Skip to main content

Wastewater Treatment by Heterogeneous Fenton-Like Processes in Continuous Reactors

  • Chapter
  • First Online:
Applications of Advanced Oxidation Processes (AOPs) in Drinking Water Treatment

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 67))

Abstract

The treatment of several industrial effluents, such as textile, pharmaceutical, and phenol-containing wastewaters, often face limitations toward conventional treatment processes. Solutions for such problematic include the use of several advanced oxidation processes (AOPs) and particularly the Fenton one. However, most of the research has been focused in the homogeneous process, while recent trends point for the use of heterogeneous systems, with the catalyst immobilized in a solid support. In addition, process optimization and catalyst screening are commonly carried out in batch reactors, which often are not the best solution for continuous industrial units. In this chapter, a review is made regarding the application of heterogeneous Fenton-like advanced oxidation processes in continuous systems (fixed-bed, fluidized-bed, and continuous stirred-tank reactors). The application of this catalytic process for pollutant/wastewater treatment is summarized, giving emphasis to the effect of the key operational parameters (e.g., pH, feed dose of H2O2, catalyst load, and feed flow rate) affecting the oxidative performance of such systems. Moreover, the main physicochemical properties of heterogeneous catalysts (e.g., source of support and particle size) and preparation methods (e.g., type of precursor and metal ion) affecting the catalytic efficiency of Fenton’s oxidation, and the stability of the catalyst itself, are also discussed. Finally, some operational issues of concern regarding solid catalysts operating in continuous-flow reactors are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AB:

Alcian Blue-tetrakis dye

AC:

Activated carbon

AOPs:

Advanced oxidation processes

AY36:

Acid yellow 36 dye

BB3:

Basic blue 3 dye

BOD5 :

Biochemical oxygen demand (5 days)

CNF:

Carbon nanofibers

CNT:

Carbon nanotubes

COD:

Chemical oxygen demand

CSB:

Chicago Sky Blue dye

CSTR:

Continuous stirred-tank reactor

CWHPO:

Catalytic wet hydrogen peroxide oxidation

CWPO:

Catalytic wet peroxide oxidation

EDCs:

Endocrine disrupting compounds

FBR:

Fluidized-bed reactor

LHSV:

Liquid hourly space velocity

NM:

Natural magnetite

NP:

Natural pyrite

OII:

Orange II dye

PAN:

Polyacrylonitrile

PBR:

Packed-bed reactor

POPs:

Persistent organic pollutants

PPCPs:

Pharmaceutical and personal care products

RB19:

Reactive blue 19

SBET :

Specific surface area

SW:

Sewage

TDS:

Total dissolved solids

TOC:

Total organic carbon

UFBR:

Upflow fixed-bed reactor

UV:

Ultraviolet

WHPCO:

Wet hydrogen peroxide catalytic oxidation

WW:

Wastewater

References

  1. Vandevivere PC, Bianchi R, Verstraete W (1998) Treatment and reuse of wastewater from the textile wet-processing industry: review of emerging technologies. J Chem Technol Biotechnol 72:289–302

    Article  CAS  Google Scholar 

  2. Mohajerani M, Mehrvar M, Ein-Mozaffari F (2009) An overview of the integration of advanced oxidation technologies and other processes for water and wastewater treatment. Int J Eng 3:120–146

    Google Scholar 

  3. Oturan MA, Aaron J-J (2014) Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Crit Rev Environ Sci Technol 44:2577–2641

    Article  CAS  Google Scholar 

  4. Eljarrat E, Barceló D (2003) Priority lists for persistent organic pollutants and emerging contaminants based on their relative toxic potency in environmental samples. Trends Anal Chem 22:655–665

    Article  CAS  Google Scholar 

  5. Farré M, Pérez S, Kantiani L (2008) Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. Trends Anal Chem 27:991–1007

    Article  CAS  Google Scholar 

  6. Durmusoglu E, Taspinar F, Karademir A (2010) Health risk assessment of BTEX emissions in the landfill environment. J Hazard Mater 176:870–877

    Article  CAS  Google Scholar 

  7. Toms L-ML, Hearn L, Mueller JF, Harden FA (2016) Assessing infant exposure to persistent organic pollutants via dietary intake in Australia. Food Chem Toxicol 87:166–171

