Skip to main content

The Potentials and Pitfalls of Using Adult Stem Cells in Cancer Treatment

  • Chapter
  • First Online:
Cell Biology and Translational Medicine, Volume 12

Part of the book series: Advances in Experimental Medicine and Biology ((CBTMED,volume 1326))

Abstract

Stem cells play a pivotal role in the developmental stages of an organism and in adulthood as well. Therefore, it is not surprising that stem cells constitute a focus of extensive research. Indeed, several decades of stem cell research have tremendously increased our knowledge on the mechanistic understandings of stem cell biology. Interestingly, revealing the fundamental principles of stem cell biology has also fostered its application for therapeutic purposes. Many of the attributes that the stem cells possess, some of which are unique, allow multifaceted exploitation of stem cells in the treatment of various diseases. Cancer, the leading cause of mortality worldwide, is one of the disease groups that has been benefited by the potentials of therapeutic applications of the stem cells. While the modi operandi of how stem cells contribute to cancer treatment are many-sided, two major principles can be conceived. One mode involves harnessing the regenerative power of the stem cells to promote the generation of blood-forming cells in cancer patients after cytotoxic regimens. A totally different kind of utility of stem cells has been exercised in another mode where the stem cells can potentially deliver a plethora of anti-cancer therapeutics in a tumor-specific manner. While both these approaches can improve the treatment of cancer patients, there exist several issues that warrant further research. This review summarizes the basic principles of the utility of the stem cells in cancer treatment along with the current trends and pinpoints the major obstacles to focus on in the future for further improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALL:

Acute lymphoblastic leukemia

AML:

Acute myeloid leukemia

bCD:

Bacterial cytosine deaminase

BM:

Bone marrow

CAR:

Coxsackievirus–adenovirus receptor

CNS:

Central nervous system

EGF:

Epidermal growth factor

EPGT:

Enzyme/prodrug gene therapy

ESCs:

Embryonic stem cells

EVs:

Extracellular vesicles

GVHD:

Graft-versus-host disease

HGF:

Hepatocyte growth factor

HSCs:

Hematopoietic stem cells

HSV-1:

Herpes simplex virus type 1

HSV-TK:

Herpes simplex virus thymidine kinase gene

iPSCs:

Induced pluripotent stem cells

MSCs:

Mesenchymal stem cells

MVBs:

Multi-vesicular bodies

NSCs:

Neural stem cells

OVs :

Oncolytic viruses

PTX:

Paclitaxel

SSCs:

Somatic stem cells

VEGF:

Vascular endothelial growth factor

References

  • Aboody KS et al (2000) Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci U S A 97(23):12846–12851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aboody KS et al (2008) Stem and progenitor cell-mediated tumor selective gene therapy. Gene Ther 15(10):739–752

    Article  CAS  PubMed  Google Scholar 

  • Adams GB (2006) Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 439(7076):599–603

    Article  CAS  PubMed  Google Scholar 

  • Adamiak M et al (2015) Evidence for the involvement of sphingosine-1-phosphate in the homing and engraftment of hematopoietic stem cells to bone marrow. Oncotarget 6(22):18819–18828

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmed AU et al (2011) Neural stem cell-based cell carriers enhance therapeutic efficacy of an oncolytic adenovirus in an orthotopic mouse model of human glioblastoma. Mol Ther 19(9):1714–1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altaner C et al (2014) Complete regression of glioblastoma by mesenchymal stem cells mediated prodrug gene therapy simulating clinical therapeutic scenario. Int J Cancer 134(6):1458–1465

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Erviti L et al (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29(4):341–345

    Article  CAS  PubMed  Google Scholar 

  • Antimisiaris SG et al (2018) Exosomes and exosome-inspired vesicles for targeted drug delivery. Pharmaceutics 10(4):218

    Article  CAS  PubMed Central  Google Scholar 

  • Appelbaum FR (2007) Hematopoietic cell transplantation from unrelated donors for treatment of patients with acute myeloid leukemia in first complete remission. Best Pract Res Clin Haematol 20(1):67–75

