Skip to main content

Intramolecular N-Acyliminium Cascade (INAIC) Reactions in Cyclization of Peptide-Like Molecules

  • Chapter
  • First Online:
Solid-Phase Synthesis of Nitrogenous Heterocycles

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 52))

Abstract

The present review describes the implementation of N-acyliminium ion chemistry of peptide aldehydes in the context of solid phase peptide synthesis. The INAIC reaction is a cascade reaction in which an aldehyde, located within a peptide, initially reacts with proximate and weakly nucleophilic amide nitrogen to form a hydroxylactam. Under acidic conditions the hydroxylactam eliminates water and produces highly reactive N-acyliminium ions. These in turn reacts with high stereospecificity with any nucleophile nearby in the peptide, including C-nucleophiles or even a second amide nitrogen to form two new heterocyclic rings which can both be 5 membered or they can be 5,6; 6,5; 6,6; or 5,7 membered. In this manner simple peptides can be transformed into interesting heterocycles with structures that may interact with 7TM receptors and are valuable in drug screening programs. In addition to amides, carbamoyl nitrogens can also act as the primary nucleophile in the analogous INCIC reaction, thus expanding the scope of these reactions significantly. Due to the high reactivity of the N-acyl-iminium ions deactivated C-nucleophiles such as dichlorobenzene rings may be employed in addition to the reactive C-nucleophiles, e.g., indoles commonly used in the related Pictet-Spengler reaction. In this manner complex annulated tetrahydro β-carbolines and tetrahydroisoquinoline can be synthesized within the peptide framework. The scope of the INAIC and INCIC reactions is significant with more than 40 different heterocyclic scaffolds currently synthesized and even more new scaffolds possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tornøe CW, Meldal M (2001) Wave of the future. In: Lebl M, Hougten R (eds) Proceedings of 17th American peptide symposium. Kluwer Academic Publishers, San Diego, pp 263–264. doi:10.1007/978-94-010-0464-0_119

    Google Scholar 

  2. Tornøe CW, Christensen C, Meldal M (2002) J Org Chem 67:3057–3064

    Article  Google Scholar 

  3. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) Angew Chem Int Ed 41:2596–2599

    Article  CAS  Google Scholar 

  4. Meldal M, Tornøe CW (2008) Chem Rev 108:2952–3015

    Article  CAS  Google Scholar 

  5. Diness F, Schoffelen S, Meldal M (2015) Advances in merging triazoles with peptides and proteins, Topics in Heterocyclic Chemistry. Springer, Berlin/Heidelberg, pp 1–38. doi:10.1007/7081_2015_192

    Google Scholar 

  6. Mannich C, Krösche W (1912) Arch Pharm 250:647–667

    Article  CAS  Google Scholar 

  7. Petasis NA, Akritopoulou I (1993) Tetrahedron Lett 34:583–586

    Article  CAS  Google Scholar 

  8. Pictet A, Spengler T (1911) Chem Ber 44:2030–2036

    Article  CAS  Google Scholar 

  9. Nielsen TE, Meldal M (2004) J Org Chem 69:3765–3773

    Article  CAS  Google Scholar 

  10. Diness F, Beyer J, Meldal M (2006) Chem Eur J 12:8056–8066

    Article  CAS  Google Scholar 

  11. Rademann J, Meldal M, Bock K (1999) Chem Eur J 5:1218–1225

    Article  CAS  Google Scholar 

  12. Maryanoff BE, Zhang H-C, Cohen JH, Turchi IJ, Maryanoff CA (2004) Chem Rev 104:1431–1628

    Article  CAS  Google Scholar 

  13. Cox ED, Cook JM (1995) Chem Rev 95:1797–1842

    Article  CAS  Google Scholar 

  14. Brase S, Gil C, Knepper K (2002) Bioorg Med Chem 10:2415–2437

    Article  CAS  Google Scholar 

  15. Meldal M, Tornoe CW, Nielsen TE, Diness F, Le Quement ST, Christensen CA, Jensen JF, Worm-Leonhard K, Groth T, Bouakaz L, Wu B, Hagel G, Keinicke L (2010) Biopolymers 94:161–182

