Skip to main content

Immobilized Heterogeneous Photocatalysis for Reuse of Water Contaminated by Recalcitrant Organic Compounds: The Case of Antibiotics

  • Chapter
  • First Online:
Advanced Treatment Technologies for Urban Wastewater Reuse

Abstract

Photocatalysis has often being proposed to destroy micropollutants recalcitrant to biological treatment. However, the use of suspension of TiO2 nanoparticles at an industrial scale is not easy. The chapter reports on the evaluation of the efficiency of two photocatalysts (P25 and PC500) immobilized on glass plates and cellulose fibers for the degradation of three antibiotics (amoxicilline, sulfamethoxazole and tylosin) used in human and animal medicine. Although the degradation rates of these antibiotics observed with the immobilized photocatalysts are lower than those reported in the literature with suspended photocatalysts for the same molecules, the feasibility of their degradation has been assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[AB]:

Antibiotic concentration

[AB]0 :

Initial antibiotic concentration

e cb :

Electron in the conduction band

h+ vb :

Hole in the valence band

k deg :

Degradation constant

KLH:

Adsorption constant

r :

Rate of reaction

r0:

Initial rate of degradation

References

  1. Ternes T (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32:3245–3260

    Article  CAS  Google Scholar 

  2. Hirsch R, Ternes T, Haberer K, Kratz KL (1999) Occurrence of antibiotics in the aquatic environment. Sci Total Environ 225:109–118

    Article  CAS  Google Scholar 

  3. Kümmerer K (2001) Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources – a review. Chemosphere 45:957–969

    Article  Google Scholar 

  4. Kolpin D, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 199 9–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211

    Article  CAS  Google Scholar 

  5. Alighardashi A, Pons MN, Potier O (2008) Occurrence and fate of pharmaceutical substances in urban wastewater, a literature mini-review. J Water Sci 21(4):413–426

    CAS  Google Scholar 

  6. LIR (2014) European study on pharmaceuticals. http://www.lir.asso.fr/pdf/2012/SYNTHESE_ETUDE%20CONSOMMATION_LIR_JUILLET_2012_VF.pdf. Accessed 10 Feb 2014

  7. Li X, Watanabe N, Xiao C, Harter T, McCowan B, Liu Y, Atwill ER (2014) Antibiotic-resistant E. coli in surface water and groundwater in dairy operations in Northern California. Environ Monit Assess 186:1253–1260

    Article  CAS  Google Scholar 

  8. Chevance A, Moulin G (2013) Monitoring of veterinary antibiotics in France in 2012. ISSN: 2263-5408. ANSES, Maisons-Alfort

    Google Scholar 

  9. Agreste (2014) Agricultural statistics. Ministry of Agriculture, France. http://agreste.agriculture.gouv.fr/

  10. Bouki C, Venieri D, Diamadopoulos E (2013) Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: a review. Ecotoxicol Environ Saf 91:1–9

    Article  CAS  Google Scholar 

  11. Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy MC, Michael I, Fatta-Kassinos D (2013) Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci Total Environ 447:345–360

    Article  CAS  Google Scholar 

  12. Kümmerer K (2009) Antibiotics in the aquatic environment – a review – Part I. Chemosphere 75:417–434

    Article  CAS  Google Scholar 

  13. Kümmerer K (2009) Antibiotics in the aquatic environment – a review – Part II. Chemosphere 75:435–441

    Article  CAS  Google Scholar 

  14. Huerta B, Marti E, Gros M, López P, Pompêo M, Armengol J, Barceló D, Balcázar JL, Rodríguez-Mozaz S, Marcé R (2013) Exploring the links between antibiotic occurrence, antibiotic resistance, and bacterial communities in water supply reservoirs. Sci Total Environ 456–457:161–170

    Article  CAS  Google Scholar 

  15. Marti E, Variatza E, Balcazar JL (2014) The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol 22:36–41

    Article  CAS  Google Scholar 

  16. Fick J, Söderström H, Lindberg RH, Phan C, Tysklind M, Larsson DGJ (2009) Contamination of surface, ground, and drinking water from pharmaceutical production. Environ Toxicol Chem 28:2522–2527

    Article  CAS  Google Scholar 

  17. Ngwuluka NC, Ochekpe NC, Odumosu PO (2011) An assessment of pharmaceutical waste management in some Nigerian pharmaceutical industries. Afr J Biotechnol 10:11259–11268

    CAS  Google Scholar 

  18. Khan GA, Berglund B, Khan KM, Lindgren PE, Fick J (2013) Occurrence and abundance of antibiotics and resistance genes in rivers, canal and near drug formulation facilities – a study in Pakistan. PLoS One 8(6):e62712