    Article  PubMed  Google Scholar 

  • Araki R et al (2013) Negligible immunogenicity of terminally differentiated cells derived from or embryonic stem cells. Nature 494(7435):100–104

    Article  CAS  PubMed  Google Scholar 

  • Balyasnikova IV et al (2014) Intranasal delivery of mesenchymal stem cells significantly extends survival of irradiated mice with experimental brain tumors. Mol Ther 22(1):140–148

    Article  CAS  PubMed  Google Scholar 

  • Barish ME et al (2017) Human neural stem cell biodistribution and predicted tumor coverage by a diffusible therapeutic in a mouse glioma model. Stem Cells Transl Med 6(6):1522–1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batlle E et al (1963) Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197:452–454

    Article  Google Scholar 

  • Becker AJ et al (1963) Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197:452–454

    Article  CAS  PubMed  Google Scholar 

  • Benedetti S et al (2000) Gene therapy of experimental brain tumors using neural progenitor cells. Nat Med 6(4):447–450

    Article  CAS  PubMed  Google Scholar 

  • Beveridge TJ (1999) Structures of gram-negative cell walls and their derived membrane vesicles. J Bacteriol 181(16):4725–4733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boockvar JA et al (2003) Constitutive EGFR signaling confers a motile phenotype to neural stem cells. Mol Cell Neurosci 24(4):1116–1130

    Article  CAS  PubMed  Google Scholar 

  • Brenner S et al (2004) CXCR4-transgene expression significantly improves marrow engraftment of cultured hematopoietic stem cells. Stem Cells 22(7):1128–1133

    Article  CAS  PubMed  Google Scholar 

  • Brossa A et al (2020) Extracellular vesicles from human liver stem cells inhibit renal cancer stem cell-derived tumor growth in vitro and in vivo. Int J Cancer 147(6):1694–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruno S et al (2013) Microvesicles derived from human bone marrow mesenchymal stem cells inhibit tumor growth. Stem Cells Dev 22(5):758–771

    Article  CAS  PubMed  Google Scholar 

  • Brustle O et al (1997) In vitro-generated neural precursors participate in mammalian brain development. Proc Natl Acad Sci U S A 94(26):14809–14814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casper J et al (2010) Allogeneic hematopoietic stem-cell transplantation in patients with hematologic malignancies after dose-escalated treosulfan/fludarabine conditioning. J Clin Oncol 28(20):3344–3351

    Article  CAS  PubMed  Google Scholar 

  • Chabannon C et al (2018) Hematopoietic stem cell transplantation in its 60s: a platform for cellular therapies. Sci Transl Med 10(436):eaap9630

    Article  PubMed  CAS  Google Scholar 

  • Chagastelles PC et al (2011) Biology of stem cells: an overview. Kidney Int Suppl 1(3):63–67

    Article  Google Scholar 

  • Chang DY et al (2010) The growth of brain tumors can be suppressed by multiple transplantation of mesenchymal stem cells expressing cytosine deaminase. Int J Cancer 127(8):1975–1983

    Article  CAS  PubMed  Google Scholar 

  • Chargaff E et al (1946) The biological significance of the thromboplastic protein of blood. J Biol Chem 166(1):189–197

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee SN et al (1967) Electron microscopic observations on the excretion of cell-wall material by Vibrio cholerae. J Gen Microbiol 49(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Copelan EA (2006) Hematopoietic stem-cell transplantation. N Engl J Med 354(17):1813–1826

    Article  CAS  PubMed  Google Scholar 

  • Coukos G et al (1999) Use of carrier cells to deliver a replication-selective herpes simplex virus-1 mutant for the intraperitoneal therapy of epithelial ovarian cancer. Clin Cancer Res 5(6):1523–1537

    CAS  PubMed  Google Scholar 

  • Crescitelli R et al (2013) Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles 2:20677

    Article  CAS  Google Scholar 

  • de Almeida PE et al (2014) Transplanted terminally differentiated induced pluripotent stem cells are accepted by immune mechanisms similar to self-tolerance. Nat Commun 5:3903

