Skip to main content

Graphene Oxide Coatings as Tools to Prevent Microbial Biofilm Formation on Medical Device

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AMIDPH,volume 1282))

Abstract

The clinical challenge on surface engineering of medical devices to prevent microorganisms adhesion and biofilm formation, has become an essential aspect for medical implants. Antibacterial properties of Graphene Oxide (GO) have been demonstrated across a broad spectrum of bacteria, and the different mechanisms of action with which this nanomaterial interacts with the microbial surface have been elucidated in detail. Innovative protective coatings based on graphene film and hydrogel could represent an innovative solution for the prevention of nosocomial pathogens colonization on implantable device. This brief review mainly focuses on the applications of graphene in nanomedicine with a particular deepening on the antibacterial properties of GO and GO-based nanomaterials. In order to evaluate the possible future applications of GO as an anti-biofilm coating material for medical devices, studies on the ability of graphene coated surface to prevent microbial adhesion are also discussed. A concise review on in vitro toxicity and in vivo safety is also presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4:5731–5736

    Article  CAS  PubMed  Google Scholar 

  • Alcántar-Curiel MD et al (2018) Association of antibiotic resistance, cell adherence, and biofilm production with the endemicity of nosocomial Klebsiella pneumoniae. Biomed Res Int 2018:7012958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allahverdiyev AM et al (2011) Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents. Expert Rev Anti-Infect Ther 9:1035–1052

    Article  CAS  PubMed  Google Scholar 

  • An X et al (2013) Graphene oxide reinforced polylactic acid/polyurethane antibacterial composites. J Nanomater 2013:18

    Article  CAS  Google Scholar 

  • Bao Q, Zhang D, Qi P (2011) Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. J Colloid Interface Sci 360:463–470

    Article  CAS  PubMed  Google Scholar 

  • Bera S et al (2018) Molecular features of interaction involving hen egg white lysozyme immobilized on graphene oxide and the effect on activity. Int J Biol Macromol 120:2390–2398

    Article  CAS  PubMed  Google Scholar 

  • Boev C, Kiss E (2016) Hospital-acquired infections: current trends and prevention. Crit Care Nurs Clin N Am 29(1):0899-5885/16

    Google Scholar 

  • Boisvert AA et al (2016) Microbial biofilms in pulmonary and critical care diseases. Ann Am Thorac Soc 3(9):1615–1623

    Article  Google Scholar 

  • Bugli F et al (2018) Curcumin-loaded graphene oxide flakes as an effective antibacterial system againstmethicillin-resistant Staphylococcus aureus. Interface Focus 8:20170059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpio IE et al (2012) Toxicity of a polymer–graphene oxidecomposite against bacterial planktonic cells, biofilms, and mammalian cells. Nanoscale 4:4746–4756

    Article  CAS  Google Scholar 

  • Castrillón RV (2015) Interaction of graphene oxide with bacterial cell membranes: insights from force spectroscopy. Environ Sci Technol Lett 2(4):112–117

    Article  CAS  Google Scholar 

  • Chen Y et al (2013) Graphene oxide–chitosan composite hydrogels as broad-spectrum adsorbents for water purification. J Mater Chem 1:1992–2001

    Article  CAS  Google Scholar 

  • Chen J et al (2016) Osteogenic activity and antibacterial effect of zinc oxide/carboxylated graphene oxide nanocomposites: preparation and in vitro evaluation. Colloids Surf B Biointerfaces 147:397–407

    Article  CAS  PubMed  Google Scholar 

  • Ciofu O et al (2017) Antibiotic treatment of biofilm infections. APMIS 125(4):304–319

    Article  PubMed  Google Scholar 

  • Cloutier M, Mantovani D, Rosei F (2015) Antibacterial coatings: challenges, perspectives, and opportunities. Trends Biotechnol 33(11):637–652

    Article  CAS  PubMed  Google Scholar 

  • Compton OC, Nguyen ST (2010) Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based material. Small 6:711

    Article  CAS  PubMed  Google Scholar 

  • Cyphert EL, von Recum HA (2017) Emerging technologies for long-term antimicrobial device coatings: advantages and limitations. Exp Biol Med (Maywood) 242(8):788–798

    Article  CAS  Google Scholar 

  • De Faria AF et al (2014) Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets. Colloids Surf B Biointerfaces 113:115–124

    Article  PubMed  CAS  Google Scholar 

  • Del Pozo JL et al (2018) Biofilm-related disease. Expert Rev Anti-Infect Ther 16(1):51–65

