Skip to main content

Evolution of HCV NS5B Non-nucleoside Inhibitors

  • Chapter
  • First Online:
HCV: The Journey from Discovery to a Cure

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 31))

Abstract

The HCV polymerase NS5B is susceptible to allosteric inhibition at four sites that have been exploited by compounds that have shown clinical efficacy. The history of the discovery and optimization of leads acting at each of these sites is discussed. The many clinical candidates that emerged from these efforts are described, together with their impact on emerging regimens of increasing effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Houghton M (2009) Discovery of the hepatitis C virus. Liver Int 29(Suppl1):82–88

    Google Scholar 

  2. Yamashita T, Kaneko S, Shirota Y et al (1998) RNA-dependent RNA polymerase activity of the soluble recombinant hepatitis C virus NS5B protein truncated at the C-terminal region. J Biol Chem 273:15479–15486

    CAS  PubMed  Google Scholar 

  3. Lesburg C, Cable MB, Ferrari E et al (1999) Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site. Nat Struct Biol 6:937–943

    CAS  PubMed  Google Scholar 

  4. Hashimoto H, Mizutani K, Yoshida A (2001) Novel fused-ring compounds useful for treating hepatitis C infection. WO-00147883

    Google Scholar 

  5. Ishida T, Suzuki T, Hirashima S et al (2006) Benzimidazole inhibitors of hepatitis C virus NS5B polymerase: identification of 2-[(4-diarylmethoxy)phenyl]-benzimidazole. Bioorg Med Chem Lett 16(7):1859–1863

    CAS  PubMed  Google Scholar 

  6. Hirashima S, Suzuki T, Ishida T et al (2006) Benzimidazole derivatives bearing substituted biphenyls as hepatitis C virus NS5B RNA-dependent RNA polymerase inhibitors: structure-activity relationship studies and identification of a potent and highly selective inhibitor JTK-109. J Med Chem 49(15):4721–4736

    CAS  PubMed  Google Scholar 

  7. Beaulieu PL, Fazal G, Gillard J et al (2002) Viral polymerase inhibitors. US-06448281

    Google Scholar 

  8. Beaulieu PL, Bös M, Cordingley MG et al (2012) Discovery of the first thumb pocket 1 NS5B polymerase inhibitor (BILB 1941) with demonstrated antiviral activity in patients chronically infected with genotype 1 hepatitis C virus (HCV). J Med Chem 55(17):7650–7666

    CAS  PubMed  Google Scholar 

  9. Erhardt A, Deterding K, Benhamou Y et al (2009) Safety, pharmacokinetics and antiviral effect of BILB 1941, a novel hepatitis C virus RNA polymerase inhibitor, after 5 days oral treatment. Antivir Ther 14(1):23–32

    CAS  PubMed  Google Scholar 

  10. LaPlante SR, Bös M, Brochu C et al (2014) Conformation-based restrictions and scaffold replacements in the design of hepatitis C virus polymerase inhibitors: discovery of deleobuvir (BI 207127). J Med Chem 57(5):1845–1854

    CAS  PubMed  Google Scholar 

  11. Sarrazin C, Castelli F, Andreone P et al (2016) HCVerso1 and 2: faldaprevir with deleobuvir (BI 207127) and ribavirin for treatment-naïve patients with chronic hepatitis C virus genotype-1b infection. Clin Exp Gastroenterol 9:351–363

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Tomei L, Altamura S, Bartholomew L et al (2003) Mechanism of action and antiviral activity of benzimidazole-based allosteric inhibitors of the hepatitis C virus RNA-dependent RNA polymerase. J Virol 77(24):13225–13231

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Avolio S, Di Filippo M, Harper S et al (2004) Indole acetamides as inhibitors of the hepatitis C virus NS5B polymerase. WO-04087714

    Google Scholar 

  14. Harper S, Pacini B, Avolio S et al (2005) Development and preliminary optimization of indole-N-acetamide inhibitors of hepatitis C virus NS5B polymerase. J Med Chem 48(5):1314–1317

    CAS  PubMed  Google Scholar 

  15. Stansfield I, Ercolani C, Mackay A et al (2009) Tetracyclic indole inhibitors of hepatitis C virus NS5B-polymerase. Bioorg Med Chem Lett 19(3):627–632

