Skip to main content

Agricultural Land Degradation in Mexico

  • Chapter
  • First Online:
Impact of Agriculture on Soil Degradation I

Abstract

Mexico is one of the most diverse countries on Earth and is a centre of origin for many major global crops, including bean, cotton, chilli, pumpkin, and avocado. During the past decades, a growing demand for food has promoted clearing and conversion of Mexican forests to arable land, the irrigation of arid regions using limited water resources and the transition of traditional farming practices to more intensive agricultural practices. This rapid conversion of natural ecosystems and poor agricultural practices have caused a marked decline in the soil health, including physical and chemical degradation as well as water and wind erosion. This deterioration in soil health results in a loss of microbial biodiversity, organic and mineral nutrients and water. Here, we describe how different agricultural practices have impacted the range of soil types across the diverse Mexican ecoregions. Despite the negative impact, the Mexican government has proposed to expand and intensify agriculture to increase crop output. Unless new policy regulations, such as the supervision of chemical and fertilizer use, are urgently applied, this expansion and intensification in agriculture will further reduce soil health, resulting in further losses to biodiversity and environmental services upon which Mexican agriculture ultimately depends.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amundson R, Berhe AA, Hopmans JW, Olson C, Sztein AE, Sparks DL (2015) Soil and human security in the 21st century. Science 348:647–653. https://doi.org/10.1126/science.1261071

    Article  CAS  Google Scholar 

  2. Rabot E, Wiesmeier M, Schlüter S, Vogel HJ (2018) Soil structure as an indicator of soil functions: a review. Geoderma 314:122–137. https://doi.org/10.1016/j.geoderma.2017.11.009

    Article  Google Scholar 

  3. Totsche KU, Amelung W, Gerzabek MH, Guggenberger G, Klumpp E, Knief C, Lehndorff E, Mikutta R, Peth S, Prechtel A, Ray N, Kögel-Knabner I (2018) Microaggregates in soils. J Plant Nutr Soil Sci 181:104–136. https://doi.org/10.1002/jpln.201600451

    Article  CAS  Google Scholar 

  4. Chen S, Ai X, Dong T, Li B, Luo R, Ai Y, Chen Z, Li C (2016) The physico-chemical characteristic of artificial soil for cut slope restoration in Southwestern China. Sci Rep 6:20565. https://doi.org/10.1038/srep20565

    Article  CAS  Google Scholar 

  5. Weil RR, Brady NC (2016) The nature and properties of soils.15th edn. Pearson

    Google Scholar 

  6. Trap J, Bonkowski M, Plassard C, Villenave C, Blanchart E (2016) Ecological importance of soil bacterivores for ecosystem functions. Plant Soil 398:1–24. https://doi.org/10.1007/s11104-015-2671-6

    Article  CAS  Google Scholar 

  7. Comisión Nacional Forestal (2020) Estimación de la tasa de deforestación en México para el periodo 2001–2018 mediante el método de muestreo. Documento Técnico, Jalisco

    Google Scholar 

  8. Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2017) Microbial diversity and soil functions. Eur J Soil Sci 68:1–26. https://doi.org/10.1111/ejss.4_12398

    Article  CAS  Google Scholar 

  9. Obalum SE, Chibuike GU, Ouyang Y (2017) Soil organic matter as sole indicator of soil degradation. Environ Monit Assess 189:176. https://doi.org/10.1007/s10661-017-5881-y

    Article  CAS  Google Scholar 

  10. Lal R (2015) Restoring soil quality to mitigate soil degradation. Sustain 7:5875–5895. https://doi.org/10.3390/su7055875

    Article  Google Scholar 

  11. Stavi I, Lal R (2015) Achieving zero net land degradation: challenges and opportunities. J Arid Environ 112:44–51. https://doi.org/10.1016/j.jaridenv.2014.01.016

