Skip to main content

Vascular Wall as Source of Stem Cells Able to Differentiate into Endothelial Cells

  • Chapter
  • First Online:
Cell Biology and Translational Medicine, Volume 7

Part of the book series: Advances in Experimental Medicine and Biology ((CBTMED,volume 1237))

Abstract

The traditional view of the vascular biology is changed by the discovery of vascular progenitor cells in bone marrow or peripheral blood Further complexity is due to the findings that the vessel walls harbor progenitor and stem cells, called vascular wall-resident vascular stem cells (VW-VSCs), able to differentiate to mature vascular wall cells. These immature stem/progenitor cell populations and multipotent mesenchymal lineage participate in postnatal neovascularization and vascular wall remodeling. Further studies are necessary to deepen the knowledge on characterization and biology of VW-VSCs, in particular of endothelial progenitor cells (EPCs) in order to improve their use in clinical settings for regenerative approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AC133:

CD133

Adv:

adventitial

BM:

bone marrow

CD:

cluster differentiation

c-kit:

proto-oncogene c-Kit

ECFCs:

endothelial colony-forming cells

EPCs:

endothelial progenitor cells

FOXF-1:

forkhead box F-1

HSCs:

hematopoietic stem cells

KLF4:

Krüppel-like transcription factors

PECAM-1:

platelet/endothelial cell adhesion molecule 1

Sca-1:

stem cells antigen-1

shh:

Sonic Hedgehog

SMCs:

smooth muscle cells

TGF-β:

transforming growth factor beta

VEGFR-2:

vascular endothelial growth factor-2

VW-EPCs:

vascular wall-endothelial progenitor cells

VW-HPCs:

vascular wall- hematopoietic progenitor cells

VWMSCs:

vascular wall-mesenchymal cells

VW-PCs:

vascular wall-progenitor cells

VW-VSCs:

vascular wall-resident vascular stem cells

Wnt:

Wingless-related integration

References

  • Ahmed S (2009) The culture of neural stem cells. J Cell Biochem 106:1–6

    CAS  PubMed  Google Scholar 

  • Aicher A et al (2007) Nonbone marrow-derived circulating progenitor cells contribute to postnatal neovascularization following tissue ischemia. Circ Res 100:581–589

    CAS  PubMed  Google Scholar 

  • Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–335

    CAS  Google Scholar 

  • Ambler CA, Maatta A (2009) Epidermal stem cells: location, potential and contribution to cancer. J Pathol 217:206–216

    CAS  PubMed  Google Scholar 

  • Asahara T et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    CAS  PubMed  Google Scholar 

  • Barbara NP et al (1999) Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-beta superfamily. J Biol Chem 274:584–594

    CAS  PubMed  Google Scholar 

  • Bearzi C et al (2009) Identification of a coronary vascular progenitor cell in the human heart. Proc Natl Acad Sci U S A 106:15885–15890

    CAS  PubMed  PubMed Central  Google Scholar 

  • Besson V et al (2011) PW1 gene/paternally expressed gene 3 (PW1/Peg3) identifies multiple adult stem and progenitor cell populations. Proc Natl Acad Sci U S A 108:11470–11475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bodempudi V et al (2010) Blood outgrowth endothelial cell-based systemic delivery of antiangiogenic gene therapy for solid tumors. Cancer Gene Ther 17:855–863

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boisset JC et al (2010) In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature 464:116–120

    CAS  PubMed  Google Scholar 

  • Campagnolo P et al (2015) c-Kit+ progenitors generate vascular cells for tissue-engineered grafts through modulation of the Wnt/Klf4 pathway. Biomaterials 60:53–61

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi K et al (1998) A common precursor for hematopoietic and endothelial cells. Development 125:725–732

    CAS  PubMed  Google Scholar 

  • Chong MS et al (2016) Concise review: endothelial progenitor cells in regenerative medicine: applications and challenges. Stem Cells Transl Med 5:530–538

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clark PR et al (2011) MEK5 is activated by shear stress, activates ERK5 and induces KLF4 to modulate TNF responses in human dermal microvascular endothelial cells. Microcirculation 18:102–117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corey DM et al (2016) Dynamic patterns of clonal evolution in tumor vasculature underlie alterations in lymphocyte-endothelial recognition to foster tumor immune escape. Cancer Res 76:1348–1353

    CAS  PubMed  Google Scholar 

  • Cowan CE et al (2010) Kruppel-like factor-4 transcriptionally regulates VE-cadherin expression and endothelial barrier function. Circ Res 107:959–966

