chisholm R, Greenhalgh MD, Rodríguez-Escrich C, Pericàs MA, Hähner G, Smith AD (2018) Catalysis 8(2):1067–1075

    CAS  Google Scholar 

  41. Guha NR, Neyyappadath RM, Greenhalgh MD, Chisholm R, Smith SM, McEvoy ML, Young CM, Rodríguez-Escrich C, Pericàs MA, Hähner G, Smith AD (2018) Green Chem 20(19):4537–4546

    Article  CAS  Google Scholar 

  42. Ciogli A, Capitani D, di Iorio N, Crotti S, Bencivenni G, Donzello MP, Villani C (2019) Eur J Org Chem 2019(10):2020–2028

    Article  CAS  Google Scholar 

  43. Rodríguez-Rodríguez M, Maestro A, Andrés JM, Pedrosa R (2020) Adv Synth Catal 362(13):2744–2754

    Article  Google Scholar 

  44. Lai J, Neyyappadath RM, Smith AD, Pericàs MA (2020) Adv Synth Catal 362(6):1370–1377

    Article  CAS  Google Scholar 

  45. Liu H, Feng J, Zhang J, Miller PW, Chen L, Su CY (2015) Chem Sci 6(4):2292–2296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shen G, Osako T, Nagaosa M, Uozumi Y (2018) J Org Chem 83(14):7380–7387

    Article  CAS  PubMed  Google Scholar 

  47. Crowley DC, Lynch D, Maguire AR (2018) J Org Chem 83(7):3794–3805

    Article  CAS  PubMed  Google Scholar 

  48. Yoo C-J, Rackl D, Liu W, Hoyt CB, Pimentel B, Lively RP, Davies HML, Jones CW (2018) Angew Chem 130(34):11089–11093

    Article  Google Scholar 

  49. Watanabe S, Nakaya N, Akai J, Kanaori K, Harada T (2018) Org Lett 20(9):2737–2740

    Article  CAS  PubMed  Google Scholar 

  50. Forni JA, Novaes LFT, Galaverna R, Pastre JC (2018) Catal Today 308:86–93

    Article  CAS  Google Scholar 

  51. Hashimoto K, Kumagai N, Shibasaki M (2015) Chem A Eur J 21(11):4262–4266

    Article  CAS  Google Scholar 

  52. Nonoyama A, Kumagai N, Shibasaki M (2017) Tetrahedron 73(11):1517–1521

    Article  CAS  Google Scholar 

  53. Karasawa T, Oriez R, Kumagai N, Shibasaki M (2018) J Am Chem Soc 140(38):12290–12295

    Article  CAS  PubMed  Google Scholar 

  54. Kim YJ, Choi YS, Yang S, Yang WR, Jeong JH (2015) Synlett 26(14):1981–1984

    Article  CAS  Google Scholar 

  55. van den Biggelaar L, Soumillion P, Debecker DP (2017) Catalysts 7(2):54

    Article  Google Scholar 

  56. Böhmer W, Volkov A, Engelmark Cassimjee K, Mutti FG (2020) Adv Synth Catal 362(9):1858–1867

    Article  PubMed  PubMed Central  Google Scholar 

  57. Nagy-Györ L, Lǎcǎtuş M, Balogh-Weiser D, Csuka P, Bódai V, Erdélyi B, Molnár Z, Hornyánszky G, Paizs C, Poppe L (2019) ACS Sustain Chem Eng 7(24):19375–19383

    Article  Google Scholar 

  58. van der Helm MP, Bracco P, Busch H, Szymańska K, Jarzȩbski AB, Hanefeld U (2019) Cat Sci Technol 9(5):1189–1200

    Article  Google Scholar 

  59. Peschke T, Bitterwolf P, Hansen S, Gasmi J, Rabe KS, Niemeyer CM (2019) Catalysts 9(2):164

    Article  Google Scholar 

  60. Tsubogo T, Oyamada H, Kobayashi S (2015) Nature 520(7547):329–332

    Article  CAS  PubMed  Google Scholar 

  61. Brahma A, Musio B, Ismayilova U, Nikbin N, Kamptmann SB, Siegert P, Jeromin GE, Ley SV, Pohl M (2016) Synlett 27(2):262–266

    CAS  Google Scholar 

  62. Ötvös SB, Pericàs MA, Kappe CO (2019) Chem Sci 10(48):11141–11146

    Article  PubMed  PubMed Central  Google Scholar 

  63. Peris E, Porcar R, Burguete MI, García-Verdugo E, Luis SV (2019) ChemCatChem 11(7):1955–1962

    Article  CAS  Google Scholar 

  64. Ishitani H, Kanai K, Yoo WJ, Yoshida T, Kobayashi S (2019) Angew Chem Int Ed 58(38):13313–13317

    Article  CAS  Google Scholar 

  65. Ishitani H, Furiya Y, Kobayashi S (2020) Chem Asian J 15(11):1688–1691

    Article  CAS  PubMed  Google Scholar 

  66. Yoo WJ, Ishitani H, Saito Y, Laroche B, Kobayashi S (2020) J Org Chem 85:5132–5145

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Kobayashi .

Editor information

Editors and Affiliations

Ethics declarations

Funding: This work was supported in part by a Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science (JSPS KAKENHI, Grant No. 19K15557) and Japan Science and Technology Agency (JST).

Ethical Approval: This chapter does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent: Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saito, Y., Kobayashi, S. (2021). Recent Advances of Asymmetric Catalysis in Flow for Drug Discovery. In: Alcazar, J., de la Hoz, A., Díaz-Ortiz, A. (eds) Flow Chemistry in Drug Discovery. Topics in Medicinal Chemistry, vol 38. Springer, Cham. https://doi.org/10.1007/7355_2021_128

Download citation

Publish with us

Policies and ethics