    Article  Google Scholar 

  12. Secretaría de Agricultura y Desarrollo Rural (2017) Planeación Agrícola Nacional 2017–2030. Secretaría de Agricultura y Desarrollo Rural, Mexico. https://www.gob.mx/agricultura/acciones-y-programas/planeacion-agricola-nacional-2017-2030-126813

    Google Scholar 

  13. Bellon MR, Mastretta-Yanes A, Ponce-Mendoza A, Ortiz-Santamaría D, Oliveros-Galindo O, Perales H, Acevedo F, Sarukhán J (2019) Evolutionary and food supply implications of ongoing maize domestication by Mexican campesinos. Proc R Soc B Biol Sci 285:20181049. https://doi.org/10.1098/rspb.2018.1049

    Article  Google Scholar 

  14. Servicio de Información Alimentaria y Pesquera (2019) Producción agrícola. Servicio de Información Alimentaria y Pesquera, Mexico. https://www.gob.mx/siap

    Google Scholar 

  15. Ebel R, Pozas Cárdenas JG, Soria Miranda F, Cruz González J (2017) Manejo orgánico de la milpa: rendimientos de maíz, frijol y calabaza en monocultivo y policultivo. Terra Latinoam 35:149–160

    Article  Google Scholar 

  16. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (2019) Alimentar a México sin deforestar. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México

    Google Scholar 

  17. Arteaga MC, Moreno-Letelier A, Mastretta-Yanes A, Vázquez-Lobo A, Breña-Ochoa A, Moreno-Estrada A, Eguiarte LE, Piñero D (2016) Genomic variation in recently collected maize landraces from Mexico. Genomics Data 7:38–45. https://doi.org/10.1016/j.gdata.2015.11.002

    Article  Google Scholar 

  18. Bocco G, Castillo BS, Orozco-Ramírez Q, Ortega-Iturriaga A (2019) La agricultura en terrazas en la adaptación a la variabilidad climática en la Mixteca Alta, Oaxaca, México. J Lat Am Geogr 18:141–168. https://doi.org/10.1353/lag.2019.0006

    Article  Google Scholar 

  19. Pantoja A, Smith-Pardo A, García A, Sáenz A, Rojas F (2014) Principios y avances sobre polinización como servicio ambiental para la agricultura sostenible en países de Latinoamérica y El Caribe. Organización de las Naciones Unidas para la Alimentación y la Agricultura, Chile

    Google Scholar 

  20. Aguilar JC, Tolón BA, Lastra BX (2011) Evaluación integrada de la sostenibilidad ambiental, económica y social del cultivo de maíz en Chiapas, México. Rev la Fac Ciencias Agrar 43:155–174. http://www.redalyc.org/articulo.oa?id=382837648011

    Google Scholar 

  21. Orozco-Ramírez Q, Astier M, Barrasa S (2017) Agricultural land use change after NAFTA in Central West Mexico. Land. https://doi.org/10.3390/land6040066

  22. Peel DS, Mathews KH, Johnson RJ (2012) Trade, the expanding Mexican beef industry, and feedlot and stocker cattle production in Mexico, a report from USDA – Economic Research Service

    Google Scholar 

  23. Bonilla-Moheno M, Aide TM (2020) Beyond deforestation: land cover transitions in Mexico. Agric Syst 178:102734. https://doi.org/10.1016/j.agsy.2019.102734

    Article  Google Scholar 

  24. Tapia-Torres Y, Ortiz PC, Hernández-Becerra N, Morón Cruz A, Beltrán O, García-Oliva F (2018) How do agricultural practices modify soil nutrient dynamics in CCB? In: García-Oliva F, Elser J, Souza V (eds) Ecosystem ecology and geochemistry of Cuatro Cienegas. Cuatro Ciénegas basin: an endangered hyperdiverse oasis. Springer, Cham. https://doi.org/10.1007/978-3-319-95855-2_12

    Chapter  Google Scholar 

  25. Endo T, Yamamoto S, Larrinaga JA, Fujiyama H, Honna T (2011) Status and causes of soil salinization of irrigated agricultural lands in Southern Baja California, Mexico. Appl Environ Soil Sci. https://doi.org/10.1155/2011/873625