    Article  CAS  Google Scholar 

  8. Umbuzeiro GA, Freeman HS, Warren SH, Oliveira DP, Terao Y, Watanabe T, Claxton LD (2005) The contribution of azo dyes to the mutagenic activity of the Cristais River. Chemosphere 60:55–64

    Article  CAS  Google Scholar 

  9. White PA, Claxton LD (2004) Mutagens in contaminated soil: a review. Mutat Res 567:227–345

    Article  CAS  Google Scholar 

  10. Banat IM, Nigam P, Singh D, Marchant R (1996) Microbial decolorization of textile-dye containing effluents: a review. Bioresour Technol 58:217–227

    Article  CAS  Google Scholar 

  11. Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15

    Article  CAS  Google Scholar 

  12. Fu F, Chen R, Xiong Y (2006) Application of a novel strategy – coordination polymerization precipitation to the treatment of Cu2+-containing wastewaters. Sep Purif Technol 52:388–393

    Article  CAS  Google Scholar 

  13. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418

    Article  CAS  Google Scholar 

  14. Cath TY, Childress AE, Elimelech M (2006) Forward osmosis: principles, applications, and recent developments. J Membr Sci 281:70–87

    Article  CAS  Google Scholar 

  15. Busca G, Berardinelli S, Resini C, Arrighi L (2008) Technologies for the removal of phenol from fluid streams: a short review of recent developments. J Hazard Mater 160:265–288

    Article  CAS  Google Scholar 

  16. Gabelman A, Hwang S-T (1999) Hollow fiber membrane contactors. J Membr Sci 159:61–106

    Article  CAS  Google Scholar 

  17. Verma AK, Dash RR, Bhunia P (2012) A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J Environ Manag 93:154–168

    Article  CAS  Google Scholar 

  18. Duan J, Gregory J (2003) Coagulation by hydrolysing metal salts. Adv Colloid Interf Sci 100–102:475–502

    Article  CAS  Google Scholar 

  19. Kurniawan TA, Chan GYS, Lo WH, Babel S (2006) Physico-chemical treatment techniques for wastewater laden with heavy metals. Chem Eng J 118:83–98

    Article  CAS  Google Scholar 

  20. Kannan N, Sundaram MM (2001) Kinetics and mechanism of removal of methylene blue by adsorption on various carbons – a comparative study. Dyes Pigments 51:25–40

    Article  CAS  Google Scholar 

  21. Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater 97:219–243

    Article  CAS  Google Scholar 

  22. Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97:1061–1085

    Article  CAS  Google Scholar 

  23. Babuponnusami A, Muthukumar K (2014) A review on Fenton and improvements to the Fenton process for wastewater treatment. J Environ Chem Eng 2:557–572

    Article  CAS  Google Scholar 

  24. Levec J, Pintar A (2007) Catalytic wet-air oxidation processes: a review. Catal Today 124:172–184

    Article  CAS  Google Scholar 

  25. Malato S, Blanco J, Vidal A, Richter C (2002) Photocatalysis with solar energy at a pilot-plant scale: an overview. Appl Catal B Environ 37:1–15

    Article  CAS  Google Scholar 

  26. Scott JP, Ollis DF (1995) Integration of chemical and biological oxidation processes for water treatment: review and recommendations. Environ Prog 14:88–103

    Article  CAS  Google Scholar 

  27. Saharan VK, Pinjari DV, Gogate PR, Pandit B (2014) Advanced oxidation technologies for wastewater treatment: an overview. Butterworth-Heinemann, Burlington, pp 141–191

    Google Scholar 

  28. Bowers AR, Gaddipati P, Eckenfelder WW, Monsen RM (1989) Treatment of toxic or refractory wastewaters with hydrogen peroxide. Water Sci Technol 21:477–486

    Article  CAS  Google Scholar 

  29. García MT, Ribosa I, Guindulain T, Sánchez-Leal J, Vives-Rego J (2001) Fate and effect of monoalkyl quaternary ammonium surfactants in the aquatic environment. Environ Pollut 111:169–175

    Article  Google Scholar 

  30. Lapertot M, Pulgarín C, Fernández-Ibáñez P, Maldonado MI, Pérez-Estrada L, Oller I, Gernjak W, Malato S (2006) Enhancing biodegradability of priority substances (pesticides) by solar photo-Fenton. Water Res 40:1086–1094