    Article  PubMed  CAS  Google Scholar 

  • Dohner H et al (2015) Acute Myeloid Leukemia. N Engl J Med 373(12):1136–1152

    Article  PubMed  CAS  Google Scholar 

  • Du W et al (2017) Stem cell-released oncolytic herpes simplex virus has therapeutic efficacy in brain metastatic melanomas. Proc Natl Acad Sci U S A 114(30):E6157–E6165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards RG (2001) IVF and the history of stem cells. Nature 413(6854):349–351

    Article  CAS  PubMed  Google Scholar 

  • Ellis TN et al (2010) Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol Mol Biol Rev 74(1):81–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erlandsson A et al (2004) Stem cell factor is a chemoattractant and a survival factor for CNS stem cells. Exp Cell Res 301(2):201–210

    Article  CAS  PubMed  Google Scholar 

  • Evans MJ et al (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156

    Article  CAS  PubMed  Google Scholar 

  • Fonsato V et al (2012) Human liver stem cell-derived microvesicles inhibit hepatoma growth in SCID mice by delivering antitumor microRNAs. Stem Cells 30(9):1985–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedenstein AJ (1976) Precursor cells of mechanocytes. Int Rev Cytol 47:327–359

    Article  CAS  PubMed  Google Scholar 

  • Friedenstein AJ et al (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3(4):393–403

    CAS  PubMed  Google Scholar 

  • Fuhrmann G et al (2015) Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J Control Release 205:35–44

    Article  CAS  PubMed  Google Scholar 

  • Goldman JM et al (1986) Bone marrow transplantation for patients with chronic myeloid leukemia. N Engl J Med 314(4):202–207

    Article  CAS  PubMed  Google Scholar 

  • Gomes JPA et al (2017) Deepening a simple question: can MSCs be used to treat cancer? Anticancer Res 37(9):4747–4758

    CAS  PubMed  Google Scholar 

  • Gyorgy B et al (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 68(16):2667–2688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hakkarainen T et al (2007) Human mesenchymal stem cells lack tumor tropism but enhance the antitumor activity of oncolytic adenoviruses in orthotopic lung and breast tumors. Hum Gene Ther 18(7):627–641

    Article  CAS  PubMed  Google Scholar 

  • Hammad M et al (2020) Neural stem cells improve the delivery of oncolytic chimeric Orthopoxvirus in a metastatic ovarian cancer model. Mol Ther Oncolytics 18:326–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammer K et al (2015) Engineered adenoviruses combine enhanced oncolysis with improved virus production by mesenchymal stromal carrier cells. Int J Cancer 137(4):978–990

    Article  CAS  PubMed  Google Scholar 

  • Hao SC et al (2019) hUC-MSCs secreted exosomes inhibit the glioma cell progression through PTENP1/miR-10a-5p/PTEN pathway. Eur Rev Med Pharmacol Sci 23(22):10013–10023

    PubMed  Google Scholar 

  • Harrington K et al (2019) Optimizing oncolytic virotherapy in cancer treatment. Nat Rev Drug Discov 18(9):689–706

    Article  CAS  PubMed  Google Scholar 

  • He Z et al (2020) Human umbilical cord mesenchymal stem cells-derived exosomes deliver microRNA-375 to downregulate ENAH and thus retard esophageal squamous cell carcinoma progression. J Exp Clin Cancer Res 39(1):140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henig I et al (2014) Hematopoietic stem cell transplantation-50 years of evolution and future perspectives. Rambam Maimonides Med J 5(4):e0028

    Article  PubMed  PubMed Central  Google Scholar 

  • Herrlinger U et al (2000) Neural precursor cells for delivery of replication-conditional HSV-1 vectors to intracerebral gliomas. Mol Ther 1(4):347–357

    Article  CAS  PubMed  Google Scholar 

  • Hossain JA et al (2019a) Long-term treatment with valganciclovir improves lentiviral suicide gene therapy of glioblastoma. Neuro-Oncology 21(7):890–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain JA et al (2019b) Cancer suicide gene therapy with TK.007. Methods Mol Biol 1895:11–26

    Article  CAS  PubMed  Google Scholar 

  • Hossain JA et al (2020a) Suicide gene therapy for the treatment of high-grade glioma: past lessons, present trends, and future prospects. Neurooncol Adv 2(1):vdaa013