    CAS  PubMed  Google Scholar 

  16. Narjes F, Crescenzi B, Ferrara M et al (2011) Discovery of (7R)-14-cyclohexyl-7-{[2-(dimethylamino)ethyl](methyl) amino}-7,8-dihydro-6H-indolo[1,2-e][1,5]benzoxazocine-11-carboxylic acid (MK-3281), a potent and orally bioavailable finger-loop inhibitor of the hepatitis C virus NS5B polymerase. J Med Chem 54(1):289–301

    CAS  PubMed  Google Scholar 

  17. Ikegashira K, Oka T, Hirashima S et al (2006) Discovery of conformationally constrained tetracyclic compounds as potent hepatitis C virus NS5B RNA polymerase inhibitors. J Med Chem 49(24):6950–6953

    CAS  PubMed  Google Scholar 

  18. Hudyma TW, Zheng X, Romine JL (2005) Inhibitors of HCV replication. US-050119318

    Google Scholar 

  19. McGowan DC, Vendeville SMH, Raboisson P (2010) Macrocyclic indole derivatives useful as hepatitis C virus inhibitors. WO2010018233A1

    Google Scholar 

  20. Cummings MD, Lin TI, Hu L et al (2014) Discovery and early development of TMC647055, a non-nucleoside inhibitor of the hepatitis C virus NS5B polymerase. J Med Chem 57(5):1880–1892

    CAS  PubMed  Google Scholar 

  21. Zheng X, Hudyma TW, Martin SW et al (2011) Syntheses and initial evaluation of a series of indolo-fused heterocyclic inhibitors of the polymerase enzyme (NS5B) of the hepatitis C virus. Bioorg Med Chem Lett 21(10):2925–2929

    CAS  PubMed  Google Scholar 

  22. Gopalsamy A, Collette MS, Ellingboe JW et al (2003) The use of pyranoindole derivatives as hepatitis C polymerase inhibitors. WO-03099275

    Google Scholar 

  23. Gopalsamy A, Lim K, Ciszewski G et al (2004) Discovery of pyrano[3,4-b]indoles as potent and selective HCV NS5B polymerase inhibitors. J Med Chem 47(25):6603–6608

    CAS  PubMed  Google Scholar 

  24. Kneteman NM, Weiner AJ, O'Connell J et al (2006) Anti-HCV therapies in chimeric scid-Alb/uPA mice parallel outcomes in human clinical application. Hepatology 43(6):1346–1353

    CAS  PubMed  Google Scholar 

  25. Laporte MG, Jackson RW, Draper TL et al (2008) The discovery of pyrano[3,4-b]indole-based allosteric inhibitors of HCV NS5B polymerase with in vivo activity. ChemMedChem 3(10):1508–1515

    CAS  PubMed  Google Scholar 

  26. Love RA, Yu X, Diehl W, et al (2002) Hepatitis C virus (HCV) NS5B RNA polymerase and mutants thereof. EP-01256628

    Google Scholar 

  27. Li H, Tatlock J, Linton A et al (2009) Discovery of (R)-6-cyclopentyl-6-(2-(2,6-diethylpyridin-4-yl)ethyl)-3-((5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidin-2-yl)methyl)-4-hydroxy-5,6-dihydropyran-2-one (PF-00868554) as a potent and orally available hepatitis C virus polymerase inhibitor. J Med Chem 52(5):1255–1258

    CAS  PubMed  Google Scholar 

  28. Shi ST, Herlihy KJ, Graham JP et al (2009) Preclinical characterization of PF-00868554, a potent nonnucleoside inhibitor of the hepatitis C virus RNA-dependent RNA polymerase. Antimicrob Agents Chemother 53(6):2544–2552

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wagner F, Thompson R, Kantaridis C et al (2011) Antiviral activity of the hepatitis C virus polymerase inhibitor filibuvir in genotype 1-infected patients. Hepatology 54(1):50–59

    CAS  PubMed  Google Scholar 

  30. Chan CKL, Bidard J, Das SK et al (2002) Novel biaryl compounds useful for the treatment of flavivirus infections. WO-02100846

    Google Scholar 

  31. Chan CKL, Bidard J, Das SK et al (2002) Novel substituted thiophene compounds useful for the treatment of flavirus infections. WO-02100851

    Google Scholar 

  32. Chan L, Pereira O, Reddy TJ et al (2004) Discovery of thiophene-2-carboxylic acids as potent inhibitors of HCV NS5B polymerase and HCV subgenomic RNA replication. Part 2: tertiary amides. Bioorg Med Chem Lett 19(3):627–632