    Article  CAS  Google Scholar 

  19. Limayem A, Martin EM (2014) Quantitative risk analysis for potentially resistant E. coli in surface waters caused by antibiotic use in agricultural systems. J Environ Sci Health B 49:124–133

    Article  CAS  Google Scholar 

  20. Zhang ST, Lv L, Zhang YL, Zhang HN, Yu X, Zhang SH (2013) Occurrence and variations of five classes of antibiotic resistance genes along the Jiulong River in southeast China. J Environ Biol 34:345–351

    CAS  Google Scholar 

  21. Furtula V, Jackson CR, Farrell EG, Barrett JB, Hiott LM, Chambers PA (2013) Antimicrobial resistance in Enterococcus spp. isolated from environmental samples in an area of intensive poultry production. Int J Environ Res Public Health 10(3):1020–1036

    Article  CAS  Google Scholar 

  22. Budiati T, Rusul G, Wan-Abdullah WN, Arip YM, Ahmad R, Thong KL (2013) Prevalence, antibiotic resistance and plasmid profiling of Salmonella in catfish (Clarias gariepinus) and tilapia (Tilapia mossambica) obtained from wet markets and ponds in Malaysia. Aquaculture 372–375:127–132

    Article  CAS  Google Scholar 

  23. Labella A, Gennari M, Ghidini V, Trento I, Manfrin A, Borrego JJ, Lleo MM (2013) High incidence of antibiotic multi-resistant bacteria in coastal areas dedicated to fish farming. Mar Pollut Bull 70:197–203

    Article  CAS  Google Scholar 

  24. Tuševljak N, Dutil L, Rajić A, Uhland FC, McClure C, St-Hilaire S, Reid-Smith RJ, McEwe SA (2013) Antimicrobial use and resistance in aquaculture: findings of a globally administered survey of aquaculture-allied professionals. Zoonoses Public Health 60:426–436

    Article  CAS  Google Scholar 

  25. Zhang RQ, Ying GG, Su HC, Zhou LJ, Liu YS (2013) Antibiotic resistance and genetic diversity of Escherichia coli isolates from traditional and integrated aquaculture in South China. J Environ Sci Health B 48:999–1013

    Article  CAS  Google Scholar 

  26. Kümmerer K (2004) Resistance in the environment. J Antimicrob Chemother 54:311–320

    Article  CAS  Google Scholar 

  27. Varela AR, Ferro G, Vredenburg J, Yanık M, Vieira L, Rizzo L, Lameiras C, Manaia CM (2013) Vancomycin resistant enterococci: from the hospital effluent to the urban wastewater treatment plant. Sci Total Environ 450–451:155–161

    Article  CAS  Google Scholar 

  28. Wang FH, Qiao M, Lv ZE, Guo GX, Jia Y, Su YH, Zhu YG (2014) Impact of reclaimed water irrigation on antibiotic resistance in public parks, Beijing, China. Environ Pollut 184:247–253

    Article  CAS  Google Scholar 

  29. Malik A, Aleem A (2011) Incidence of metal and antibiotic resistance in Pseudomonas spp. from the river water, agricultural soil irrigated with wastewater and groundwater. Environ Monit Assess 178:293–308

    Article  CAS  Google Scholar 

  30. Rosenberg Goldstein RE, Micallef SA, Gibbs SG, George A, Claye E, Sapkota A, Joseph SW, Sapkota AR (2014) Detection of vancomycin-resistant enterococci (VRE) at four U.S. wastewater treatment plants that provide effluent for reuse. Sci Total Environ 466–467:404–411

    Article  CAS  Google Scholar 

  31. Pruden A (2014) Balancing water sustainability and public health goals in the face of growing concerns about antibiotic resistance. Environ Sci Technol 48:5–14

    Article  CAS  Google Scholar 

  32. Klavarioti M, Mantzavinos D, Kassinos D (2009) Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ Int 35:402–417

    Article  CAS  Google Scholar 

  33. Calza P, Pelizzetti E, Minero C (2005) The fate of organic nitrogen in photocatalysis: an overview. J Appl Electrochem 35:665–673

    Article  CAS  Google Scholar 

  34. Malkhasian AYS, Izadifard M, Achari G, Langford CH (2014) Photocatalytic degradation of agricultural antibiotics using a UV-LED light source. J Environ Sci Health B 49:35–40

    Article  CAS  Google Scholar 

  35. Prieto-Rodriguez L, Miralles-Cuevas S, Oller I, Fernández-Ibáñez P, Agüera A, Blanco J, Malato S (2012) Optimization of mild solar TiO2 photocatalysis as a tertiary treatment for municipal wastewater treatment plant effluents. Appl Catal B Environ 128:119–125

    Article  CAS  Google Scholar 

  36. Abellán MN, Bayarri B, Giménez J, Costa J (2007) Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2. Appl Catal B Environ 74:233–241