    Article  CAS  Google Scholar 

  31. Bigda RJ (1995) Consider Fenton’s chemistry for wastewater treatment. Chem Eng Prog 12:62–66

    Google Scholar 

  32. Huang CP, Dong C, Tang Z (1993) Advanced chemical oxidation: its present role and potential future in hazardous waste treatment. Waste Manag 13:361–377

    Article  CAS  Google Scholar 

  33. Comninellis C, Kapalka A, Malato S, Parsons SA, Poulios I, Mantzavinos D (2008) Advanced oxidation processes for water treatment: advances and trends for R&D. J Chem Technol Biotechnol 83:769–776

    Article  CAS  Google Scholar 

  34. Pera-Titus M, García-Molina V, Baños MA, Giménez J, Esplugas S (2004) Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl Catal B Environ 47:219–256

    Article  CAS  Google Scholar 

  35. Pignatello JJ, Oliveros E, Mackay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry advanced oxidation processes for organic contaminant destruction based on the Fenton. Crit Rev Environ Sci Technol 36:1–84

    Article  CAS  Google Scholar 

  36. Poyatos JM, Muñio MM, Almecija MC, Torres JC, Hontoria E, Osorio F (2010) Advanced oxidation processes for wastewater treatment: state of the art. Water Air Soil Pollut 205:187–204

    Article  CAS  Google Scholar 

  37. Froment GF, Bischoff KB (1990) Chemical reactor analysis and design. 2nd edn. Wiley, New York

    Google Scholar 

  38. Gogate PR, Pandit AB (2004) A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv Environ Res 8:501–551

    Article  CAS  Google Scholar 

  39. Karthikeyan S, Titus A, Gnanamani A, Mandal AB, Sekaran G (2011) Treatment of textile wastewater by homogeneous and heterogeneous Fenton oxidation processes. Desalination 281:438–445

    Article  CAS  Google Scholar 

  40. Punzi M, Mattiasson B, Jonstrup M (2012) Treatment of synthetic textile wastewater by homogeneous and heterogeneous photo-Fenton oxidation. J Photochem Photobiol A Chem 248:30–35

    Article  CAS  Google Scholar 

  41. Liotta LF, Gruttadauria M, Di Carlo G, Perrini G, Librando V (2009) Heterogeneous catalytic degradation of phenolic substrates: catalysts activity. J Hazard Mater 162:588–606

    Article  CAS  Google Scholar 

  42. Rey A, Zazo JA, Casas JA, Bahamonde A, Rodriguez JJ (2011) Influence of the structural and surface characteristics of activated carbon on the catalytic decomposition of hydrogen peroxide. Appl Catal A Gen 402:146–155

    Article  CAS  Google Scholar 

  43. Melero JA, Martínez F, Botas JA, Molina R, Pariente MI (2009) Heterogeneous catalytic wet peroxide oxidation systems for the treatment of an industrial pharmaceutical wastewater. Water Res 43:4010–4018

    Article  CAS  Google Scholar 

  44. Duarte F, Morais V, Maldonado-Hódar FJ, Madeira LM (2013) Treatment of textile effluents by the heterogeneous Fenton process in a continuous packed-bed reactor using Fe/activated carbon as catalyst. Chem Eng J 232:34–41

    Article  CAS  Google Scholar 

  45. Fida H, Zhang G, Guo S, Naeem A (2016) Heterogeneous Fenton degradation of organic dyes in batch and fixed bed using La-Fe montmorillonite as catalyst. J Colloid Interface Sci 490:859–868

    Article  CAS  Google Scholar 

  46. Mesquita I, Matos LC, Duarte F, Maldonado-Hódar FJ, Mendes A, Madeira LM (2012) Treatment of azo dye-containing wastewater by a Fenton-like process in a continuous packed-bed reactor filled with activated carbon. J Hazard Mater 237–238:30–37

    Article  CAS  Google Scholar 

  47. Martínez F, Melero JA, Botas JA, Pariente MI, Molina R (2007) Treatment of phenolic effluents by catalytic wet hydrogen peroxide oxidation over Fe2O3/SBA-15 extruded catalyst in a fixed-bed reactor. Ind Eng Chem Res 46:4396–4405

    Article  CAS  Google Scholar 

  48. Di Luca C, Massa P, Fenoglio R, Cabello FM (2014) Improved Fe2O3/Al2O3 as heterogeneous Fenton catalysts for the oxidation of phenol solutions in a continuous reactor. J Chem Technol Biotechnol 89:1121–1128