  26. Hernández-Becerra N, Tapia-Torres Y, Beltrán-Paz O, Blaz J, Souza V, García-Oliva F (2016) Agricultural land-use change in a Mexican oligotrophic desert depletes ecosystem stability. PeerJ 4:e2365. https://peerj.com/articles/2365/

    Article  Google Scholar 

  27. Villanueva-Gutiérrez R, Echazarreta-González C, Roubik DW, Moguel-Ordóñez YB (2014) Transgenic soybean pollen (Glycine max L.) in honey from the Yucatán peninsula, Mexico. Sci Rep 4:4022. https://doi.org/10.1038/srep04022

    Article  CAS  Google Scholar 

  28. Mendivil-Garcia K, Amabilis-Sosa LE, Rodríguez-Mata AE, Rangel-Peraza JG, González-Huitron V, Cedillo-Herrera CIG (2020) Assessment of intensive agriculture on water quality in the Culiacan River basin, Sinaloa, Mexico. Environ Sci Pollut Res 27:28636–28648. https://doi.org/10.1007/s11356-020-08653-z

    Article  CAS  Google Scholar 

  29. Krasilnikov P, del Carmen Gutiérrez-Castorena M, Cruz-Gaistardo CO et al (2013) Soils of Mexico. Springer

    Book  Google Scholar 

  30. Instituto Nacional de Estadística y Geografía (2007) Conjunto de datos vectoriales. Scale 1:250,000. Continuo Nacional, México. https://www.inegi.org.mx/temas/edafologia/#Mapa

    Google Scholar 

  31. Secretaría de Medio Ambiente y Recursos Naturales (2004) Degradación del suelo en la República Mexicana. Scale: 1:250 000, Mexico. http://geoportal.conabio.gob.mx/metadatos/doc/html/degra250kgw.html

  32. Instituto Nacional de Estadística y Geografía (2021) Áreas geoestadísticas estatales. Scale 1:250000.1st edn, Aguascalientes. https://www.inegi.org.mx/temas/mg/

  33. Astier-Calderón M, Maass-Moreno M, Etchevers-Barra J (2002) Derivación de indicadores de calidad de suelos en el contexto de la agricultural sustentable. Agrociencia 366:605–620. http://www.redalyc.org/articulo.oa?id=30236511

    Google Scholar 

  34. Perry E, Velazquez-Oliman G, Marin L (2002) The hydrogeochemistry of the karst aquifer system of the Northern Yucatán Peninsula, Mexico. Int Geol Rev 44:191–221. https://doi.org/10.2747/0020-6814.44.3.191

    Article  Google Scholar 

  35. Siebe C, Bocco G, Sánchez J, Velázquez A (2003) Suelos: distribución, características y potencial de uso. In: Velázquez A, Torres A, Bocco G (eds) Las enseñanzas de San Juan: investigación participativa para el manejo integral de recursos naturales. Secretaría de Medio Ambiente, Recursos Naturales, Instituto Nacional de Ecología, México

    Google Scholar 

  36. Torres Guerrero CA, Castorena M, Ortiz Solorio CA, Gutiérrez Castorena EV (2016) Agricultural management of Vertisols in Mexico: a review. Terra Latinoam 34:457–466

    Google Scholar 

  37. Santini NS, Adame MF, Nolan RH, Miquelajauregui Y, Piñero D, Mastretta-Yanes A, Cuervo-Robayo AP, Eamus D (2019) Storage of organic carbon in the soils of Mexican temperate forests. For Ecol Manag 446:115–125. https://doi.org/10.1016/j.foreco.2019.05.029

    Article  Google Scholar 

  38. Mendoza E, Fay J, Dirzo R (2005) A quantitative analysis of forest fragmentation in Los Tuxtlas, Southeast Mexico: patterns and implications for conservation. Rev Chil Hist Nat 78:159–187. https://www.redalyc.org/articulo.oa?id=369944275008