    Article  CAS  Google Scholar 

  37. Abellán MN, Giménez J, Esplugas S (2009) Photocatalytic degradation of antibiotics: the case of sulfamethoxazole and trimethoprim. Catal Today 144:131–136

    Article  CAS  Google Scholar 

  38. Baran W, Sochacka J, Wardas W (2006) Toxicity and biodegradability of sulfonamides and products of their photocatalytic degradation in aqueous solutions. Chemosphere 65(8):1295–1299

    Article  CAS  Google Scholar 

  39. Nasuhoglu D, Yargeau V, Berk D (2010) Photo-removal of sulfamethoxazole (SMX) by photolytic and photocatalytic processes in a batch reactor under UV-C radiation (λmax = 254nm). J Hazard Mater 186:67–75

    Article  CAS  Google Scholar 

  40. Xekoukoulotakis NP, Drosou C, Brebou C, Chatzisymeon E, Hapeshi E, Fatta-Kassinos D, Mantzavinos D (2011) Kinetics of UV-A/TiO2 photocatalytic degradation and mineralization of the antibiotic sulfamethoxazole in aqueous matrices. Catal Today 161:163–168

    Article  CAS  Google Scholar 

  41. Choi J, Lee H, Choi Y, Kim S, Lee S, Lee S, Choi W, Lee J (2014) Heterogeneous photocatalytic treatment of pharmaceutical micropollutants: effects of wastewater effluent matrix and catalyst modifications. Appl Catal B Environ 147:8–16

    Article  CAS  Google Scholar 

  42. Xu L, Wang G, Ma FY, Zhao YH, Lu N, Guo YH, Yang X (2012) Photocatalytic degradation of an aqueous sulfamethoxazole over the metallic silver and Keggin unit codoped titania nanocomposites. Appl Surf Sci 258:7039–7046

    Article  CAS  Google Scholar 

  43. Ding S, Niu J, Bao Y, Hu L (2013) Evidence of superoxide radical contribution to demineralization of sulfamethoxazole by visible-light-driven Bi2O3/Bi2O2CO3/Sr6Bi2O9 photocatalyst. J Hazard Mater 262:812–818

    Article  CAS  Google Scholar 

  44. Hu L, Flanders PM, Miller PL, Strathmann TJ (2007) Oxidation of sulfamethoxazole and related antimicrobial agents by TiO2 photocatalysis. Water Res 41:2612–2626

    Article  CAS  Google Scholar 

  45. Guo CS, Xu J, Wang SF, Zhang Y, He Y, Li XC (2013) Photodegradation of sulfamethazine in an aqueous solution by a bismuth molybdate photocatalyst. Catal Sci Technol 3:1603–1611

    Article  CAS  Google Scholar 

  46. Kaniou S, Pitarakis K, Barlagianni I, Poulios I (2005) Photocatalytic oxidation of sulfamethazine. Chemosphere 60:372–380

    Article  CAS  Google Scholar 

  47. Sleman F, Mahmoud WMM, Schubert R, Kümmerer K (2012) Photodegradation, photocatalytic, and aerobic biodegradation of sulfisomidine and identification of transformation products by LC–UV-MS/MS. Clean Soil Air Water 40:1244–1249

    Article  CAS  Google Scholar 

  48. Yang H, Li G, An T, Gao Y, Fu J (2010) Photocatalytic degradation kinetics and mechanism of environmental pharmaceuticals in aqueous suspension of TiO2: a case of sulfa drugs. Catal Today 153:200–207

    Article  CAS  Google Scholar 

  49. Baran W, Adamek E, Sobczak A, Makowski A (2009) Photocatalytic degradation of sulfa drugs with TiO2, Fe salts and TiO2/FeCl3 in aquatic environment—kinetics and degradation pathway. Appl Catal B Environ 90:516–525

    Article  CAS  Google Scholar 

  50. Niu J, Ding S, Zhang L, Zhao J, Feng C (2013) Visible-light-mediated Sr-Bi2O3 photocatalysis of tetracycline: kinetics, mechanisms and toxicity assessment. Chemosphere 93:1–8

    Article  CAS  Google Scholar 

  51. Reyes C, Fernandez J, Freer J, Mondaca MA, Zaror C, Malato S, Mansilla HD (2006) Degradation and inactivation of tetracycline by TiO2 photocatalysis. J Photochem Photobiol A Chem 184:141–146

    Article  CAS  Google Scholar 

  52. Zhu XD, Wang YJ, Sun RJ, Zhou DM (2013) Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2. Chemosphere 92:925–932

    Article  CAS  Google Scholar 

  53. Addamo M, Augugliaro V, Di Paola A, García-López E, Loddo V, Marcìa G, Palmisano L (2005) Removal of drugs in aqueous systems by photo-assisted degradation. J Appl Electrochem 35:765–774