    Google Scholar 

  33. Cooper C, Lawitz EJ, Ghali P et al (2009) Evaluation of VCH-759 monotherapy in hepatitis C infection. J Hepatol 51(1):39–46

    CAS  PubMed  Google Scholar 

  34. Thede K, Wunberg T, Lowinger T et al (2005) Substituted thiophenes. WO2005/063734

    Google Scholar 

  35. Wunberg T, Baumeister J, Gottschling D et al (2006) Alkynyl-substituted thiophenes. WO2005/072348

    Google Scholar 

  36. Gentile I, Buonomo AR, Zappulo E et al (2015) Discontinued drugs in 2012-2013: hepatitis C virus infection. Expert Opin Investig Drugs 24:239–251

    CAS  PubMed  Google Scholar 

  37. Bravi G, Cheasty A, Corfield JA et al (2007) 4-Carboxy pyrazole derivatives as anti-viral agents. WO 2007/039146

    Google Scholar 

  38. Coulombe R, Goulet S, Thavonekham B et al (2008) Viral polymerase inhibitors. WO 2008/019477

    Google Scholar 

  39. Hucke O, Coulombe R, Bonneau P et al (2014) Molecular dynamics simulations and structure-based rational design lead to allosteric HCV NS5B polymerase thumb pocket 2 inhibitor with picomolar cellular replicon potency. J Med Chem 57(5):1932–1943

    CAS  PubMed  Google Scholar 

  40. Lazerwith SE, Lew W, Zhang J et al (2014) Discovery of GS-9669, a thumb site II non-nucleoside inhibitor of NS5B for the treatment of genotype 1 chronic hepatitis C infection. J Med Chem 57(5):1893–1901

    CAS  PubMed  Google Scholar 

  41. Dvory-Sobol H, Voitenleitner C, Mabery E et al (2014) Clinical and in vitro resistance to GS-9669, a thumb site II nonnucleoside inhibitor of the hepatitis C virus NS5B polymerase. Antimicrob Agents Chemother 58(11):6599–6606

    PubMed  PubMed Central  Google Scholar 

  42. Boyce SE, Tirunagari N, Niedziela-Majka A et al (2014) Structural and regulatory elements of HCV NS5B polymerase--β-loop and C-terminal tail--are required for activity of allosteric thumb site II inhibitors. PLoS One 9(1):e84808

    PubMed  PubMed Central  Google Scholar 

  43. Appleby TC, Perry JK, Murakami E et al (2015) Viral replication. Structural basis for RNA replication by the hepatitis C virus polymerase. Science 347(6223):771–775

    CAS  PubMed  Google Scholar 

  44. Dhanak D, Carr T (2001) Novel heterocyclic compounds for the treatment of hepatitis C viral infection. WO-00185720

    Google Scholar 

  45. Bravi G, Goodland HS, Haigh D et al (2003) 4-(5-Membered)-heteroaryl acyl pyrrolidine derivatives as HCV inhibitors. WO-03037894

    Google Scholar 

  46. Burton G, Ku TW, Carr TJ et al (2005) Identification of small molecule inhibitors of the hepatitis C virus RNA-dependent RNA polymerase from a pyrrolidine combinatorial mixture. Bioorg Med Chem Lett 15(6):1553–1556

    CAS  PubMed  Google Scholar 

  47. Slater MJ, Amphlett EM, Andrews DM et al (2007) Optimization of novel acyl pyrrolidine inhibitors of hepatitis C virus RNA-dependent RNA polymerase leading to a development candidate. J Med Chem 50(5):897–900

    CAS  PubMed  Google Scholar 

  48. Gray F, Amphlett E, Bright H et al (2007) GSK625433; a novel and highly potent inhibitor of the HCV NS5B polymerase. In: Abstract 594, 42nd annual meeting of the European Association for the Study of the Liver, Barcelona, 11–15 Apr 2007

    Google Scholar 

  49. Dhanak D, Duffy KJ, Sarisky RT et al (2003) Novel anti-infectives. WO-03037262

    Google Scholar 

  50. Shaw AN, Tedesco R, Bambal R et al (2009) Substituted benzothiadiazine inhibitors of hepatitis C virus polymerase. Bioorg Med Chem Lett 19(15):4350–4353

