Skip to main content

Agricultural Soil Degradation in Hungary

  • Chapter
  • First Online:
Impact of Agriculture on Soil Degradation II

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 121))

  • 234 Accesses

Abstract

Soil degradation is a serious phenomenon both in Hungary and worldwide. Although it may be induced by natural causes, human activity, especially in the past two centuries has contributed more significantly to soil degradation. There are many known consequences of soil degradation. Although in the short-term moderating the rate of deterioration can be acceptable, the impacts of climate change on soil degradation seem to be a real hindering factor to crop production in the longer term. In Hungary, soil compaction, water and wind erosion, and water logging may present difficulties in the future. Based on negative experiences in crop production in dry and wet seasons, soil management should be used to prevent or alleviate soil compaction. Landslides, soil contamination, salinity, acidification, and agrochemical use are likely to be kept within limits by complying with national and EU regulatory requirements. Limiting soil sealing will be however a difficult issue in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stefanovits P (1981) Talajtan (Soil science). Budapest, Mezőgazdasági Kiadó (in Hungarian)

    Google Scholar 

  2. Várallyay G (1989) Soil degradation processes and their control in Hungary. Land Degrad Rehabil 1:171–178

    Article  Google Scholar 

  3. Várallyay G (2011) Soil quality: a step back in land evaluation. In: Tóth G, Németh T (eds) Land quality and land use information in the European Union, pp 21–33

    Google Scholar 

  4. Michéli E, Várallyay Gy, Pásztor L, Szabó J (2003) Land degradation in Hungary. In: Jones RJA, Montanarella L (eds) Land degradation in central and Eastern Europe. European Soil Bureau Research Report, vol 10, 20688 EN Ispra, Italy, pp 198–206

    Google Scholar 

  5. Birkás M (2000) Soil compaction situation in Hungary; Consequences and possibilities of the alleviation. DSc Theses, Gödöllő (in Hungarian)

    Google Scholar 

  6. Birkás M (1987) Agronomical factors influencing the quality of soil tillage. PhD thesis, Gödöllő (in Hungarian)

    Google Scholar 

  7. Chen Y, Tessier S (1997) Techniques to diagnose plow and disk pans. Can Agric Eng 39(2):143–147

    Google Scholar 

  8. Birkás M, Antal J, Dorogi I (1989) Conventional and reduced tillage in Hungary – a review. Soil Tillage Res 13:233–252

    Article  Google Scholar 

  9. Nyiri L (1993) Soil structure and influencing possibilities. In: Nyiri L (ed) Földműveléstan, Mezőgazda Kiadó, Budapest, Hungary, pp 66–69 (in Hungarian)

    Google Scholar 

  10. Birkás M, Kisic I, Bottlik L, Jolánkai M, Mesic M, Kalmár T (2009) Subsoil compaction as a climate damage indicator. Agric Conspec Sci 74(2):1–7

    Google Scholar 

  11. Birkás M, Jolánkai M, Gyuricza C, Percze A (2004) Tillage effects on compaction, earthworms and other soil quality indicators in Hungary. Soil Tillage Res 78:185–196

    Article  Google Scholar 

  12. Bogunovic I, Pereira P, Kisic I, Sajko K, Sraka M (2018) Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). Catena 160:376–384. https://doi.org/10.1016/j.catena.2017.10.009

    Article  Google Scholar 

  13. Van Ouwerkerk C, Soane BD (1994) Conclusions and recommendations for further research on soil compaction in crop production. In: Soane BD, Van Ouwerkerk C (eds) Soil compaction in crop production. Elsevier, pp 627–642

    Chapter  Google Scholar 

  14. Madarász B (2019) Salinization, secondary salinization. In: Kertész Á (ed) Landscape degradation in Hungary. Budapest Geographical Institute, MTA RCAES, pp 43–49

    Google Scholar 

  15. Verheijen FGA, Jones RJA, Rickson RJ, Smith CJ (2009) Tolerable versus actual soil erosion rates in Europe. Earth Sci Rev 94(1–4):23–38

    Article  Google Scholar 

  16. Négyesi G, Lóki J, Buró B, Bertalan-Balázs B, Pásztor L (2019) Wind erosion researches in Hungary – past, present and future possibilities. Hung Geogr Bull 68(3):223–240. https://doi.org/10.15201/hungeobull.68.3.2

    Article  Google Scholar 

  17. Kertész Á, Centeri C (2006) Hungary. In: Boardman J, Poesen J (eds) Soil erosion in Europe. Wiley, Chichester, pp 139–153