    Article  CAS  Google Scholar 

  54. Palominos RA, Mondaca MA, Giraldo A, Peñuela G, Pérez-Moya M, Mansilla HD (2009) Photocatalytic oxidation of the antibiotic tetracycline on TiO2 and ZnO suspensions. Catal Today 144:100–105

    Article  CAS  Google Scholar 

  55. Hao R, Xiao X, Zuo X, Nan J, Zhang W (2012) Efficient adsorption and visible-light photocatalytic degradation of tetracycline hydrochloride using mesoporous BiOI microspheres. J Hazard Mater 209–210:137–145

    Article  CAS  Google Scholar 

  56. Xiao X, Hu R, Liu C, Xing C, Zuo X, Nan J, Wang L (2013) Facile microwave synthesis of novel hierarchical Bi24O31Br10 nanoflakes with excellent visible light photocatalytic performance for the degradation of tetracycline hydrochloride. Chem Eng J 225:790–797

    Article  CAS  Google Scholar 

  57. Pereira JHOS, Vilar VJP, Borges MT, González O, Esplugas S, Boaventura RAR (2011) Photocatalytic degradation of oxytetracycline using TiO2 under natural and simulated solar radiation. Sol Energy 85:2732–2740

    Article  CAS  Google Scholar 

  58. Pereira JHOS, Reis AC, Queirós D, Nunes OC, Borges MT, Vilar VJP, Boaventura RAR (2013) Insights into solar TiO2-assisted photocatalytic oxidation of two antibiotics employed in aquatic animal production, oxolinic acid and oxytetracycline. Sci Total Environ 463–464:274–283

    Article  CAS  Google Scholar 

  59. Zhao C, Deng H, Li Y, Liu Z (2010) Photodegradation of oxytetracycline in aqueous by 5A and 13X loaded with TiO2 under UV irradiation. J Hazard Mater 176:884–892

    Article  CAS  Google Scholar 

  60. Zhao C, Pelaez M, Duan X, Deng H, O’Shea K, Fatta-Kassinos D, Dionysiou DD (2013) Role of pH on photolytic and photocatalytic degradation of antibiotic oxytetracycline in aqueous solution under visible/solar light: kinetics and mechanism studies. Appl Catal B Environ 134–135:83–92

    Article  CAS  Google Scholar 

  61. Huo P, Lu Z, Liu X, Liu X, Gao X, Pan J, Wu D, Ying J, Li H, Yan Y (2012) Preparation molecular/ions imprinted photocatalysts of La3+@POPD/TiO2/fly-ash cenospheres: preferential photodegradation of TCs antibiotics. Chem Eng J 198–199:73–80

    Article  CAS  Google Scholar 

  62. Petronella F, Diomede S, Fanizza E, Mascolo G, Sibillano T, Agostiano A, Curri ML, Comparelli R (2013) Photodegradation of nalidixic acid assisted by TiO2 nanorods/Ag nanoparticles based catalyst. Chemosphere 91:941–947

    Article  CAS  Google Scholar 

  63. Paul T, Miller PL, Strathmann TJ (2007) Visible-light-mediated TiO2 photocatalysis of fluoroquinolone antibacterial agents. Environ Sci Technol 41:4720–4727

    Article  CAS  Google Scholar 

  64. Giraldo AL, Penuela GA, Torres-Palma RA, Pino NJ, Palominos RA, Mansilla HD (2010) Degradation of the antibiotic oxolinic acid by photocatalysis with TiO2 in suspension. Water Res 44:5158–5167

    Article  CAS  Google Scholar 

  65. Palominos RA, Mora A, Mondaca MA, Pérez-Moya M, Mansilla HD (2008) Oxolinic acid photo-oxidation using immobilised TiO2. J Hazard Mater 158(2–3):460–464

    Article  CAS  Google Scholar 

  66. Rodrigues-Silva C, Guedes Maniero M, Rath S, Guimarães JR (2013) Degradation of flumequine by photocatalysis and evaluation of antimicrobial activity. Chem Eng J 224:46–52

    Article  CAS  Google Scholar 

  67. Nieto J, Freer J, Contreras D, Candal RJ, Sileo EE, Mansilla HD (2008) Photocatalyzed degradation of flumequine by doped TiO2 and simulated solar light. J Hazard Mater 155:45–50

    Article  CAS  Google Scholar 

  68. Vasquez MI, Garcia-Käufer M, Hapeshi E, Menz J, Kostarelos K, Fatta-Kassinos D, Kümmerer K (2013) Chronic ecotoxic effects to Pseudomonas putida and Vibrio fischeri, and cytostatic and genotoxic effects to the hepatoma cell line (HepG2) of ofloxacin photo(cata)lytically treated solutions. Sci Total Environ 450–451:356–365