    CAS  PubMed  Google Scholar 

  51. Randolph JT, Flentge CA, Huang PP et al (2009) Synthesis and biological characterization of B-ring amino analogues of potent benzothiadiazine hepatitis C virus polymerase inhibitors. J Med Chem 52(10):3174–3183

    CAS  PubMed  Google Scholar 

  52. Ruebsam F, Murphy DE, Tran CV et al (2009) Discovery of tricyclic 5,6-dihydro-1H-pyridin-2-ones as novel, potent, and orally bioavailable inhibitors of HCV NS5B polymerase. Bioorg Med Chem Lett 19(22):6404–6412

    CAS  PubMed  Google Scholar 

  53. Mallalieu NL, Rahimy MH, Crowley CA et al (2014) Pharmacokinetics and pharmacodynamics of setrobuvir, an orally administered hepatitis C virus non-nucleoside analogue inhibitor. Clin Ther 36(12):2047–2063

    CAS  PubMed  Google Scholar 

  54. Dousson C, Surleraux D, Roland A et al (2009) Phosphadiazine HCV polymerase inhibitors I and II. WO 2009/032177

    Google Scholar 

  55. de Bruijne J, van de Wetering de Rooij J, van Vliet AA et al (2012) First-in-human study of the pharmacokinetics and antiviral activity of IDX375, a novel nonnucleoside hepatitis C virus polymerase inhibitor. Antimicrob Agents Chemother 56(8):4525–4528

    PubMed  PubMed Central  Google Scholar 

  56. Wagner R, Tufano MD, Stewart KD et al (2009) Uracil or thymine derivative for treating hepatitis C. WO 2009/039127

    Google Scholar 

  57. Liu Y, Lim BH, Jiang WW et al (2012) Identification of aryl dihydrouracil derivatives as palm initiation site inhibitors of HCV NS5B polymerase. Bioorg Med Chem Lett 22(11):3747–3750

    CAS  PubMed  Google Scholar 

  58. Randolph JT, Krueger AC, Donner PL et al (2018) Synthesis and biological characterization of aryl uracil inhibitors of hepatitis C virus NS5B polymerase: discovery of ABT-072, a trans-Stilbene analog with good oral bioavailability. J Med Chem 61(3):1153–1163

    CAS  PubMed  Google Scholar 

  59. Talamas FX, Ao-Ieong G, Brameld KA et al (2013) De novo fragment design: a medicinal chemistry approach to fragment-based lead generation. J Med Chem 56(7):3115–3119

    CAS  PubMed  Google Scholar 

  60. Schoenfeld RC, Bourdet DL, Brameld KA et al (2013) Discovery of a novel series of potent non-nucleoside inhibitors of hepatitis C virus NS5B. J Med Chem 56(20):8163–8182

    CAS  PubMed  Google Scholar 

  61. Talamas FX, Abbot SC, Anand S et al (2014) Discovery of N-[4-[6-tert-butyl-5-methoxy-8-(6-methoxy-2-oxo-1H-pyridin-3-yl)-3-quinolyl]phenyl]methanesulfonamide (RG7109), a potent inhibitor of the hepatitis C virus NS5B polymerase. J Med Chem 57(5):1914–1931

    CAS  PubMed  Google Scholar 

  62. Gu B, Johnston VK, Gutshall LL et al (2003) Arresting initiation of hepatitis C virus RNA synthesis using heterocyclic derivatives. J Biol Chem 278(19):16602–16607

    CAS  PubMed  Google Scholar 

  63. Burns CJ, Del Vecchio AM, Bailey TR et al (2004) Benzofuran compounds, compositions and methods for treatment and prophylaxis of hepatitis C viral infections and associated diseases. WO-04041201

    Google Scholar 

  64. Kneteman NM, Howe AY, Gao T et al (2009) HCV796: a selective nonstructural protein 5B polymerase inhibitor with potent anti-hepatitis C virus activity in vitro, in mice with chimeric human livers, and in humans infected with hepatitis C virus. Hepatology 49(3):745–752

    CAS  PubMed  Google Scholar 

  65. Feldstein A, Kleiner D, Kravetz D et al (2009) Severe hepatocellular injury with apoptosis induced by a hepatitis C polymerase inhibitor. J Clin Gastroenterol 43(4):374–381