    PubMed  PubMed Central  Google Scholar 

  • Hossain JA et al (2020b) Letter regarding “Extensive brainstem infiltration, not mass effect, is a common feature of end-stage cerebral glioblastomas”. Neuro-Oncology 22(12):1882–1883

    Article  PubMed  PubMed Central  Google Scholar 

  • Imitola J et al (2004) Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A 101(52):18117–18122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joo KM et al (2009) Human neural stem cells can target and deliver therapeutic genes to breast cancer brain metastases. Mol Ther 17(3):570–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Josiah DT et al (2010) Adipose-derived stem cells as therapeutic delivery vehicles of an oncolytic virus for glioblastoma. Mol Ther 18(2):377–385

    Article  CAS  PubMed  Google Scholar 

  • Kahn J et al (2004) Overexpression of CXCR4 on human CD34+ progenitors increases their proliferation, migration, and NOD/SCID repopulation. Blood 103(8):2942–2949

    Google Scholar 

  • Kalimuthu S et al (2018) A new approach for loading anticancer drugs into mesenchymal stem cell-derived exosome mimetics for cancer therapy. Front Pharmacol 9:1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katakowski M et al (2013) Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett 335(1):201–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kauer TM et al (2011) Encapsulated therapeutic stem cells implanted in the tumor resection cavity induce cell death in gliomas. Nat Neurosci 15(2):197–204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kazimirsky G et al (2016) Mesenchymal stem cells enhance the oncolytic effect of Newcastle disease virus in glioma cells and glioma stem cells via the secretion of TRAIL. Stem Cell Res Ther 7(1):149

    Article  PubMed  PubMed Central  Google Scholar 

  • Keirstead HS et al (2005) Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci 25(19):4694–4705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kendall SE et al (2008) Neural stem cell targeting of glioma is dependent on phosphoinositide 3-kinase signaling. Stem Cells 26(6):1575–1586

    Article  CAS  PubMed  Google Scholar 

  • Kerr JF et al (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kersey JH et al (1987) Comparison of autologous and allogeneic bone marrow transplantation for treatment of high-risk refractory acute lymphoblastic leukemia. N Engl J Med 317(8):461–467

    Article  CAS  PubMed  Google Scholar 

  • Kim SK et al (2006) Human neural stem cells target experimental intracranial medulloblastoma and deliver a therapeutic gene leading to tumor regression. Clin Cancer Res 12(18):5550–5556

    Article  CAS  PubMed  Google Scholar 

  • Kim CK et al (2013) N-acetylcysteine amide augments the therapeutic effect of neural stem cell-based antiglioma oncolytic virotherapy. Mol Ther 21(11):2063–2073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J et al (2015) Stem cell-based cell carrier for targeted oncolytic Virotherapy: translational opportunity and open questions. Viruses 7(12):6200–6217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapidot T et al (2005) How do stem cells find their way home? Blood 106(6):1901–1910

    Article  CAS  PubMed  Google Scholar 

  • Le Blanc K, Ringden O (2007) Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med 262(5):509–525

    Article  PubMed  CAS  Google Scholar 

  • Lee RH (2011) Therapeutic factors secreted by mesenchymal stromal cells and tissue repair. J Cell Biochem 112(11):3073–3078

    Article  CAS  PubMed  Google Scholar 

  • Lee JK et al (2013) Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS One 8(12):e84256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee JY et al (2014) Double suicide gene therapy using human neural stem cells against glioblastoma: double safety measures. J Neuro-Oncol 116(1):49–57

    Article  CAS  Google Scholar 

  • Li YH et al (2015) Intranasal delivery of stem cells as therapy for central nervous system disease. Exp Mol Pathol 98(2):145–151

    Article  CAS  PubMed  Google Scholar 

  • Lin HT et al (2013) Stem cell therapy: an exercise in patience and prudence. Philos Trans R Soc Lond Ser B Biol Sci 368(1609):20110334

    Article  CAS  Google Scholar 

  • Lopatina T et al (2019) Extracellular vesicles from human liver stem cells inhibit tumor angiogenesis. Int J Cancer 144(2):322–333