    Article  CAS  Google Scholar 

  49. Botas JA, Melero JA, Martínez F, Pariente MI (2010) Assessment of Fe2O3/SiO2 catalysts for the continuous treatment of phenol aqueous solutions in a fixed bed reactor. Catal Today 149:334–340

    Article  CAS  Google Scholar 

  50. Pariente MI, Siles JA, Molina R, Botas JA, Melero JA, Martínez F (2013) Treatment of an agrochemical wastewater by integration of heterogeneous catalytic wet hydrogen peroxide oxidation and rotating biological contactors. Chem Eng J 226:409–415

    Article  CAS  Google Scholar 

  51. Bello MM, Abdul Raman AA, Purushothaman M (2017) Applications of fluidized bed reactors in wastewater treatment – a review of the major design and operational parameters. J Clean Prod 141:1492–1514

    Article  CAS  Google Scholar 

  52. Garcia-Segura S, Bellotindos LM, Huang Y-H, Brillas E, Lu M-C (2016) Fenton process as alternative wastewater treatment technology – a review. J Taiwan Inst Chem Eng 67:211–225

    Article  CAS  Google Scholar 

  53. Yang W-C (2003) Handbook of fluidization and fluid-particle systems. Marcel Dekker, New York

    Book  Google Scholar 

  54. Tisa F, Abdul Raman AA, Wan Daud WMA (2014) Applicability of fluidized bed reactor in recalcitrant compound degradation through advanced oxidation processes: a review. J Environ Manag 146:260–275

    Article  CAS  Google Scholar 

  55. Shih YJ, Huang RL, Huang YH (2015) Adsorptive removal of arsenic using a novel akhtenskite coated waste goethite. J Clean Prod 87:897–905

    Article  CAS  Google Scholar 

  56. Şen S, Demirer GN (2003) Anaerobic treatment of real textile wastewater with a fluidized bed reactor. Water Res 37:1868–1878

    Article  CAS  Google Scholar 

  57. Bocos E, Pérez-Álvarez D, Pazos M, Rodríguez-Arguelles MC, Sanromán MA (2016) Coated nickel foam electrode for the implementation of continuous electro-Fenton treatment. J Chem Technol Biotechnol 91:685–692

    Article  CAS  Google Scholar 

  58. Li H, Priambodo R, Wang Y, Zhang H, Huang Y-H (2015) Mineralization of bisphenol A by photo-Fenton-like process using a waste iron oxide catalyst in a three-phase fluidized bed reactor. J Taiwan Inst Chem Eng 53:68–73

    Article  CAS  Google Scholar 

  59. Briones RM, De Luna MDG, Su C-C, Lu M-C (2014) Factors affecting Fenton oxidation of acetaminophen in a fluidized-bed reactor. J Environ Eng 140:77–83

    Article  CAS  Google Scholar 

  60. Aghdasinia H, Khataee A, Sheikhi M, Takhtfiroozeha P (2017) Pilot plant fluidized-bed reactor for degradation of basic blue 3 in heterogeneous Fenton process in the presence of natural magnetite. Environ Prog Sustain Energy 2017:1–10

    Google Scholar 

  61. Chou S, Huang C, Huang YH (1999) Effect of Fe2+ on catalytic oxidation in a fluidized bed reactor. Chemosphere 39:1997–2006

    Article  CAS  Google Scholar 

  62. Lyu C, Zhou D, Wang J (2016) Removal of multi-dye wastewater by the novel integrated adsorption and Fenton oxidation process in a fluidized bed reactor. Environ Sci Pollut Res 23:20893–20903

    Article  CAS  Google Scholar 

  63. Hou L, Wang L, Royer S, Zhang H (2016) Ultrasound-assisted heterogeneous Fenton-like degradation of tetracycline over a magnetite catalyst. J Hazard Mater 302:458–467

    Article  CAS  Google Scholar 

  64. Aghdasinia H, Bagheri R, Vahid B, Khataee A (2016) Central composite design optimization of pilot plant fluidized-bed heterogeneous Fenton process for degradation of an azo dye. Environ Technol 37:2703–2712

    Article  CAS  Google Scholar 

  65. Luyben WL (2007) Chemical reactor design and control. Wiley, New York

    Book  Google Scholar 

  66. Esposito G, Frunzo L, Panico A, Pirozzi F (2011) Modelling the effect of the OLR and OFMSW particle size on the performances of an anaerobic co-digestion reactor. Process Biochem 46:557–565