    Article  Google Scholar 

  39. Roldán A, Caravaca F, Hernández MT, García C, Sánchez-Brito C, Velásquez M, Tiscareño M (2003) No-tillage, crop residue additions, and legume cover cropping effects on soil quality characteristics under maize in Patzcuaro watershed (Mexico). Soil Tillage Res 72:65–73. https://doi.org/10.1016/S0167-1987(03)00051-5

    Article  Google Scholar 

  40. Govaerts B, Sayre KD, Goudeseune B, De Corte P, Lichter K, Dendooven L, Deckers J (2009) Conservation agriculture as a sustainable option for the central Mexican highlands. Soil Tillage Res 103:222–230. https://doi.org/10.1016/j.still.2008.05.018

    Article  Google Scholar 

  41. González-Acevedo ZI, Padilla-Reyes DA, Ramos-Leal JA (2016) Quality assessment of irrigation water related to soil salinization in Tierra Nueva, San Luis Potosí, Mexico. Rev Mex de Cienc Geolo 33:271–285

    Google Scholar 

  42. Kunhikrishnan A, Thangarajan R, Bolan NS, Xu Y, Gleeson DB, Seshadri B, Zaman M, Barton L, Tang C, Luo J, Dalal R, Ding W, Kirkham MB, Naidu R (2016) Functional relationships of soil acidification, liming, and greenhouse gas flux. In: Advances in agronomy, vol 139. https://doi.org/10.1016/bs.agron.2016.05.001

    Chapter  Google Scholar 

  43. Hernández-Terrones L, Rebolledo-Vieyra M, Merino-Ibarra M (2011) Groundwater pollution in a Karstic region (NE Yucatán): baseline nutrient content and flux to coastal ecosystems. Water Air Soil Pollut 218:517–528. https://doi.org/10.1007/s11270-010-0664-

    Article  Google Scholar 

  44. Xiong M, Sun R, Chen L (2018) Effects of soil conservation techniques on water erosion: a global analysis. Sci Total Environ 645:753–760. https://doi.org/10.1016/j.scitotenv.2018.07.124

    Article  CAS  Google Scholar 

  45. Cotler H, Martínez M, Etchevers JD (2016) Carbono orgánico en suelos agrícolas de México: Investigación políticas públicas. Terra Latinoam 34:125–138

    Google Scholar 

  46. Seitz S, Goebes P, Puerta VL, Pujol Pereira EI, Wittwer R, Six J, van der Heijden MGA, Scholten T (2019) Conservation tillage and organic farming reduce soil erosion. Agron Sustain Dev 39:4. https://doi.org/10.1007/s13593-018-0545-z

    Article  Google Scholar 

  47. Pretelín VI, Bearden K, Bird JL (2021) Evaluación del sistema agrícola y alimentario de BCS. Catalizar una región alimentaria local próspera. Alianza para la Seguridad Alimentario de Baja California Sur A.C. Baja California Sur

    Google Scholar 

  48. Instituto Nacional de Estadística y Geografía (2013) Conjunto de datos vectoriales de uso de suelo y vegetación. Scale 1:250 000, series V. Capa unión, Aguascalientes. https://www.inegi.org.mx/temas/usosuelo/#Descargas

    Google Scholar 

  49. Instituto Nacional de Estadística y Geografía (2016) Conjunto de datos vectoriales de uso de suelo y vegetación. Scale 1:250 000, series VI. Capa unión, Aguascalientes. https://www.inegi.org.mx/temas/usosuelo/#Descargas

    Google Scholar 

  50. Challenger A, Soberon J (2008) Los ecosistemas terrestres. In Capital natural de México, vol I. Conocimiento actual de la biodiversidad. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México

    Google Scholar 

  51. Valencia SA (2004) Diversidad del género Quercus (Fagaceae) en México. Bol Soc Bot Méx 75:33–53. http://redalyc.org/articulo.oa?id=57707503