    Article  CAS  PubMed  Google Scholar 

  • Lotvall J et al (2014) Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles 3:26913

    Article  PubMed  Google Scholar 

  • Lunavat TR et al (2015) Small RNA deep sequencing discriminates subsets of extracellular vesicles released by melanoma cells–evidence of unique microRNA cargos. RNA Biol 12(8):810–823

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma T et al (2018) MicroRNA-132, delivered by mesenchymal stem cell-derived exosomes, promote angiogenesis in myocardial infarction. Stem Cells Int 2018:3290372

    Article  PubMed  PubMed Central  Google Scholar 

  • Maeda H et al (2018) Analyses of repeated failures in cancer therapy for solid tumors: poor tumor-selective drug delivery, low therapeutic efficacy and unsustainable costs. Clin Transl Med 7(1):11

    Article  PubMed  PubMed Central  Google Scholar 

  • Malekshah OM et al (2016) Enzyme/prodrug systems for cancer gene therapy. Curr Pharmacol Rep 2(6):299–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78(12):7634–7638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason C et al (2008) A brief definition of regenerative medicine. Regen Med 3(1):1–5

    Article  PubMed  Google Scholar 

  • Mateescu B et al (2017) Obstacles and opportunities in the functional analysis of extracellular vesicle RNA – an ISEV position paper. J Extracell Vesicles 6(1):1286095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matuskova M et al (2010) HSV-tk expressing mesenchymal stem cells exert bystander effect on human glioblastoma cells. Cancer Lett 290(1):58–67

    Article  CAS  PubMed  Google Scholar 

  • Mead B et al (2017) Bone marrow-derived mesenchymal stem cells-derived exosomes promote survival of retinal ganglion cells through miRNA-dependent mechanisms. Stem Cells Transl Med 6(4):1273–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melzer C et al (2019) Taxol-loaded MSC-derived exosomes provide a therapeutic vehicle to target metastatic breast cancer and other carcinoma cells. Cancers (Basel) 11(6):798

    Article  CAS  Google Scholar 

  • Menard C et al (2005) Transplantation of cardiac-committed mouse embryonic stem cells to infarcted sheep myocardium: a preclinical study. Lancet 366(9490):1005–1012

    Article  PubMed  Google Scholar 

  • Mendez-Ferrer S et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466(7308):829–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metz MZ et al (2013) Neural stem cell-mediated delivery of irinotecan-activating carboxylesterases to glioma: implications for clinical use. Stem Cells Transl Med 2(12):983–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Micheau O et al (2013) Death receptors as targets in cancer. Br J Pharmacol 169(8):1723–1744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miletic H et al (2007) Bystander killing of malignant glioma by bone marrow-derived tumor-infiltrating progenitor cells expressing a suicide gene. Mol Ther 15(7):1373–1381

    Article  CAS  PubMed  Google Scholar 

  • Minguell JJ et al (2001) Mesenchymal stem cells. Exp Biol Med (Maywood) 226(6):507–520

    Article  CAS  Google Scholar 

  • Mooney R et al (2017) Cell-mediated enzyme prodrug cancer therapies. Adv Drug Deliv Rev 118:35–51

    Article  CAS  PubMed  Google Scholar 

  • Mooney R et al (2018a) Concise review: neural stem cell-mediated targeted cancer therapies. Stem Cells Transl Med 7(10):740–747

    Article  PubMed  PubMed Central  Google Scholar 

  • Mooney R et al (2018b) Bcl-2 overexpression improves survival and efficacy of neural stem cell-mediated enzyme prodrug therapy. Stem Cells Int 2018:7047496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moore C et al (2017) The emerging role of exosome and microvesicle- (EMV-) based cancer therapeutics and immunotherapy. Int J Cancer 141(3):428–436