    Article  CAS  Google Scholar 

  67. Nielsen HB, Ahring BK (2006) Responses of the biogas process to pulses of oleate in reactors treating mixtures of cattle and pig manure. Biotechnol Bioeng 95:95–105

    Article  CAS  Google Scholar 

  68. Muñoz R, Kollner C, Guieysse B, Mattiasson B (2004) Photosynthetically oxygenated salicylate biodegradation in a continuous stirred tank photobioreactor. Biotechnol Bioeng 87:797–803

    Article  CAS  Google Scholar 

  69. Sponza DT, Gök O (2010) Effect of rhamnolipid on the aerobic removal of polyaromatic hydrocarbons (PAHs) and COD components from petrochemical wastewater. Bioresour Technol 101:914–924

    Article  CAS  Google Scholar 

  70. Martínez F, Molina R, Pariente MI, Siles JA, Melero JA (2016) Low-cost Fe/SiO2 catalysts for continuous Fenton processes. Catal Today 280:176–183

    Article  CAS  Google Scholar 

  71. Queirós S, Morais V, Rodrigues CSD, Maldonado-Hódar FJ, Madeira LM (2015) Heterogeneous Fenton’s oxidation using Fe/ZSM-5 as catalyst in a continuous stirred tank reactor. Sep Purif Technol 141:235–245

    Article  CAS  Google Scholar 

  72. Esteves BM, Rodrigues CSD, Boaventura RAR, Maldonado-Hódar FJ, Madeira LM (2016) Coupling of acrylic dyeing wastewater treatment by heterogeneous Fenton oxidation in a continuous stirred tank reactor with biological degradation in a sequential batch reactor. J Environ Manag 166:193–203

    Article  CAS  Google Scholar 

  73. Zhang H, Choi H, Huang C (2006) Treatment of landfill leachate by Fenton’s reagent in a continuous stirred tank reactor. J Hazard Mater 136:618–623

    Article  CAS  Google Scholar 

  74. Ramirez JH, Duarte FM, Martins FG, Costa CA, Madeira LM (2009) Modelling of the synthetic dye Orange II degradation using Fenton’s reagent: from batch to continuous reactor operation. Chem Eng J 148:394–404

    Article  CAS  Google Scholar 

  75. Barreto-Rodrigues M, Silva FT, Paiva TCB (2009) Optimization of Brazilian TNT industry wastewater treatment using combined zero-valent iron and Fenton processes. J Hazard Mater 168:1065–1069

    Article  CAS  Google Scholar 

  76. Hodaifa G, Ochando-Pulido JM, Rodriguez-Vives S, Martinez-Ferez A (2013) Optimization of continuous reactor at pilot scale for olive-oil mill wastewater treatment by Fenton-like process. Chem Eng J 220:117–124

    Article  CAS  Google Scholar 

  77. Zhang H, Ran X, Wu X (2012) Electro-Fenton treatment of mature landfill leachate in a continuous flow reactor. J Hazard Mater 241–242:259–266

    Article  CAS  Google Scholar 

  78. Zhang H, Fei C, Zhang D, Tang F (2007) Degradation of 4-nitrophenol in aqueous medium by electro-Fenton method. J Hazard Mater 145:227–232

    Article  CAS  Google Scholar 

  79. Fenton HJH (1894) Oxidation of tartaric acid in presence of iron. J Chem Soc 65:899–910

    Article  CAS  Google Scholar 

  80. Haber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc Lond A 147:332–351

    Article  CAS  Google Scholar 

  81. Walling C (1975) Fenton’s reagent revisited. Acc Chem Res 8:125–131

    Article  CAS  Google Scholar 

  82. Kuo WG (1992) Decolorizing dye wastewater with Fenton’s reagent. Water Res 26:881–886

    Article  CAS  Google Scholar 

  83. Bautista P, Mohedano AF, Casas JA, Zazo JA, Rodriguez JJ (2008) An overview of the application of Fenton oxidation to industrial wastewaters treatment. J Chem Technol Biotechnol 83:1323–1338

    Article  CAS  Google Scholar 

  84. Sychev AY, Isak VG (1995) Iron compounds and the mechanisms of the homogeneous catalysis of the activation of O2 and H2O2 and of the oxidation of organic substrates. Russ Chem Rev 64:1105–1129