    Article  CAS  Google Scholar 

  69. Hapeshi E, Achilleos A, Vasquez MI, Michael C, Xekoukoulotakis NP, Mantzavinos D, Kassinos D (2010) Drugs degrading photocatalytically: kinetics and mechanisms of ofloxacin and atenolol removal on titania suspensions. Water Res 44:1737–1746

    Article  CAS  Google Scholar 

  70. Lu Z, Huo P, Luo Y, Liu X, Wu D, Gao X, Li C, Yan Y (2013) Performance of molecularly imprinted photocatalysts based on fly-ash cenospheres for selective photodegradation of single and ternary antibiotics solution. J Mol Catal A Chem 378:91–98

    Article  CAS  Google Scholar 

  71. Van Doorslaer X, Demeestere K, Heynderickx PM, Van Langenhove H, Dewulf J (2011) UV-A and UV-C induced photolytic and photocatalytic degradation of aqueous ciprofloxacin and moxifloxacin: reaction kinetics and role of adsorption. Appl Catal B Environ 101:540–547

    Article  CAS  Google Scholar 

  72. An T, Yang H, Li G, Song W, Cooper WJ, Nie X (2010) Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water. Appl Catal B Environ 94:288–294

    Article  CAS  Google Scholar 

  73. Vasconcelos TG, Kümmerer K, Henriques DM, Martins AF (2009) Ciprofloxacin in hospital effluent: degradation by ozone and photoprocesses. J Hazard Mater 169:1154–1158

    Article  CAS  Google Scholar 

  74. Paul T, Dodd MC, Strathmann TJ (2010) Photolytic and photocatalytic decomposition of aqueous ciprofloxacin: transformation products and residual antibacterial activity. Water Res 44:3121–3132

    Article  CAS  Google Scholar 

  75. Huo P, Lu Z, Liu X, Wu D, Liu X, Pan J, Gao X, Guo W, Li H, Yan Y (2012) Preparation photocatalyst of selected photodegradation antibiotics by molecular imprinting technology onto TiO2/fly-ash cenospheres. Chem Eng J 189–190:75–83

    Article  CAS  Google Scholar 

  76. Huo P, Lu Z, Wang H, Pan J, Li H, Wu X, Huang W, Yan Y (2011) Enhanced photodegradation of antibiotics solution under visible light with Fe2+/Fe3+ immobilized on TiO2/fly-ash cenospheres by using ions imprinting technology. Chem Eng J 172:615–622

    Article  CAS  Google Scholar 

  77. Hao DG, Zhang XJ, Ying WY, Li T (2013) Preparation of zinc sulfide microspheres and its photocatalytic activity on antibiotics. Asian J Chem 25:1897–1900

    CAS  Google Scholar 

  78. Van Doorslaer X, Heynderickx PM, Demeestere K, Debevere K, Van Langenhove H, Dewulf J (2012) TiO2 mediated heterogeneous photocatalytic degradation of moxifloxacin: operational variables and scavenger study. Appl Catal B Environ 111–112:150–156

    Article  CAS  Google Scholar 

  79. Van Doorslaer X, Demeestere K, Heynderickx PM, Caussyn M, Van Langenhove H, Devlieghere F, Vermeulen A, Dewulf J (2013) Heterogeneous photocatalysis of moxifloxacin: identification of degradation products and determination of residual antibacterial activity. Appl Catal B Environ 138–139:333–341

    Article  CAS  Google Scholar 

  80. Chatzitakis A, Berberidou C, Paspaltsis I, Kyriakou G, Sklaviadis T, Poulios I (2008) Photocatalytic degradation and drug activity reduction of chloramphenicol. Water Res 42:386–394

    Article  CAS  Google Scholar 

  81. Zhang J, Fu D, Xu Y, Liu C (2010) Optimization of parameters on photocatalytic degradation of chloramphenicol using TiO2 as photocatalyst by response surface methodology. J Environ Sci 22(8):1281–1289

    Article  CAS  Google Scholar 

  82. Augugliaro V, García-López E, Loddo V, Malato-Rodríguez S, Maldonado I, Marcìa G, Molinari R, Palmisano L (2005) Degradation of lincomycin in aqueous medium: coupling of solar photocatalysis and membrane separation. Sol Energy 79:402–708

    Article  CAS  Google Scholar 

  83. Pouretedal HR, Hasanali MA (2013) Photocatalytic degradation of some β-lactam antibiotics in aqueous suspension of ZnS nanoparticles. Desalin Wat Treat 51(13–15):2617–2623

    Article  CAS  Google Scholar 

  84. Elmolla ES, Chaudhuri M (2010) Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. Desalination 252:46–52

    Article  CAS  Google Scholar 

  85. Elmolla ES, Chaudhuri M (2010) Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process. J Hazard Mater 173:445–449