    Article  PubMed  CAS  Google Scholar 

  • Depana D, Shahb J, Misraa RDK (2011) Controlled release of drug from folate-decorated and graphene mediated drug delivery system: synthesis, loading efficiency, and drug release response. Mater Sci Eng 31:1305–1312

    Article  CAS  Google Scholar 

  • Di Giulio M et al (2018) Antimicrobial and Antibiofilm efficacy of graphene oxide against chronic wound microorganisms. Antimicrob Agents Chemother 62(7):e00547–e00518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dreyer DR (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  CAS  PubMed  Google Scholar 

  • Duan L et al (2015) Graphene immobilized enzyme/polyethersulfone mixedmatrix membrane: enhanced antibacterial, permeable and mechanical properties. Appl Surf Sci 355:436–445

    Article  CAS  Google Scholar 

  • Duan G et al (2017) Graphene-induced pore formation on cell membranes. Sci Rep 7:42767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farid MU, Guo J, Kyoungjin A (2018) Bacterial inactivation and in situ monitoring of biofilm development on graphene oxide membrane using optical coherence tomography. J Membr Sci 564:22–34

    Article  CAS  Google Scholar 

  • Francolini I, Vuotto C, Piozzi A, Donelli G (2017) Antifouling and antimicrobial biomaterials: an overview. APMIS 125(4):392–417

    Article  PubMed  Google Scholar 

  • Frigols B et al (2019) Graphene oxide in zinc alginate films: antibacterial activity, cytotoxicity, zinc release, water sorption/diffusion, wettability and opacity. PLoS One 14(3):e0212819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurunathan JW (2012) Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int J Nanomedicine 7:5901–5914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurunathan S, Kang M-H, Jeyaraj M, Kim J-H (2019) Differential cytotoxicity of different sizes of graphene oxide nanoparticles in leydig (TM3) and sertoli (TM4) cells. Nanomaterials 9(2):139

    Article  CAS  PubMed Central  Google Scholar 

  • He W et al (2013) Photocatalytic and antibacterial properties of Au-TiO2 nanocomposite on monolayer graphene: from experiment to theory. J Appl Phys 114:204701

    Article  CAS  Google Scholar 

  • Hu W et al (2010) Graphene-based antibacterial paper. ACS Nano 4:4317–4323

    Article  CAS  PubMed  Google Scholar 

  • Hu W et al (2011) Protein corona-mediated mitigation of cytotoxicityof graphene oxide. ACS Nano 5:3693–3700

    Article  CAS  PubMed  Google Scholar 

  • Hussain N et al (2014) Reduced graphene oxide nanosheets decorated with Au nanoparticles as an effective bactericide: investigation of biocompatibility and leakage of sugars and proteins. ChemPlusChem 79:1774–1784

    CAS  Google Scholar 

  • Jain M et al (2019) Phenotypic and molecular characterization of Acinetobacter baumannii isolates causing lower respiratory infections among ICU patients. Microb Pathog 128:75–81

    Article  CAS  PubMed  Google Scholar 

  • Janković A et al (2015) Graphene-based antibacterial composite coatings electrodeposited on titanium for biomedical applications. Prog Org Coat 83:1–10

    Article  CAS  Google Scholar 

  • Jones N et al (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279:71–76

    Article  CAS  PubMed  Google Scholar 

  • Kanakia S (2014) Dose ranging, expanded acutetoxicity and safety pharmacology studies for intravenously administered functionalized graphene nanoparticle formulations. Biomaterials 35:7022–7031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karahan KE (2018) Graphene materials in antimicrobial nanomedicine: status and future perspectives. Adv Healthc Mater 7(1701406):1–18

    Google Scholar 

  • Konwar A et al (2016) Chitosan-iron oxide coated graphene oxide nanocomposite hydrogel: a robust and soft antimicrobial biofilm. Appl Mater Surfaces 8(32):20625–20634

    Article  CAS  Google Scholar 

  • Krishnamoorthy K (2012) Investigation of the antibacterial activity of graphene oxide nanosheets. Sci Adv Mater 4:1111–1117

    Article  CAS  Google Scholar 

  • Kumar S et al (2016) Engineering a multi-biofunctional composite using poly(ethylenimine) decorated graphene oxide for bone tissue regeneration. Nanoscale 8:6820–6836

    Article  CAS  PubMed  Google Scholar 

  • Kumar A et al (2017) Biofilms: survival and defence strategy for pathogens. Int J Med Microbiol 307(8):481–489