    Chapter  Google Scholar 

  18. Kertész Á, Jakab G (2010) Gully erosion in Hungary, review and case study. Procedia Soc Behav Sci 19:693–670

    Article  Google Scholar 

  19. Kertész Á, Křeček J (2019) Landscape degradation in the world and in Hungary. Hung Geogr Bull 68(3):201–221. https://doi.org/10.15201/hungeobull.68.3.1

    Article  Google Scholar 

  20. Pásztor L, Waltner I, Centeri C, Takács K, Laborczi A (2015) Soil erosion risk map of Hungary. http://www.mta-taki.hu/hu/osztalyok/gis-labor/agrotopo

  21. Rusco E, Montanarella L, Bosco C (2008) Soil erosion: a main threats to the soils in Europe. In: Toth G, Montanarella L, Rusco E (eds) Threats to soil quality in Europe. JRC, Italy, EUR 23438 EN, pp 37–46

    Google Scholar 

  22. Pásztor L, Négyesi G, Laborczi A, Kovács T, László E, Bihari Z (2016) Integrated spatial assessment of wind erosion risk in Hungary. Nat Hazards Earth Syst Sci 16:2421–2432

    Article  Google Scholar 

  23. Klik A, Rosner J (2020) Long-term experience with conservation tillage practices in Austria: impacts on soil erosion processes. Soil Tillage Res 203:104669

    Article  Google Scholar 

  24. Kisic I, Bogunovic I, Zgorelec Z, Bilandzija D (2017) Effects of soil erosion by water under different tillage treatments on distribution of soil chemical parameters. Soil Water Res 12(4):36–43. https://doi.org/10.17221/25/2017-SWR

    Article  Google Scholar 

  25. Halbac-Cotoara-Zamfir R, Günal H, Birkas M, Rusu T, Brejea R (2015) Successful and unsuccessful stories in restoring despoiled and degraded lands in Eastern Europe. Adv Environ Biol 9(23):368–376

    Google Scholar 

  26. Kuti L, Kerék B, Vatai J (2006) Problem and prognosis of excess water inundation based on agrogeological factors. Carpathian J Earth Environ Sci 1(1):5–18

    Google Scholar 

  27. Józsa E, Lóczy D, Soldati M, Drăguţ LD, Szabó J (2019) Distribution of landslides reconstructed from inventory data and estimation of landslide susceptibility in Hungary. Hung Geogr Bull 3:255–268. https://doi.org/10.15201/hungeobull.68.3.4

    Article  Google Scholar 

  28. EEA (2003) Europe’s environment – the third assessment. Environmental Assessment Report No. 10. European Environment Agency, Copenhagen

    Google Scholar 

  29. Günal H, Korucu T, Birkas M, Özgöz E, Halbac-Cotoara-Zamfir R (2015) Threats to sustainability of soil functions in central and Southeast Europe. Sustainability 7:2161–2188. https://doi.org/10.3390/su7022161

    Article  Google Scholar 

  30. Murányi A (2000) Quality and contamination of agricultural soils in Hungary as indicated by environmental monitoring and risk assessment. In: Soil quality, sustainable agriculture and environmental security in central and Eastern Europe. Springer, Heidelberg, pp 61–77

    Chapter  Google Scholar 

  31. Gentile AR (2000) Soil degradation in Europe. In soil degradation in central and Eastern Europe: the assessment of the status of human-induced degradation; United Nations Environment Programme (UNEP), and ISRIC—World Soil Information, Wageningen, The Netherland, pp 68–89

    Google Scholar 

  32. Stefanovits P (2005) Environmental buffering and loading capacity of soils. In: Balogh M, Péterfi B (eds) The importance of soils in the 21st century. MTA Társadalomkutató Központ Budapest, pp 373–400 (in Hungarian)

    Google Scholar 

  33. Blaskó L (2005) Soil improvement in present and future. In: Balogh M, Péterfi B (eds) The importance of soils in the 21st century. MTA Társadalomkutató Központ, Budapest, pp 267–290. (in Hungarian)

    Google Scholar 

  34. Asit M, Binoy S, Sanchita M, Meththika V, Ashok KP, Madhab CM (2020) In: Majeti NVP (ed) Agrochemicals detection, treatment and remediation. Chapter 7 – impact of agrochemicals on soil health. Butterworth-Heinemann, pp 161–187