    Article  Google Scholar 

  85. Chu L, Wang J, Dong J, Liu H, Sun X (2012) Treatment of coking wastewater by an advanced Fenton oxidation process using iron powder and hydrogen peroxide. Chemosphere 86:409–414

    Article  CAS  Google Scholar 

  86. Lucas MS, Peres JA (2009) Removal of COD from olive mill wastewater by Fenton’s reagent: kinetic study. J Hazard Mater 168:1253–1259

    Article  CAS  Google Scholar 

  87. Rodrigues CSD, Madeira LM, Boaventura RAR (2009) Treatment of textile effluent by chemical (Fenton’s reagent) and biological (sequencing batch reactor) oxidation. J Hazard Mater 172:1551–1559

    Article  CAS  Google Scholar 

  88. Tambosi JL, Di Domenico M, Schirmer WN, José HJ, Moreira RFPM (2006) Treatment of paper and pulp wastewater and removal of odorous compounds by a Fenton-like process at the pilot scale. J Chem Technol Biotechnol 81:1426–1432

    Article  CAS  Google Scholar 

  89. Bautista P, Mohedano AF, Gilarranz MA, Casas JA, Rodriguez JJ (2007) Application of Fenton oxidation to cosmetic wastewaters treatment. J Hazard Mater 143:128–134

    Article  CAS  Google Scholar 

  90. Peres JA, Heredia JB, Domínguez JR (2004) Integrated Fenton’s reagent – coagulation/flocculation process for the treatment of cork processing wastewaters. J Hazard Mater 107:115–121

    Article  CAS  Google Scholar 

  91. Guedes A, Madeira LM, Boaventura RAR, Costa CA (2003) Fenton oxidation of cork cooking wastewater – overall kinetic analysis. Water Res 37:3061–3069

    Article  CAS  Google Scholar 

  92. Wang W, Liu Y, Li T, Zhou M (2014) Heterogeneous Fenton catalytic degradation of phenol based on controlled release of magnetic nanoparticles. Chem Eng J 242:1–9

    Article  CAS  Google Scholar 

  93. Watts RJ, Jones AP, Chen P-H, Kenny A (1997) Mineral-catalyzed Fenton-like oxidation of sorbed chlorobenzenes. Water Environ Res 69:269–275

    Article  CAS  Google Scholar 

  94. Idel-Aouad R, Valiente M, Yaacoubi A, Tanouti B, Lópz-Mesas M (2011) Rapid decolourization and mineralization of the azo dye C.I. Acid Red 14 by heterogeneous Fenton reaction. J Hazard Mater 186:745–750

    Article  CAS  Google Scholar 

  95. EC Directive 2000/60/EC of the European parliament and of the council of October 23 (2000) Establishing a framework for community action in the field of water policy

    Google Scholar 

  96. Rokhina EV, Virkutyte J (2010) Environmental application of catalytic processes: heterogeneous liquid phase oxidation of phenol with hydrogen peroxide. Crit Rev Environ Sci Technol 41:125–167

    Article  CAS  Google Scholar 

  97. Barroso-Bogeat A, Alexandre-Franco M, Fernández-González C, Gómez-Serrano V (2016) Activated carbon surface chemistry: changes upon impregnation with Al(III), Fe(III) and Zn(II)-metal oxide catalyst precursors from NO3 aqueous solutions. Arab J Chem, in press. doi: 10.1016/j.arabjc.2016.02.018

  98. Oliveira LCA, Silva CN, Yoshida MI, Lago RM (2004) The effect of H2 treatment on the activity of activated carbon for the oxidation of organic contaminants in water and the H2O2 decomposition. Carbon N Y 42:2279–2284

    Article  CAS  Google Scholar 

  99. Zazo JA, Bedia J, Fierro CM, Pliego G, Casas JA, Rodriguez JJ (2012) Highly stable Fe on activated carbon catalysts for CWPO upon FeCl3 activation of lignin from black liquors. Catal Today 187:115–121

    Article  CAS  Google Scholar 

  100. Tatibouët JM, Guélou E, Fournier J (2005) Catalytic oxidation of phenol by hydrogen peroxide over a pillared clay containing iron. Active species and pH effect. Top Catal 33:225–232