    Article  CAS  Google Scholar 

  86. Pereira JHOS, Reis AC, Nunes OC, Borges MT, Vilar VJP, Boaventura RAR (2014) Assessment of solar driven TiO2-assisted photocatalysis efficiency on amoxicillin degradation. Environ Sci Pollut Res 21:1292–1303

    Article  CAS  Google Scholar 

  87. Klauson D, Babkina J, Stepanova K, Krichevskaya M, Preis S (2010) Aqueous photocatalytic oxidation of amoxicillin. Catal Today 151:39–45

    Article  CAS  Google Scholar 

  88. Rizzo L, Meric S, Guida M, Kassinos D, Belgiorno V (2009) Heterogenous photocatalytic degradation kinetics and detoxification of an urban wastewater treatment plant effluent contaminated with pharmaceuticals. Water Res 43:4070–4078

    Article  CAS  Google Scholar 

  89. Dimitrakopoulou D, Rethemiotaki I, Frontistis Z, Xekoukoulotakis NP, Venieri D, Mantzavinos D (2012) Degradation, mineralization and antibiotic inactivation of amoxicillin by UV-A/TiO2 photocatalysis. J Environ Manag 98:168–174

    Article  CAS  Google Scholar 

  90. Nosrati R, Olad A, Maramifar R (2012) Degradation of ampicillin antibiotic in aqueous solution by ZnO/polyaniline nanocomposite as photocatalyst under sunlight irradiation. Int J Environ Res Public Health 19(6):2291–2299

    CAS  Google Scholar 

  91. Alatrache A, Laoufi NA, Pons MN, Van Deik J, Zahraa O (2010) Tylosin abatement in water by photocatalytic process. Water Sci Technol 62(2):435–441

    Article  CAS  Google Scholar 

  92. Xekoukoulotakis NP, Xinidis N, Chroni M, Mantzavinos D, Venieri D, Hapeshi E, Fatta-Kassinos D (2010) UV-A/TiO2 photocatalytic decomposition of erythromycin in water: factors affecting mineralization and antibiotic activity. Catal Today 151:29–33

    Article  CAS  Google Scholar 

  93. Bernabeu A, Vercher RF, Santos-Juanes L, Simón PJ, Lardín C, Martínez MA, Vicente JA, González R, Llosá C, Arques A, Amat AM (2011) Solar photocatalysis as a tertiary treatment to remove emerging pollutants from wastewater treatment plant effluent. Catal Today 161:235–240

    Article  CAS  Google Scholar 

  94. Oncu NB, Balcioglu IA (2013) Antimicrobial contamination removal from environmentally relevant matrices: a literature review and a comparison of three processes for drinking water treatment. Ozone Sci Eng 35:73–85

    Article  CAS  Google Scholar 

  95. Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027

    Article  CAS  Google Scholar 

  96. Seal S, Karn B (2014) Safety aspects of nanotechnology based activity. Saf Sci 63:217–225

    Article  Google Scholar 

  97. von Moos N, Slaveykova VI (2014) Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae - state of the art and knowledge gaps. Nanotoxicology 8:605–630

    Article  CAS  Google Scholar 

  98. Ucciferri N, Collnot EM, Gaiser BK, Tirella A, Stone V, Domenic C, Lehr CM, Ahluwalia A (2014) In vitro toxicological screening of nanoparticles on primary human endothelial cells and the role of flow in modulating cell response. Nanotoxicology 8:697–708

    Article  CAS  Google Scholar 

  99. Tavares AM, Louro H, Antunes S, Quarré S, Simar S, De Temmerman PJ, Verleysen E, Mast J, Jensen KA, Norppa H, Nesslany F, Silva MJ (2014) Genotoxicity evaluation of nanosized titanium dioxide, synthetic amorphous silica and multi-walled carbon nanotubes in human lymphocytes. Toxicol In Vitro 28:60–69

    Article  CAS  Google Scholar 

  100. Valdiglesias V, Costa C, Sharma V, Kiliç G, Pásaro E, Teixeira JP, Dhawan A, Laffon B (2013) Comparative study on effects of two different types of titanium dioxide nanoparticles on human neuronal cells. Food Chem Toxicol 57:352–361

    Article  CAS  Google Scholar 

  101. Tassinari R, Cubadda F, Moracci G, Aureli F, D'Amato M, Valeri M, De Berardis B, Raggi A, Mantovani A, Passeri D, Rossi M, Maranghi F (2014) Oral, short-term exposure to titanium dioxide nanoparticles in Sprague-Dawley rat: focus on reproductive and endocrine systems and spleen. Nanotoxicology 8:654–662

    Article  CAS  Google Scholar 

  102. Fernández-Ibáñez P, Blanco J, Malato S, de las Nieves FJ (2003) Application of the colloidal stability of TiO2 particles for recovery and reuse in solar photocatalysis. Water Res 37:3180–3188