    Article  CAS  PubMed  Google Scholar 

  • Munoz JL et al (2013) Delivery of functional anti-miR-9 by mesenchymal stem cell-derived exosomes to glioblastoma multiforme cells conferred chemosensitivity. Mol Ther Nucleic Acids 2:e126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murphy MB et al (2013) Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med 45:e54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Naseri Z et al (2018) Exosome-mediated delivery of functionally active miRNA-142-3p inhibitor reduces tumorigenicity of breast cancer in vitro and in vivo. Int J Nanomedicine 13:7727–7747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishikawa S et al (2008) The promise of human induced pluripotent stem cells for research and therapy. Nat Rev Mol Cell Biol 9(9):725–729

    Article  CAS  PubMed  Google Scholar 

  • Niederwieser D et al (2016) Hematopoietic stem cell transplantation activity worldwide in 2012 and a SWOT analysis of the Worldwide Network for Blood and Marrow Transplantation Group including the global survey. Bone Marrow Transplant 51(6):778–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nombela-Arrieta C et al (2011) The elusive nature and function of mesenchymal stem cells. Nat Rev Mol Cell Biol 12(2):126–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okajima F (2013) Regulation of inflammation by extracellular acidification and proton-sensing GPCRs. Cell Signal 25(11):2263–2271

    Article  CAS  PubMed  Google Scholar 

  • Pascucci L et al (2014) Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery. J Control Release 192:262–270

    Article  CAS  PubMed  Google Scholar 

  • Pastorakova A et al (2020) Suicide gene therapy mediated with exosomes produced by mesenchymal stem/stromal cells stably transduced with HSV thymidine kinase. Cancers (Basel) 12(5):1096

    Article  CAS  Google Scholar 

  • Portnow J et al (2017) Neural stem cell-based anticancer gene therapy: a first-in-human study in recurrent high-grade glioma patients. Clin Cancer Res 23(12):2951–2960

    Article  CAS  PubMed  Google Scholar 

  • Raab S et al (2011) A Comparative View on Human Somatic Cell Sources for iPSC Generation. Stem Cells Int. 2014; 2014:768391

    Google Scholar 

  • Rossi L et al (2007) The extracellular nucleotide UTP is a potent inducer of hematopoietic stem cell migration. Blood 109(2):533–542

    Article  CAS  PubMed  Google Scholar 

  • Sacchetti B et al (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131(2):324–336

    Article  CAS  PubMed  Google Scholar 

  • Sansone P et al (2017) Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proc Natl Acad Sci U S A 114(43):E9066–E9075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt NO et al (2005) Brain tumor tropism of transplanted human neural stem cells is induced by vascular endothelial growth factor. Neoplasia 7(6):623–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A (2018) Role of stem cell derived exosomes in tumor biology. Int J Cancer 142(6):1086–1092

    Article  CAS  PubMed  Google Scholar 

  • Shimato S et al (2007) Human neural stem cells target and deliver therapeutic gene to experimental leptomeningeal medulloblastoma. Gene Ther 14(15):1132–1142

    Article  CAS  PubMed  Google Scholar 

  • Short MP et al (1990) Gene delivery to glioma cells in rat brain by grafting of a retrovirus packaging cell line. J Neurosci Res 27(3):427–439

    Article  CAS  PubMed  Google Scholar 

  • Siegel RL et al (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30

    Article  PubMed  Google Scholar 

  • Siminovitch L et al (1963) The distribution of colony-forming cells among spleen colonies. J Cell Comp Physiol 62:327–336

    Article  CAS  PubMed  Google Scholar 

  • Singh AK et al (2016) Fatal GvHD induced by PD-1 inhibitor pembrolizumab in a patient with Hodgkin’s lymphoma. Bone Marrow Transplant 51(9):1268–1270

    Article  CAS  PubMed  Google Scholar 

  • Skog J et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10(12):1470–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonabend AM et al (2008) Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma. Stem Cells 26(3):831–841

    Article  CAS  PubMed  Google Scholar 

  • Sullivan CB et al (2014) TNFalpha and IL-1beta influence the differentiation and migration of murine MSCs independently of the NF-kappaB pathway. Stem Cell Res Ther 5(4):104

    Article  PubMed  PubMed Central  Google Scholar 

  • Sutaria DS et al (2017) Achieving the promise of therapeutic extracellular vesicles: the devil is in details of therapeutic loading. Pharm Res 34(5):1053–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  PubMed  Google Scholar 