    Article  CAS  Google Scholar 

  101. Lu M, Yao Y, Gao L, Mo D, Lin F, Lu S (2015) Continuous treatment of phenol over an Fe2O3/γ-Al2O3 catalyst in a fixed-bed reactor. Water Air Soil Pollut 226:87

    Article  CAS  Google Scholar 

  102. Liu P, He S, Wei H, Wang J, Sun C (2015) Catalytic wet peroxide oxidation of phenol over Fe2O3/MCM-41 in a fixed bed reactor. Ind Eng Chem Res 54:130–136

    Article  CAS  Google Scholar 

  103. Seyed Dorraji MS, Mirmohseni A, Carraro M, Gross S, Simone S, Tasselli F, Figoli A (2015) Fenton-like catalytic activity of wet-spun chitosan hollow fibers loaded with Fe3O4 nanoparticles: batch and continuous flow investigations. J Mol Catal A Chem 398:353–357

    Article  CAS  Google Scholar 

  104. Yan Y, Jiang S, Zhang H (2014) Efficient catalytic wet peroxide oxidation of phenol over Fe-ZSM-5 catalyst in a fixed bed reactor. Sep Purif Technol 133:365–374

    Article  CAS  Google Scholar 

  105. Zazo JA, Casas JA, Mohedano AF, Rodríguez JJ (2006) Catalytic wet peroxide oxidation of phenol with a Fe/active carbon catalyst. Appl Catal B Environ 65:261–268

    Article  CAS  Google Scholar 

  106. Chou S, Huang C, Huang Y (2001) Heterogeneous and homogeneous catalytic oxidation by supported γ-FeOOH in a fluidized-bed reactor: kinetic approach. Environ Sci Technol 35:1247–1251

    Article  CAS  Google Scholar 

  107. Achma RB, Ghorbel A, Dafinov A, Medina F (2008) Copper-supported pillared clay catalysts for the wet hydrogen peroxide catalytic oxidation of model pollutant tyrosol. Appl Catal A Gen 349:20–28

    Article  CAS  Google Scholar 

  108. Yu Y, Wei H, Yu L, Wang W, Zhao Y, Gu B, Sun C (2016) Sewage-sludge-derived carbonaceous materials for catalytic wet hydrogen peroxide oxidation of m-cresol in batch and continuous reactors. Environ Technol 37:153–162

    Article  CAS  Google Scholar 

  109. Guo J, Al-Dahhan M (2003) Catalytic wet oxidation of phenol by hydrogen peroxide over pillared clay catalyst. Ind Eng Chem Res 42:2450–2460

    Article  CAS  Google Scholar 

  110. Jung YS, Lim WT, Park J, Kim Y (2009) Effect of pH on Fenton and Fenton-like oxidation. Environ Technol 30:183–190

    Article  CAS  Google Scholar 

  111. Ramirez JH, Lampinen M, Vicente MA, Madeira LM (2008) Experimental design to optimize the oxidation of Orange II dye solution using a clay-based Fenton-like catalyst. Ind Eng Chem Res 47:284–294

    Article  CAS  Google Scholar 

  112. Catrinescu C, Teodosiu C, Macoveanu M (2003) Catalytic wet peroxide oxidation of phenol over Fe-exchanged pillared beidellite catalytic wet peroxide oxidation of phenol over Fe-exchanged pillared beidellite. Water Res 37:1154–1160

    Article  CAS  Google Scholar 

  113. Chi GT, Churchley J, Huddersman KD (2013) Pilot-scale removal of trace steroid hormones and pharmaceuticals and personal care products from municipal wastewater using a heterogeneous Fenton’s catalytic process. Int J Chem Eng 2013:1–10

    Article  CAS  Google Scholar 

  114. Kuznetsova EV, Savinov EN, Vostrikova LA, Parmon VN (2004) Heterogeneous catalysis in the Fenton-type system FeZSM-5/H2O2. Appl Catal B Environ 51:165–170

    Article  CAS  Google Scholar 

  115. Muruganandham M, Suri RPS, Jafari S, Sillanpää M, Lee G-J, Wu JJ, Swaminathan M (2014) Recent developments in homogeneous advanced oxidation processes for water and wastewater treatment. Int J Photoenergy 1:1–21

    Article  CAS  Google Scholar 

  116. Ramirez JH, Maldonado-Hódar FJ, Pérez-Cadenas AF, Moreno-Castilla C, Costa CA, Madeira LM (2007) Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts. Appl Catal B 75:312–323