    Article  CAS  PubMed  Google Scholar 

  • Lammel T et al (2013) Internalization and cytotoxicity of graphene oxide and carboxyl graphene nanoplatelets in the human hepatocellular carcinoma cell line Hep G2. Part Fibre Toxicol 10:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JK et al (2017) The role of surface functionalization on the pulmonary inflammogenicity and translocation into mediastinal lymph nodes of graphene nanoplatelets in rats. Arch Toxicol 91:1–10

    Article  CAS  Google Scholar 

  • Liao KH (2015) Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl Mater Interfaces 3:2607–2615

    Article  CAS  Google Scholar 

  • Liu S et al (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980

    Article  CAS  PubMed  Google Scholar 

  • Liu Y et al (2014) Facile preparation and characterization of poly (vinyl alcohol)/chitosan/graphene oxidebiocomposite nanofibers. J Ind Eng Chem 20:4415–4420

    Article  CAS  Google Scholar 

  • Lu X, Feng X, Werber JR, Chu C, Zucker I, Kim JH, Osuji CO, Elimelech M (2017) Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets. Proc Natl Acad Sci USA 114(46):E9793–E9801. https://doi.org/10.1073/pnas.1710996114. Epub 2017 Oct 26. PubMed PMID: 29078354; PubMed Central PMCID:PMC5699062

  • Ma J et al (2015) Crucial role of lateral size for graphene oxide in activating macrophages and stimulating pro-inflammatory responses in cells and animals. ACS Nano 9:10498–10515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangadlao JD (2015) On the antibacterial mechanism of graphene oxide (GO) Langmuir-Blodgett films. Chem Commun 51:2886–2889

    Article  CAS  Google Scholar 

  • Nine MJ et al (2015) Graphene: a multipurpose material for protective coatings. J Mater Chem 3:12580–12602

    Article  CAS  Google Scholar 

  • Novoselov KS, Geim AH et al (2004) Electric field effect in atomically thin carbon film. Science 306(5696):666–669

    Article  CAS  PubMed  Google Scholar 

  • Ou L et al (2016) Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms. Part Fibre Toxicol 13:57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palmieri V et al (2016) The future development of bacteria fighting medical devices: the role of graphene oxide. Expert Rev Med Devices 13(11):1013–1019

    Google Scholar 

  • Palmieri V et al (2017) Bacteria meet graphene: modulation of graphene oxide Nanosheet interaction with human pathogens for effective antimicrobial therapy. ACS Biomater Sci Eng 3(4):619–627

    Article  CAS  PubMed  Google Scholar 

  • Palmieri V et al (2018) Graphene oxide coatings prevent Candida albicans biofilm formation with a controlled release of curcumin-loaded nanocomposites. Nanomedicine 13(22):2867–2879

    Google Scholar 

  • Papi M et al (2016) Biomimetic antimicrobial cloak by graphene-oxide agar hydrogel. Sci Rep 6(1):12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parra C et al (2015) A nanomolecular approach to decrease adhesion of biofouling-producing bacteria to graphene-coated material. J Nanobiotechnol 13:82

    Article  CAS  Google Scholar 

  • Percival SL et al (2015) Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. Rev J Med Microbiol 64:323–334

    Article  Google Scholar 

  • Perreault F et al (2015) Antimicrobial properties of graphene oxide Nanosheets: why size matters. ACS Nano 9(7):7226–7236

    Article  CAS  PubMed  Google Scholar 

  • Pham VTH et al (2015) Graphene induces formation of pores that kill spherical and rod-shaped Bacteria. ACS Nano 9(8):8458–8467

    Article  CAS  PubMed  Google Scholar 

  • Polívková M et al (2017) Antimicrobial treatment of polymeric medical devices by silver nanomaterials and related technology. Int J Mol Sci 18:419

    Article  PubMed Central  CAS  Google Scholar 

  • Pulingam T et al (2019) Graphene oxide exhibits differential mechanistic action towards gram-positive and gram-negative bacteria. Colloids Surf B Biointerfaces 181:6–15

    Article  CAS  PubMed  Google Scholar 

  • Sabir N et al (2017) Bacterial biofilm-based catheter-associated urinary tract infections: causative pathogens and antibiotic resistance. Am J Infect Control 45(10):1101–1105

    Article  PubMed  Google Scholar 

  • Salas EC, Sun Z, Luttge A, Tour JM (2010) Reduction of graphene oxide via bacterial respiration. ACS Nano 4(8):4852–4856

    Article  CAS  PubMed  Google Scholar 

  • Santos CM et al (2011) Antimicrobial graphene polymer (PVK-GO) nanocomposite films. Chem Commun 47:8892–8894