  • Thery C et al (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9(8):581–593

    Article  CAS  PubMed  Google Scholar 

  • Thery C et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7(1):1535750

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas ED et al (1957) Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med 257(11):491–496

    Article  CAS  PubMed  Google Scholar 

  • Thomas ED et al (1977) One hundred patients with acute leukemia treated by chemotherapy, total body irradiation, and allogeneic marrow. Blood 49(4):511–533

    Article  CAS  PubMed  Google Scholar 

  • Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  PubMed  Google Scholar 

  • Toh WS et al (2018) MSC exosome works through a protein-based mechanism of action. Biochem Soc Trans 46(4):843–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchibori R et al (2013) NF-kappaB activity regulates mesenchymal stem cell accumulation at tumor sites. Cancer Res 73(1):364–372

    Article  CAS  PubMed  Google Scholar 

  • Vakhshiteh F et al (2019) Mesenchymal stem cell exosomes: a two-edged sword in cancer therapy. Int J Nanomedicine 14:2847–2859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valadi H et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659

    Article  CAS  PubMed  Google Scholar 

  • Vallabhaneni KC et al (2015) Extracellular vesicles from bone marrow mesenchymal stem/stromal cells transport tumor regulatory microRNA, proteins, and metabolites. Oncotarget 6(7):4953–4967

    Article  PubMed  Google Scholar 

  • van Niel G et al (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19(4):213–228

    Article  PubMed  CAS  Google Scholar 

  • Vasconcelos MH et al (2019) Extracellular vesicles as a novel source of biomarkers in liquid biopsies for monitoring cancer progression and drug resistance. Drug Resist Updat 47:100647

    Article  PubMed  Google Scholar 

  • Walters MC et al (1996) Bone marrow transplantation for sickle cell disease. N Engl J Med 335(6):369–376

    Article  CAS  PubMed  Google Scholar 

  • Wang C et al (2012) Neural stem cell-based dual suicide gene delivery for metastatic brain tumors. Cancer Gene Ther 19(11):796–801

    Article  CAS  PubMed  Google Scholar 

  • Weissman IL (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100(1):157–168

    Article  CAS  PubMed  Google Scholar 

  • Widera D et al (2004) MCP-1 induces migration of adult neural stem cells. Eur J Cell Biol 83(8):381–387

    Article  CAS  PubMed  Google Scholar 

  • Wolf P (1967) The nature and significance of platelet products in human plasma. Br J Haematol 13(3):269–288

    Article  CAS  PubMed  Google Scholar 

  • Yanez-Mo M et al (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066

    Article  PubMed  Google Scholar 

  • Yokoi A et al (2019) Mechanisms of nuclear content loading to exosomes. Sci Adv 5(11):eaax8849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu JMA et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920

    Article  CAS  PubMed  Google Scholar 

  • Yuan Z et al (2017) TRAIL delivery by MSC-derived extracellular vesicles is an effective anticancer therapy. J Extracell Vesicles 6(1):1265291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang TY et al (2014) Gene recombinant bone marrow mesenchymal stem cells as a tumor-targeted suicide gene delivery vehicle in pulmonary metastasis therapy using non-viral transfection. Nanomedicine 10(1):257–267

    Article  CAS  PubMed  Google Scholar 

  • Zhao R et al (2008) From fibroblasts to iPS cells: induced pluripotency by defined factors. J Cell Biochem 105(4):949–955

    Article  CAS  PubMed  Google Scholar 

  • Zhu W et al (2012) Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. Cancer Lett 315(1):28–37

    Article  CAS  PubMed  Google Scholar 

  • Zuk PA et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mrinal K. Das or Jubayer A. Hossain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, M.K., Lunavat, T.R., Miletic, H., Hossain, J.A. (2021). The Potentials and Pitfalls of Using Adult Stem Cells in Cancer Treatment. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 12. Advances in Experimental Medicine and Biology(), vol 1326. Springer, Cham. https://doi.org/10.1007/5584_2021_619

Download citation

Publish with us

Policies and ethics