    Article  CAS  Google Scholar 

  103. Suryaman D, Hasegawa K, Kagaya S, Yoshimura T (2009) Continuous flow photocatalytic treatment integrated with separation of titanium dioxide on the removal of phenol in tap water. J Hazard Mater 171:318–322

    Article  CAS  Google Scholar 

  104. Álvarez PM, Jaramillo J, López-Piñero F, Plucinski PK (2010) Preparation and characterization of magnetic TiO2 nanoparticles and their utilization for the degradation of emerging pollutants in water. Appl Catal B Environ 100:338–345

    Article  CAS  Google Scholar 

  105. Molinari R, Mungari M, Drioli E, Di Paola A, Loddo V, Palmisano L, Schiavello M (2000) Study on a photocatalytic membrane reactor for water purification. Catal Today 55:71–78

    Article  CAS  Google Scholar 

  106. Xi W, Geissen SU (2001) Separation of titanium dioxide from photocatalytically treated water by cross-flow microfiltration. Water Res 35:1256–1262

    Article  CAS  Google Scholar 

  107. Erdei L, Arecrachakul N, Vigneswaran SA (2008) Combined photocatalytic slurry reactor–immersed membrane module system for advanced wastewater treatment. Sep Purif Technol 62:382–388

    Article  CAS  Google Scholar 

  108. Doll TE, Frimmel FH (2005) Cross-flow microfiltration with periodical back-washing for photocatalytic degradation of pharmaceutical and diagnostic residues–evaluation of the long-term stability of the photocatalytic activity of TiO2. Water Res 39:847–854

    Article  CAS  Google Scholar 

  109. Xue XD, Fu JF, Zhu WF, Guo XC (2008) Separation of ultrafine TiO2 from aqueous suspension and its reuse using cross-flow ultrafiltration (CFU). Desalination 225:29–40

    Article  CAS  Google Scholar 

  110. Benotti MJ, Stanford BD, Wert EC, Snyder SA (2009) Evaluation of a photocatalytic reactor membrane pilot system for the removal of pharmaceuticals and endocrine disrupting compounds from water. Water Res 43:1513–1522

    Article  CAS  Google Scholar 

  111. Damodar RA, You SJ, Ou SH (2010) Coupling of membrane separation with photocatalytic slurry reactor for advanced dye wastewater treatment. Sep Purif Technol 7:64–71

    Article  CAS  Google Scholar 

  112. Jiang H, Zhang G, Huang T, Chen J, Wang Q, Meng Q (2010) Photocatalytic membrane reactor for degradation of acid red B wastewater. Chem Eng J 156:571–577

    Article  CAS  Google Scholar 

  113. Daneshvar N, Salari D, Niaei A, Rasoulifard MH, Khataee AR (2005) Immobilization of TiO2 nanopowder on glass beads for the photocatalytic decolorization of an azo dye C.I. Direct red 23. J Environ Sci Health A 40:1605–1617

    Article  CAS  Google Scholar 

  114. Behnajady MA, Modirshahla N, Mirzamohammady M, Vahid B, Behnajady B (2008) Increasing photoactivity of titanium dioxide immobilized on glass plate with optimization of heat attachment method parameters. J Hazard Mater 160:508–513

    Article  CAS  Google Scholar 

  115. Khataee AR, Pons MN, Zahraa O (2009) Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation: influence of dye molecular structure. J Hazard Mater 168:451–457

    Article  CAS  Google Scholar 

  116. Huang H, Huang G, Chen H, Lee Y (2006) Immobilization of TiO2 nanoparticles on Fe-filled carbon nanocapsules for photocatalytic applications. Thin Solid Films 515:1033–1037

    Article  CAS  Google Scholar 

  117. Tryba B (2008) Immobilization of TiO2 and Fe–C–TiO2 photocatalysts on the cotton material for application in a flow photocatalytic reactor for decomposition of phenol in water. J Hazard Mater 151:623–627

    Article  CAS  Google Scholar 

  118. Aguedach A, Brosillon S, Morvan J, Lhadi EK (2005) Photocatalytic degradation of azo-dyes Reactive Black 5 and Reactive Yellow 145 in water over a newly deposited titanium dioxide. Appl Catal B Environ 57:55–62

    Article  CAS  Google Scholar 

  119. Aguedach A, Brosillon S, Morvan J, Lhadi EK (2008) Influence of ionic strength in the adsorption and during photocatalysis of Reactive Black 5 azo dye on TiO2 coated on non woven paper with SiO2 as a binder. J Hazard Mater 150:250–256

    Article  CAS  Google Scholar 

  120. Lackhoff M, Prieto X, Nestle N, Dehn F, Niessner R (2003) Photocatalytic activity of semiconductor-modified cement-influence of semiconductor type and cement ageing. Appl Catal B Environ 43:205–216