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Meyer SF et al (2006) Phenotypic correction of von Willebrand disease type 3 blood-derived endothelial cells with lentiviral vectors expressing von Willebrand factor. Blood 107:4728–4736

    PubMed  PubMed Central  Google Scholar 

  • Dudek AZ et al (2007) Systemic inhibition of tumour angiogenesis by endothelial cell-based gene therapy. Br J Cancer 97:513–522

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    CAS  PubMed  Google Scholar 

  • Folkman J et al (1989) Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339:58–61

    CAS  PubMed  Google Scholar 

  • Grenier G et al (2007) Resident endothelial precursors in muscle, adipose, and dermis contribute to postnatal vasculogenesis. Stem Cells 25:3101–3110

    CAS  PubMed  Google Scholar 

  • Hu Y et al (2002) Both donor and recipient origins of smooth muscle cells in vein graft atherosclerotic lesions. Circ Res 91:e13–e20

    PubMed  Google Scholar 

  • Huang XT et al (2013) Intracerebroventricular transplantation of ex vivo expanded endothelial colony-forming cells restores blood-brain barrier integrity and promotes angiogenesis of mice with traumatic brain injury. J Neurotrauma 30:2080–2088

    PubMed  PubMed Central  Google Scholar 

  • Ingram DA et al (2005) Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood 105:2783–2786

    CAS  PubMed  Google Scholar 

  • Jaffredo T et al (1998) Intraaortic hemopoietic cells are derived from endothelial cells during ontogeny. Development 125:4575–4583

    CAS  PubMed  Google Scholar 

  • Klein D et al (2011) Vascular wall-resident CD44+ multipotent stem cells give rise to pericytes and smooth muscle cells and contribute to new vessel maturation. PLoS One 6:e20540

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kopp HG et al (2006) Contribution of endothelial progenitors and proangiogenic hematopoietic cells to vascularization of tumor and ischemic tissue. Curr Opin Hematol 13:175–181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin IRZ et al (2011) Induction of erythropoiesis using human vascular networks genetically engineered for controlled erythropoietin release. Blood 118:5420–5248

    Google Scholar 

  • Majesky MW et al (2012) The adventitia: a progenitor cell niche for the vessel wall. Cells Tissues Organs 195:73–81

    PubMed  Google Scholar 

  • Majka SM et al (2003) Distinct progenitor populations in skeletal muscle are bone marrow derived and exhibit different cell fates during vascular regeneration. J Clin Invest 111:71–79

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malinverno M et al (2017) Peg3/PW1 is a marker of a subset of vessel associated endothelial progenitors. Stem Cells 35:1328–1340

    CAS  PubMed  Google Scholar 

  • Matsui H et al (2007) Ex vivo gene therapy for hemophilia A that enhances safe delivery and sustained in vivo factor VIII expression from lentivirally engineered endothelial progenitors. Stem Cells 25:2660–2669

    CAS  PubMed  Google Scholar 

  • Mondor I et al (2016) Clonal proliferation and stochastic pruning orchestrate lymph node vasculature remodeling. Immunity 45:877–888

    CAS  PubMed  Google Scholar 

  • Moubarik C et al (2011) Transplanted late outgrowth endothelial progenitor cells as cell therapy product for stroke. Stem Cell Rev 7:208–220

    Google Scholar 

  • Naito H et al (2012) Identification and characterization of a resident vascular stem/progenitor cell population in preexisting blood vessels. EMBO J 31:842–855

    CAS  PubMed  Google Scholar 

  • Ohlstein B et al (2004) The stem cell niche: theme and variations. Curr Opin Cell Biol 16:693–699

    CAS  PubMed  Google Scholar 

  • Ohtani K et al (2011) Epigenetic regulation of endothelial lineage committed genes in pro-angiogenic hematopoietic and endothelial progenitor cells. Circ Res 109:1219–1229

    CAS  PubMed  Google Scholar 

  • Perlingeiro RC (2007) Endoglin is required for hemangioblast and early hematopoietic development. Development 134:3041–3048

    CAS  PubMed  Google Scholar 

  • Psaltis PJ et al (2011) Resident vascular progenitor cells—diverse origins, phenotype, and function. J Cardiovasc Transl Res 4:161–176

    PubMed  Google Scholar 

  • Rafii S, Lyden D (2003) Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 9:702–712

    CAS  PubMed  Google Scholar 

  • Ren X et al (2014) FOXF1 transcription factor is required for formation of embryonic vasculature by regulating VEGF signaling in endothelial cells. Circ Res 115:709–720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ribatti D (2008) Hemangioblast does exist. Leuk Res 32:850–854

    PubMed  Google Scholar 

  • Risau W et al (1988) Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies. Development 102:471–478