    Google Scholar 

  35. KSH (2021) (Hungarian Central Statistical Office) https://www.ksh.hu/mezogazdasag. Accessed 1 Apr 2021

  36. Ángyán J, Tardy J, Vajnáné-Madarassy A (eds) (2003) Védett és érzékeny természeti területek mezőgazdálkodásának alapjai, Mezőgazda, Budapest (in Hungarian)

    Google Scholar 

  37. Liira J, Aavik T, Parrest O, Zobel M (2008) Agricultural sector, rural environment and biodiversity in the central and eastern European EU member states. AGD Landscape Environ 2:46–64

    Google Scholar 

  38. Németh T (2002) A tápanyag-utánpótlás jelenlegi helyzete, időszerű kérdései. In: Győri Z, Jávor A (eds) Az agrokémia időszerű kérdései. ISBN: 963 9274 39 9

    Google Scholar 

  39. AKI (2021) Műtrágya-értékesítés mezőgazdasági termelőknek 2020. Agrárközgazdasági Intézet (Ed. Demeter Edit), ISSN 1418 2130 Online Hungarian: https://asir.aki.gov.hu Accessed 21 Mar 2021

  40. Gockler L (2016) Műtrágya- és szervestrágya-felhasználás hazánkban Mezőgazdasági Technika 10:40–43

    Google Scholar 

  41. AKI (2019) Növényvédő szerek értékesítése (2019) NAIK Agrárgazdasági Kutatóintézet (Ed. Demeter Edit), ISSN 1418 2130 Online Hungarian: Agrárstatisztikai Információs Rendszer (ASIR) – Agrárközgazdasági Intézet (gov.hu). Accessed 18th Jan 2021

  42. Green ER, Cornell JS, Scharlemann WPJ, Balmford A (2005) Farming and the fate of wild nature. Science 307(5709):550–555. https://doi.org/10.1126/science.1106049

    Article  CAS  Google Scholar 

  43. Szabó P (1994) Soil degradation in Hungary. Farm land erosion. In: Wicherek S (ed) Temperate plains environment and hills, pp 563–569

    Google Scholar 

  44. Magda R (2001) A magyarországi természeti erőforrások gazdaságtana és hasznosítása, Mezőgazda Kiadó. (in Hungarian) p 167

    Google Scholar 

  45. Firbank LG (2005) Striking a new balance between agricultural production and biodiversity. Ann Appl Biol 146(2):163–175. https://doi.org/10.1111/j.1744-7348.2005.040078.x

    Article  Google Scholar 

  46. Báldi A, Faragó S (2007) Long-term changes of farmland game populations in a post-socialist country (Hungary). Agric Ecosyst Environ 118:307–311. https://doi.org/10.1016/j.agee.2006.05.021

    Article  Google Scholar 

  47. Zhao HZ, Hui C, Ouyang F, Liu J-H, Guan X-Q, He D-H, Ge F (2013) Effects of inter-annual landscape change on interactions between cereal aphids and their natural enemies. Basic Appl Ecol 14:472–789. https://doi.org/10.1016/j.baae.2013.06.002

    Article  Google Scholar 

  48. Boller EF, Avilla J, Joerg E, Malavolta C, Wijnands FG, Esbjerg P (2004) Integrated production principles and technical guidelines. IOBC/WPRS Bull 22(4). ISBN: 9290671084

    Google Scholar 

  49. Takács-György K, Takács I (2011) Use of agrochemicals – environmental, social and economic impacts of alternative farming strategies: precision Weed management. 1st world sustainability forum, 1–30 Nov 2011, pp 2–16

    Google Scholar 

  50. Rider TW, Vogel JW, Dille JA, Dhuyvetter KC, Kastens TL (2006) An economic evaluation of site-specific herbicide application. Precis Agric 7:379–392. https://doi.org/10.1007/s11119-006-9012-y

    Article  Google Scholar 

  51. DEFRA (2013) Farm practices survey autumn 2012 – England. Department for Environment, Food and Rural Affairs (DEFRA), p 41

    Google Scholar 

  52. Montanarella L, Panagos P (2021) The relevance of sustainable soil management within the European Green Deal. Land Use Policy 100:104950. https://doi.org/10.1016/j.landusepol.2020.104950

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Birkás .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Birkás, M., Dekemati, I. (2023). Agricultural Soil Degradation in Hungary. In: Pereira, P., Muñoz-Rojas, M., Bogunovic, I., Zhao, W. (eds) Impact of Agriculture on Soil Degradation II. The Handbook of Environmental Chemistry, vol 121. Springer, Cham. https://doi.org/10.1007/698_2022_949

Download citation

Publish with us

Policies and ethics