    Article  CAS  Google Scholar 

  16. Le Quement ST, Petersen R, Meldal M, Nielsen TE (2010) Biopolymers 94:242–256

    Article  Google Scholar 

  17. Nielsen TE, Meldal M (2009) Curr Opin Drug Discov Devel 12:798–810

    CAS  Google Scholar 

  18. Groth T, Meldal M (2001) J Comb Chem 3:45–63

    Article  CAS  Google Scholar 

  19. Nielsen TE, Meldal M (2005) J Comb Chem 7:599–610

    Article  CAS  Google Scholar 

  20. Casnati G, Dossena A, Pochini A (1972) Tetrahedron Lett 52:5277–5280

    Article  Google Scholar 

  21. Sharma A, Singh M, Rai NN, Sawant D (2013) Beilstein J Org Chem 9:1235–1242

    Article  CAS  Google Scholar 

  22. Le Quement ST, Nielsen TE, Meldal M (2008) J Comb Chem 10:447–455

    Article  Google Scholar 

  23. Nielsen TE, Le Quement ST, Meldal M (2005) Org Lett 7:3601–3604

    Article  CAS  Google Scholar 

  24. Lee SC, Park SB (2006) J Comb Chem 8:50–57

    Article  CAS  Google Scholar 

  25. Diness F, Beyer J, Meldal M (2004) QSAR Comb Sci 23:130–144

    Article  CAS  Google Scholar 

  26. Diness F, Meldal M (2009) Chem Eur J 15:7044–7047

    Article  CAS  Google Scholar 

  27. Nahm S, Weinreb SM (1981) Tetrahedron Lett 22:3815–3818

    Article  CAS  Google Scholar 

  28. Wen JJ, Crews CM (1998) Tetrahedron 9:1855–1858

    Article  CAS  Google Scholar 

  29. Christensen C, Tornøe CW, Meldal M (2004) QSAR Comb Sci 23:109–116

    Article  CAS  Google Scholar 

  30. Le Quement ST, Nielsen TE, Meldal M (2007) J Comb Chem 9:1060–1072

    Article  Google Scholar 

  31. Berry JM, Howard PW, Thurston DE (2000) Tetrahedron Lett 41:6171–6174

    Article  CAS  Google Scholar 

  32. Dahlqvist A, Olsson I, Nordén Å (1965) J Histochem Cytochem 13:423–430

    Article  CAS  Google Scholar 

  33. Geoghegan KF, Stroh JG (1992) Bioconjug Chem 3:138–146

    Article  CAS  Google Scholar 

  34. Li X, Zhang L, Hall SE, Tam JP (2000) Tetrahedron Lett 41:4069–4073

    Article  CAS  Google Scholar 

  35. Petersen R, Le Quement ST, Nielsen TE (2014) Angew Chem Int Ed 53:11778–11782

    Article  CAS  Google Scholar 

  36. Scott WL, Martynow JG, Huffman JC, O'Donnell MJ (2007) J Am Chem Soc 129:7077–7088

    Article  CAS  Google Scholar 

  37. Nielsen TE, Meldal M (2005) Org Lett 7:2695–2698

    Article  CAS  Google Scholar 

  38. Groth T, Meldal M (2001) J Comb Chem 3:34–44

    Article  CAS  Google Scholar 

  39. Karpov AS, Oeser T, Müller TJJ (2004) Chem Commun 15021503

    Google Scholar 

  40. Hansen CL, Clausen JW, Ohm RG, Ascic E, Le Quement ST, Tanner D, Nielsen TE (2013) J Org Chem 78:12545–12565

    Article  CAS  Google Scholar 

  41. Ascic E, Jensen JF, Nielsen TE (2011) Angew Chem Int Ed 50:5188–5191

    Article  CAS  Google Scholar 

  42. Silveira CC, Felix LA, Braga AL, Kaufman TS (2005) Org Lett 7:3701–3704

    Article  CAS  Google Scholar 

  43. Diness F, Meldal M (2015) Eur J Org Chem 7:1433–1436

    Article  Google Scholar 

  44. Lee SC, Choi SY, Chung YK, Park SB (2006) Tetrahedron Lett 47:6843–6847

    Article  CAS  Google Scholar 

  45. Li X, Zhang L, Zhang W, Hall SE, Tam JP (2000) Org Lett 2:3075–3078

    Article  CAS  Google Scholar 

  46. Komnatnyy VV, Givskov M, Nielsen TE (2012) Chem Eur J 18:16793–16800

    Article  CAS  Google Scholar 

  47. Chanda K, Chou CT, Lai JJ, Lin SF, Yellol GS, Sun CM (2011) Mol Divers 15:569–581

    Article  CAS  Google Scholar 

  48. Fridkin M, atchornik A, Katchalski E (1965) J Am Chem Soc 87:4646–4648

    Article  CAS  Google Scholar 

  49. Ganesan A (2006) Mini Rev Med Chem 6:3–10

    Article  CAS  Google Scholar 

  50. Bonnet D, Ganesan A (2002) J Comb Chem 4:546–548

    Article  CAS  Google Scholar 

  51. Fantauzzi PP, Yager KM (1998) Tetrahedron Lett 39:1291–1294

    Article  CAS  Google Scholar 

  52. Kuo FM, Tseng MC, Yen YH, Chu YH (2004) Tetrahedron 60:12075–12084

    Article  CAS  Google Scholar 

  53. Wang H, Ganesan A (1999) Org Lett 1:1647–1649

    Article  CAS  Google Scholar 

  54. Kundu B, Sawant D, Chhabra R (2005) J Comb Chem 7:317–321

    Article  CAS  Google Scholar 

  55. Deaudelin P, Lubell WD (2008) Org Lett 10:2841–2844

    Article  CAS  Google Scholar 

  56. Nielsen TE, Le Quement S, Meldal M (2005) Tetrahedron Lett 46:7959–7962

    Article  CAS  Google Scholar 

  57. Dondas HA, Grigg R, MacLachlan WS, MacPherson DT, Markandu J, Sridharan V, Suganthan S (2000) Tetrahedron Lett 41:967–970

    Article  CAS  Google Scholar 

  58. Rinehart KL, Kobayashi J, Harbour GC, Hughes RG Jr, Mizsak SA, Scahill TA (1984) J Am Chem Soc 106:1524–1526

    Article  CAS  Google Scholar 

  59. Kobayashi J, Cheng JF, Ohta T, Nozoe S, Ohizumi Y, Sasaki T (1990) J Org Chem 55:3666–3670

    Article  CAS  Google Scholar 

  60. Scott JD, Williams RM (2002) Chem Rev 102:1669–1730

    Article  CAS  Google Scholar 

  61. Diness F, Meldal M (2010) Pept Sci 94:236–241

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten Meldal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Diness, F., Wang, Y., Meldal, M. (2016). Intramolecular N-Acyliminium Cascade (INAIC) Reactions in Cyclization of Peptide-Like Molecules. In: Krchňák , V. (eds) Solid-Phase Synthesis of Nitrogenous Heterocycles. Topics in Heterocyclic Chemistry, vol 52. Springer, Cham. https://doi.org/10.1007/7081_2016_1

Download citation

Publish with us

Policies and ethics