    Google Scholar 

  52. Comisión Nacional Forestal (2018) Inventario Nacional Forestal y de Suelos (2009–2014). https://snigf.cnf.gob.mx/resultados-2009-2014-resultados-que-recaba-los-principales-indicadores-forestales-generados-a-partir-del-analisis-estadistico-de-las-variables-levantadas-en-campo/

  53. Galicia L, García-Romero A (2007) Land use and land cover change in Highland temperate forests in the Itzta-Popo National Park, Central Mexico. Mount Res Dev 27:48–57. https://doi.org/10.1659/0276-4741(2007)27[48:LUALCC]2.0.CO;2

    Article  Google Scholar 

  54. Boué C, López Ridaura S, Rodríguez Sánchez LM, Hellin J, Fuentes Ponce M (2018) Local dynamics of native maize value chains in a peri-urban zone in Mexico: the case of San Juan Atzacualoya in the state of Mexico. J Rural Stud 64:28–38. https://doi.org/10.1016/j.jrurstud.2018.09.014

    Article  Google Scholar 

  55. Sarukhán J, Koleff P, Carabias J et al (2017) Capital Natural de México. Síntesis: evaluación del conocimiento y tendencias de cambio, perpsectivas de sustentabilidad, capacidades humanas e institucionales. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México

    Google Scholar 

  56. Santini NS, Villarruel-Arroyo A, Adame MF, Lovelock CE, Nolan RH, Gálvez-Reyes N, González EJ, Olivares-Resendiz B, Mastretta-Yanes A, Piñero D (2020) Organic carbon stocks of Mexican montane habitats: variation among vegetation types and land-use. Front Environ Sci 8. https://doi.org/10.3389/fenvs.2020.581476

  57. Bravo-Espinosa M, Mendoza ME, Carlón Allende T, Medina L, Sáenz-Reyes T, Páez R (2014) Effects of converting forest to avocado orchards on topsoil properties in the Trans-Mexican volcanic system, Mexico. L Degrad Dev 25:452–467. https://doi.org/10.1002/ldr.2163

    Article  Google Scholar 

  58. Hernández-Cumplido J, Rodriguez-Saona C, Ruíz-Rodríguez CE, Guevara-Fefer P, Aguirre-Paleo S, Miranda Trejo S, Callejas-Chavero A (2021) Genotypic variation in plant traits, chemical defenses, and resistance against insect herbivores in avocado (Persea americana) across a domestication gradient. Front Agron 2:1–12. https://www.frontiersin.org/article/10.3389/fagro.2020.616553

    Article  Google Scholar 

  59. Veldkamp E, Schmidt M, Powers JS, Corre MD (2020) Deforestation and reforestation impacts on soils in the tropics. Nat Rev Earth Environ 1:590–605. https://doi.org/10.1038/s43017-020-0091-5

    Article  Google Scholar 

  60. Dubrovina IA, Bautista F (2014) Analysis of the suitability of various soil groups and types of climate for avocado growing in the state of Michoacán, Mexico. Eurasian Soil Sci 47:491–503. https://doi.org/10.1134/S1064229314010037

    Article  Google Scholar 

  61. Statista (2021) Production of avocado in Mexico from 2010 to 2020. https://www.statista.com/statistics/591329/mexico-fresh-avocado-production/

  62. Chávez-León G, Tapia Vargas LM, Bravo Espinoza M et al (2012) Impacto del cambio de uso del suelo forestal a huertos de aguacate. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. INIFAP, México

    Google Scholar 

  63. Gómez-Tagle A, Morales-Chávez R, García-González Y, Gómez-Tagle AF (2019) Partición de la precipitación en cultivo de aguacate y bosque de pino-encino en Michoacán, México. Biológicas 21:1–18