    Article  CAS  Google Scholar 

  117. Duarte F, Maldonado-Hódar FJ, Madeira LM (2013) Influence of the iron precursor in the preparation of heterogeneous Fe/activated carbon Fenton-like catalysts. Appl Catal A Gen 458:39–47

    Article  CAS  Google Scholar 

  118. Rache ML, García AR, Zea HR, Silva AMT, Madeira LM, Ramirez JH (2014) Azo-dye orange II degradation by the heterogeneous Fenton-like process using a zeolite Y-Fe catalyst – kinetics with a model based on the Fermi’s equation. Appl Catal B Environ 146:192–200

    Article  CAS  Google Scholar 

  119. Rodrigues CSD, Boaventura RAR, Madeira LM (2014) Technical and economic feasibility of polyester dyeing wastewater treatment by coagulation/flocculation and Fenton’s oxidation. Environ Technol 35:1307–1319

    Article  CAS  Google Scholar 

  120. Lin SH, Lo CC (1997) Fenton process for treatment of desizing wastewater. Water Res 31:2050–2056

    Article  CAS  Google Scholar 

  121. Ito K, Jian W, Nishijima W, Baes AU, Shoto E, Okada M (1998) Comparison of ozonation and AOPs combined with biodegradation for removal of thm precursors in treated sewage effluents. Water Sci Technol 38:179–186

    Article  CAS  Google Scholar 

  122. Nieto LM, Hodaifa G, Rodriguez S, Giménez JA, Ochando J (2011) Degradation of organic matter in olive-oil mill wastewater through homogeneous Fenton-like reaction. Chem Eng J 173:503–510

    Article  CAS  Google Scholar 

  123. Ramirez JH, Costa CA, Madeira LM (2005) Experimental design to optimize the degradation of the synthetic dye Orange II using Fenton’s reagent. Catal Today 107–108:68–76

    Article  CAS  Google Scholar 

  124. Rodríguez A, Ovejero G, Sotelo JL, Mestanza M, García J (2010) Heterogeneous Fenton catalyst supports screening for mono azo dye degradation in contaminated wastewaters. Ind Eng Chem Res 49:498–505

    Article  CAS  Google Scholar 

  125. Duarte F, Maldonado-Hódar FJ, Madeira LM (2012) Influence of the particle size of activated carbons on their performance as Fe supports for developing Fenton-like catalysts. Ind Eng Chem Res 51:9218–9226

    Article  CAS  Google Scholar 

  126. Navalon S, Alvaro M, Garcia H (2010) Heterogeneous Fenton catalysts based on clays, silicas and zeolites. Appl Catal B Environ 99:1–26

    Article  CAS  Google Scholar 

  127. Figueiredo JL, Pereira MFR, Freitas MMA, Órfão JJM (1999) Modification of the surface chemistry of activated carbons. Carbon 37:1379–1389

    Article  CAS  Google Scholar 

  128. Yao Y, Wang L, Sun L, Zhu S, Huang Z, Mao Y, Lu W, Chen W (2013) Efficient removal of dyes using heterogeneous Fenton catalysts based on activated carbon fibers with enhanced activity. Chem Eng Sci 101:424–431

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was the result of the Project POCI-01-0145-FEDER-006939 (Laboratory for Process Engineering, Environment, Biotechnology and Energy – UID/EQU/00511/2013) funded by the European Regional Development Fund (ERDF), through COMPETE2020 Programa Operacional Competitividade e Internacionalização (POCI), and by national funds, through Fundação para a Ciência e a Tecnologia (FCT), and Project NORTE-01-0145-FEDER-000005 – LEPABE-2-ECO-INNOVATION, supported by the North Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF).

Carmen Rodrigues is grateful to FCT for the financial support through the postdoctoral grant (SFRH/BPD/115879/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis M. Madeira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Esteves, B.M., Rodrigues, C.S.D., Madeira, L.M. (2017). Wastewater Treatment by Heterogeneous Fenton-Like Processes in Continuous Reactors. In: Gil, A., Galeano, L., Vicente, M. (eds) Applications of Advanced Oxidation Processes (AOPs) in Drinking Water Treatment. The Handbook of Environmental Chemistry, vol 67. Springer, Cham. https://doi.org/10.1007/698_2017_81

Download citation

Publish with us

Policies and ethics