    CAS  PubMed  Google Scholar 

  • Rossi E et al (2019) Endoglin as an adhesion molecule in mature and progenitor endothelial cells: a function beyond TGF-beta. Front Med (Lausanne) 6:10

    Google Scholar 

  • Ruggeri A et al (2018) Endothelial and circulating progenitor cells in Hematological diseases and allogeneic hematopoietic stem cell transplantation. Curr Med Chem 25:4535–4544

    CAS  PubMed  Google Scholar 

  • Sabin FR (1920) Studies on the origin of blood vessels and of red corpuscles as seen in the living blastoderm of chicks during the second day of incubation. Contrib Embryol 9:213–262

    Google Scholar 

  • Sawamiphak S et al (2010) Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature 465:487–491

    CAS  PubMed  Google Scholar 

  • Schwartz SM, Benditt EP (1977) Aortic endothelial cell replication. I. Effects of age and hypertension in the rat. Circ Res 41:248–255

    CAS  PubMed  Google Scholar 

  • Shen B et al (2009) Kruppel-like factor 4 is a novel mediator of Kallistatin in inhibiting endothelial inflammation via increased endothelial nitric-oxide synthase expression. J Biol Chem 284:35471–35478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith AG (2001) Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol 17:435–462

    CAS  PubMed  Google Scholar 

  • Sturtzel C et al (2018) FOXF1 mediates endothelial progenitor functions and regulates vascular sprouting. Front Bioeng Biotechnol 6:76

    PubMed  PubMed Central  Google Scholar 

  • Tamma R, Ribatti D (2017) Bone niches, hematopoietic stem cells, and vessel formation. Int J Mol Sci 18:151

    PubMed Central  Google Scholar 

  • Tavian M et al (2005) The vascular wall as a source of stem cells. Ann N Y Acad Sci 1044:41–50

    PubMed  Google Scholar 

  • Thiaville MM et al (2013) DNA-binding motif and target genes of the imprinted transcription factor PEG3. Gene 512:314–320

    CAS  PubMed  Google Scholar 

  • Tura O et al (2013) Late outgrowth endothelial cells resemble mature endothelial cells and are not derived from bone marrow. Stem Cells 31:338–348

    CAS  PubMed  Google Scholar 

  • Wabik A, Jones PH (2015) Switching roles: the functional plasticity of adult tissue stem cells. EMBO J 34:1164–1179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JW et al (2013) Analysis of the storage and secretion of von Willebrand factor in blood outgrowth endothelial cells derived from patients with von Willebrand disease. Blood 121:2762–2772

    CAS  PubMed  Google Scholar 

  • Wei J et al (2007) Targeted release of oncolytic measles virus by blood outgrowth endothelial cells in situ inhibits orthotopic gliomas. Gene Ther 14:1573–1586

    CAS  PubMed  Google Scholar 

  • Werner N et al (2003) Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury. Circ Res 93:e17–e24

    CAS  PubMed  Google Scholar 

  • Yamaguchi S et al (2011) The role of microRNA-145 in human embryonic stem cell differentiation into vascular cells. Atherosclerosis 219:468–474

    CAS  PubMed  Google Scholar 

  • Yamawaki H et al (2010) Omentin, a novel adipokine, induces vasodilation in rat isolated blood vessels. Biochem Biophys Res Commun 393:668–672

    CAS  PubMed  Google Scholar 

  • Yoder MC (2012) Human endothelial progenitor cells. Cold Spring Harb Perspect Med 2:a006692

    PubMed  PubMed Central  Google Scholar 

  • Zengin E et al (2006) Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development 133:1543–1551

    CAS  PubMed  Google Scholar 

  • Zhang Y et al (2013) Transplantation of expanded endothelial colony-forming cells improved outcomes of traumatic brain injury in a mouse model. J Surg Res 185:441–449

    PubMed  Google Scholar 

  • Zhang M et al (2014) Endothelial progenitor cells and vascular repair. Curr Opin Hematol 21:224–228

    PubMed  PubMed Central  Google Scholar 

  • Zheng F et al (2009) The primary study of CD90(+)CD34(−)and Sca-1(+) stem cells mobilized by EPO plus G-CSF in mice. Int J Stem Cells 2:129–134

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Ribatti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tamma, R., Ruggieri, S., Annese, T., Ribatti, D. (2019). Vascular Wall as Source of Stem Cells Able to Differentiate into Endothelial Cells. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 7. Advances in Experimental Medicine and Biology(), vol 1237. Springer, Cham. https://doi.org/10.1007/5584_2019_421

Download citation

Publish with us

Policies and ethics