    Article  CAS  Google Scholar 

  • Singhai M (2012) A study on device-related infections with special reference to biofilm production and antibiotic resistance. J Global Infect Dis 4:193–198

    Article  CAS  Google Scholar 

  • Sohail M et al (2018) Molecular analysis, biofilm formation, and susceptibility of methicillin-resistant Staphylococcus aureus strains causing community- and health care-associated infections in central venous catheters. Rev Soc Bras Med Trop 51:603–609

    Article  PubMed  Google Scholar 

  • Song C et al (2018) Influences of graphene oxide on biofilm formation of gram-negative and gram-positive bacteria. Environ Sci Pollut Res 25:2853–2860

    Article  CAS  Google Scholar 

  • Srividya N, Ghoora MD, Padmanabh PR (2017) Nanotechnology in the agri-food industry. In: Grumezescu AM (ed) Food preservation, vol 6. Academic, London, pp 125–165

    Google Scholar 

  • Swartjes JJ et al (2015) Current developments in antimicrobial surface coatings for biomedical applications. Curr Med Chem 22(18):2116–2129

    Article  CAS  PubMed  Google Scholar 

  • Thampi S et al (2017) Differential adhesive and bioactive properties of polymeric surface coated with graphene oxide thin film. ACS Appl Mater Interfaces 9(5):4498–4508

    Article  CAS  PubMed  Google Scholar 

  • Touil HFZ, Boucherit-Otmani Z, Boucherit K (2018) In vitro activity of antifungal combinations against planktonic and sessile cells of Candida albicans isolated from medical devices in an intensive care department. J Mycol Med 3:414–418

    Article  Google Scholar 

  • Wang K et al (2011) Biocompatibility of graphene oxide. Nanoscale Res Lett 6(1):8

    Article  PubMed  CAS  Google Scholar 

  • Wang X et al (2015) Use of a pro-fibrogenic mechanismbased predictive toxicological approach for tiered testing and decision analysis of carbonaceous nanomaterials. ACS Nano 9:3032–3043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia M-Y et al (2019) Graphene-based nanomaterials: the promising active agents for antibiotics-independent antibacterial applications. J Control Release 181:6–15

    Google Scholar 

  • Xie X et al (2017) Synergistic bacteria killing through photodynamic and physical actions of graphene oxide/Ag/collagen coating. ACS Appl Mater Interfaces 9(31):26417–26428

    Article  CAS  PubMed  Google Scholar 

  • Yadav N et al (2017) Graphene oxide-coated surface: inhibition of bacterial biofilm formation due to specific surface−interface interactions. ACS Omega 2:3070–3082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang K, Wan J, Zhang S, Zhang Y, Lee S, Liu Z (2011) In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano 5:516–522

    Article  CAS  PubMed  Google Scholar 

  • Yao J et al (2012) Chemistry, physics and biology of graphene-based nanomaterials: new horizons for sensing, imaging and medicine. J Mater Chem 22:14313–14329

    Article  CAS  Google Scholar 

  • Yousefi M et al (2017) Anti-bacterial activity of graphene oxide as a new weapon nanomaterial to combat multidrug-resistance bacteria. Mater Sci Eng C 74:568–581

    Article  CAS  Google Scholar 

  • Zhang B et al (2016) Interactions of graphene with mammalian cells: molecular mechanisms and biomedical insights. Adv Drug Deliv Rev 105:145–162

    Article  CAS  PubMed  Google Scholar 

  • Zhang et al (2018) Interference of non-lethal levels of grapheneoxide in biofilm formation and adaptive response of quorum sensing in bacteria. Environ Sci Nano 5:2809–2818

    Article  CAS  Google Scholar 

  • Zhao R et al (2018) Highly stable graphene-based nanocomposite (GO–PEI–ag) with broad-spectrum, long-term antimicrobial activity and antibiofilm effects. ACS Appl Mater Interfaces 10(21):17617–17629

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906

    Article  CAS  PubMed  Google Scholar 

  • Zou X (2016) Mechanisms of the antimicrobial activities of graphene materials. J Am Chem Soc 138(7):2064–2077

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Bugli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cacaci, M., Martini, C., Guarino, C., Torelli, R., Bugli, F., Sanguinetti, M. (2019). Graphene Oxide Coatings as Tools to Prevent Microbial Biofilm Formation on Medical Device. In: Donelli, G. (eds) Advances in Microbiology, Infectious Diseases and Public Health. Advances in Experimental Medicine and Biology(), vol 1282. Springer, Cham. https://doi.org/10.1007/5584_2019_434

Download citation

Publish with us

Policies and ethics