    Google Scholar 

  64. Chacón A, Rosas C, Rendón M, Cruz O (2010) Balance hidrológico de la cuenca del lago de Zirahuén. In: Estrada B, Ayala G (eds) Espejo de los dioses: estudios sobre ambiente y desarrollo en la cuenca del Lago de Zirahuén. Universidad Michoacana de San Nicolás de Hidalgo, Instituto de Investigaciones Económicas y Empresariales, México

    Google Scholar 

  65. Raymundo E, Nikolskii I, Duwig C, Prado Pano BL, Hidalgo Moreno CI, Gavi Reyes F, Figueroa Sandoval B (2009) Transporte de atrazina en un Andosol y un Vertisol de México. Interciencia 34:330–337

    Google Scholar 

  66. Trejo I, Dirzo R (2000) Deforestation of seasonally dry tropical forest: a national and local analysis in Mexico. Biol Conserv 94:133–142. https://doi.org/10.1016/S0006-3207(99)00188-3

    Article  Google Scholar 

  67. Polanco Rodríguez AG, Riba López MI, DelValls CA, Araujo León A, Banik SD (2018) Impact of pesticides in karst groundwater. Review of recent trends in Yucatán, Mexico. Groundw Sustain Dev 7:20–29. https://doi.org/10.1016/j.gsd.2018.02.003

    Article  Google Scholar 

  68. Ding C, Wang X, Liu H, Li Y, Sun Y, Lin Y, Sun W, Zhu X, Dai Y, Luo C (2018) Glyphosate removal from water by functional three-dimensional graphene aerogels. Environ Chem 15:325–335. https://doi.org/10.1071/EN18087

    Article  CAS  Google Scholar 

  69. Balleza J, Villaseñor JL (2011) Contribución del estado de Zacatecas (México) a la conservación de la riqueza florística del Desierto Chihuahuense. Acta Bot Mex 89:61. https://doi.org/10.21829/abm94.2011.271

    Article  Google Scholar 

  70. Souza V, Siefert JL, Escalante AE, Elser JJ, Eguiarte LE (2012) The Cuatro Ciénegas Basin in Coahuila, Mexico: An astrobiological precambrian park. Astrobiology 12:641–647. https://doi.org/10.1089/ast.2011.0675

    Article  Google Scholar 

  71. Mamer E, Newton TB (2017) The relationship between the Cuatrociénegas gypsum dune field and the regional hydrogeology Coahuila Mexico. New Mexico Bureau of Geology and Mineral Resources

    Google Scholar 

  72. Plaster JE (2005) La ciencia del suelo y su manejo. Internacional Thompson Editores, Madrid

    Google Scholar 

  73. Comisión Nacional de Vivienda (2021) https://sniiv.conavi.gob.mx/demanda/poblacion_proyecciones.aspx

  74. Guzmán Luna A, Ferguson BG, Giraldo O, Schmook B, Aldasoro Maya EM (2019) Agroecology and restoration ecology: fertile ground for Mexican peasant territoriality? Agroecol Sustain Food Syst 43:1174–1200. https://doi.org/10.1080/21683565.2019.1624284

    Article  Google Scholar 

  75. Cotler H, Corona JA, Galena-Pizaña JM (2020) Erosión de suelos y carencia alimentaria en México una primera aproximación. Investigaciones Geográficas. https://doi.org/10.14350/rig.59976

  76. Sarandón SJ, Flores CC (2014) Agroecología: Bases Teóricas para el Diseño y Manejo de Agroecosistemas Sustentables. Editorial de la Universidad de La Plata, Buenos Aires

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia S. Santini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santini, N.S., Cuervo-Robayo, A.P., Adame, M.F. (2022). Agricultural Land Degradation in Mexico. In: Pereira, P., Muñoz-Rojas, M., Bogunovic, I., Zhao, W. (eds) Impact of Agriculture on Soil Degradation I. The Handbook of Environmental Chemistry, vol 120. Springer, Cham. https://doi.org/10.1007/698_2022_915

Download citation

Publish with us

Policies and ethics