    CAS  PubMed  Google Scholar 

  66. Koch U, Mackay AC, Narjes F et al (2008) Benzofuran-carboxamide derivatives as antiviral agents. WO 2008/125874

    Google Scholar 

  67. McComas CC, Palani A, Chang W et al (2017) Development of a new structural class of broadly acting HCV non-nucleoside inhibitors leading to the discovery of MK-8876. ChemMedChem 12(17):1436–1448

    CAS  PubMed  Google Scholar 

  68. Labadie SS, Lin CJJ, Talamas FX et al (2009) Heterocyclic antiviral compounds. WO 2009/101022

    Google Scholar 

  69. Pracitto R, Kadow JF, Bender JA et al (2010) Compounds for the treatment of hepatitis C. US 2010/0063068

    Google Scholar 

  70. Yeung K-S, Parcella KE, Bender JA et al (2010) Compounds for the treatment of hepatitis C. US 2010/030592

    Google Scholar 

  71. Yeung K-S, Beno BR, Parcella K et al (2017) Discovery of a hepatitis C virus NS5B replicase palm site allosteric inhibitor (BMS-929075) advanced to phase 1 clinical studies. J Med Chem 60(10):4369–4385

    CAS  PubMed  Google Scholar 

  72. Maynard A, Crosby RM, Ellis B et al (2014) Discovery of a potent boronic acid derived inhibitor of the HCV RNA-dependent RNA polymerase. J Med Chem 57(5):1902–1913

    CAS  PubMed  Google Scholar 

  73. Voitenleitner C, Crosby R, Walker J et al (2013) In vitro characterization of GSK2485852, a novel hepatitis C virus polymerase inhibitor. Antimicrob Agents Chemother 57(11):5216–5224

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Hang JQ, Yang Y, Harris SF et al (2009) Slow binding inhibition and mechanism of resistance of non-nucleoside polymerase inhibitors of hepatitis C virus. J Biol Chem 284(23):15517–15529

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Puerstinger G, Paeshuyse J, De Clercq E et al (2007) Antiviral 2,5-disubstituted imidazo[4,5-c]pyridines: from anti-pestivirus to antihepatitis C virus activity. Bioorg Med Chem Lett 17(2):390–393

    CAS  PubMed  Google Scholar 

  76. Shih I-H, Vliegen I, Peng B et al (2011) Mechanistic characterization of GS-9190 (tegobuvir), a novel nonnucleoside inhibitor of hepatitis C virus NS5B polymerase. Antimicrob Agents Chemother 55(9):4196–4203

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Wong KA, Xu S, Martin R et al (2012) Tegobuvir (GS-9190) potency against HCV chimeric replicons derived from consensus NS5B sequences from genotypes 2b, 3a, 4a, 5a, and 6a. Virology 429(1):57–62

    CAS  PubMed  Google Scholar 

  78. Hebner CM, Han B, Brendza KM et al (2012) The HCV non-nucleoside inhibitor tegobuvir utilizes a novel mechanism of action to inhibit NS5B polymerase function. PLoS One 7(6):e39163

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Leivers M, Miller J (2011) Imidazopyridazine compounds for treating viral infections. WO 2011/026091

    Google Scholar 

  80. Leivers M, Miller JF, Chan SA et al (2011) Imidazopyridazine hepatitis C virus polymerase inhibitors. Structure-activity relationship studies and the discovery of a novel, traceless prodrug mechanism. J Med Chem 57(5):1964–1975

    Google Scholar 

  81. Calcoen D, Elias L, Yu X (2015) What does it take to produce a breakthrough drug? Nat Rev Drug Discov 14(3):161–162

    PubMed  Google Scholar 

  82. Watkins WJ, Desai MC (2013) HCV versus HIV drug discovery: Déjà vu all over again? Bioorg Med Chem Lett 23(8):2281–2287

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The author is grateful to Todd Appleby for assistance in the preparation of Figs. 1, 4, and 7.

Compliance with Ethical Standards

Conflict of Interest The author is an employee of Gilead Sciences and owns stock in Gilead Sciences.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Watkins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Watkins, W.J. (2019). Evolution of HCV NS5B Non-nucleoside Inhibitors. In: Sofia, M. (eds) HCV: The Journey from Discovery to a Cure. Topics in Medicinal Chemistry, vol 31. Springer, Cham. https://doi.org/10.1007/7355_2018_35

Download citation

Publish with us

Policies and ethics