    Article  CAS  Google Scholar 

  121. Dunlop PSM, Galdi A, McMurray TA, Hamilton JWJ, Rizzo L, Byrne JA (2010) Comparison of photocatalytic activities of commercial titanium dioxide powders immobilised on glass substrates. J Adv Oxid Technol 13:99–106

    CAS  Google Scholar 

  122. Alinsafi A, Evenou F, Abdulkarim EM, Pons MN, Zahraa O, Benhammou A, Yaacoubi A, Nejmeddine A (2007) Treatment of textile wastewater by supported catalysis. Dyes Pigments 74:439–445

    Article  CAS  Google Scholar 

  123. Byberg R, Cobb J, Diez Martin L, Thompson RW, Camesano TA, Zahraa O, Pons MN (2013) Comparison of photocatalytic degradation of dyes in relation to their structure. Environ Sci Pollut Res 20:3570–3581

    Article  CAS  Google Scholar 

  124. Zabar R, Komel T, Fabjan J, Kralj MB, Trebse P (2012) Photocatalytic degradation with immobilised TiO2 of three selected neonicotinoid insecticides: imidacloprid, thiamethoxam and clothianidin. Chemosphere 89:293–301

    Article  CAS  Google Scholar 

  125. Degussa Corporation (1990) Technical bulletin pigments, vol 56, 5th edn. Degussa AG, Frankfurt

    Google Scholar 

  126. Zertal A, Molnár-Gaábor D, Malouki MA, Sehili T, Boule P (2004) Photocatalytic transformation of 4-chloro-2- methylphenoxyacetic acid (MCPA) on several kinds of TiO2. Appl Catal B Environ 49:83–89

    Article  CAS  Google Scholar 

  127. Caballero L, Whitehead KA, Allen NS, Verran J (2009) Inactivation of Escherichia coli on immobilized TiO2 using fluorescent light. J Photochem Photobiol A Chem 202:92–98

    Article  CAS  Google Scholar 

  128. Vatanpour V, Madaeni SS, Khataee AR, Salehi E, Zinadini S, Monfared HA (2012) TiO2 embedded mixed matrix PES nanocomposite membranes: influence of different sizes and types of nanoparticles on antifouling and performance. Desalination 292:19–29

    Article  CAS  Google Scholar 

  129. Zahraa O, Dorion C, Ould-Mame SM, Bouchy M (1999) Titanium dioxide deposit films for photocatalytic studies of water pollutants. J Adv Oxid Technol 4:40–46

    CAS  Google Scholar 

  130. Zahraa O, Sauvanaud L, Hamard G, Bouchy M (2003) Kinetics of atrazine degradation by photocatalytic process in aqueous solution. Int J Photoenergy 5:87–93

    Article  CAS  Google Scholar 

  131. Fatta-Kassinos D, Vasquez MI, Kümmerer K (2011) Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes – degradation, elucidation of byproducts and assessment of their biological potency. Chemosphere 85:693–709

    Article  CAS  Google Scholar 

  132. Calza P, Medana C, Padovano E, Giancotti V, Baiocchi C (2012) Identification of the unknown transformation products derived from clarithromycin and carbamazepine using liquid chromatography/high-resolution mass spectrometry. Rapid Commun Mass Spectrom 26:1687–1704

    Article  CAS  Google Scholar 

  133. Sirtori C, Zapata A, Malato S, Gernja W, Fernandez-Alba AR, Aguera A (2009) Solar photocatalytic treatment of quinolones: intermediates and toxicity evaluation. Photochem Photobiol Sci 8:644–651

    Article  CAS  Google Scholar 

  134. Aramendía MA, Marinas A, Marinas JM, Moreno JM, Urbano FJ (2005) Photocatalytic degradation of herbicide fluroxypyr in aqueous suspension of TiO2. Catal Today 101:187–193

    Article  CAS  Google Scholar 

  135. Babić S, Horvat AJM, Mutavdžić Pavlović D, Kažtelan-Macan M (2007) Determination of pKa values of active pharmaceutical ingredients. Trends Anal Chem 26:1043–1061

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Noëlle Pons .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pons, MN., Le Frêche, A., Cortyl, A., Van Deik, J., Poret, M., Zahraa, O. (2014). Immobilized Heterogeneous Photocatalysis for Reuse of Water Contaminated by Recalcitrant Organic Compounds: The Case of Antibiotics. In: Fatta-Kassinos, D., Dionysiou, D., Kümmerer, K. (eds) Advanced Treatment Technologies for Urban Wastewater Reuse . The Handbook of Environmental Chemistry, vol 45. Springer, Cham. https://doi.org/10.1007/698_2014_321

Download citation

Publish with us

Policies and ethics