Skip to main content

Modeling of PH Domains and Phosphoinositides Interactions and Beyond

  • Chapter
  • First Online:
Protein Reviews – Purinergic Receptors

Part of the book series: Advances in Experimental Medicine and Biology ((PROTRE,volume 1111))

Abstract

Pleckstrin homology (PH) domains form a large family of protein modules within membrane-targeting domains. PH domains can function as lipid-binding modules, and in particular bind with different specificities and affinities to phosphoinositides (PIs). Understanding the association of PH domains to PIs is critical for many aspects of cellular biology. Bioinformatics and computational modeling approaches have become standard tools to study the structure and dynamics of PH domains and PIs. In this review, recent advances in the binding specificity of PH domains and their interactions with PIs, using bioinformatics tools for the prediction of PIs binding sites, performing molecular dynamics simulations to study PH domains-PIs interactions, as well as the computational inhibitor design for PH domains guided signaling pathways have been discussed.

Jiarong Feng, Lei He and Yuqian Li contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PtdIns(4)P:

Phosphatidylinositol 4-phosphate

PtdIns(3,4)P2 :

Phosphatidylinositol 3,4-bisphosphate

PtdIns(3,5)P2 :

Phosphatidylinositol 3,5-bisphosphate

PtdIns(4,5)P2 :

Phosphatidylinositol 4,5-bisphosphate

PtdIns (3,4,5)P3 :

Phosphatidylinositol 3,4,5-triphosphate;

PtdIns(1,3,4,5)P4 :

Phosphatidylinositol 1,3,4,5-trisphosphate

Ins (4, 5)P2 :

Inositol 4,5-bisphosphate

Ins(1,4,5)P 3 :

Inositol 1,4,5-trisphosphate

Ins(1,3,4,5)P4 :

Inositol 1,3,4,5-tetrakisphosphate

References

  • Ajmani S, Agrawal A, Kulkarni SA (2010) A comprehensive structure-activity analysis of protein kinase B-alpha (Akt1) inhibitors. J Mol Graph Model 28(7):683–694

    CAS  PubMed  Google Scholar 

  • Akhtar N, Jabeen I (2016) A 2D-QSAR and grid-independent molecular descriptor (GRIND) analysis of Quinoline-type inhibitors of Akt2: exploration of the binding mode in the Pleckstrin homology (PH) domain. PLoS One 11(12):e168806

    Google Scholar 

  • Anand K, Maeda K, Gavin AC (2012) Structural analyses of the Slm1-PH domain demonstrate ligand binding in the non-canonical site. PLoS One 7(5):e36526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ashkenazy H, Abadi S, Martz E et al (2016) ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res 44(W1):W344–W350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balla T (2013) Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev 93(3):1019–1137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baraldi E, Djinovic CK, Hyvonen M et al (1999) Structure of the PH domain from Bruton’s tyrosine kinase in complex with inositol 1,3,4,5-tetrakisphosphate. Structure 7(4):449–460

    CAS  PubMed  Google Scholar 

  • Bar-Shavit R, Maoz M, Kancharla A et al (2016) Protease-activated receptors (PARs) in cancer: Novel biased signaling and targets for therapy. Methods Cell Biol 132:341–358

    CAS  PubMed  Google Scholar 

  • Buyan A, Kalli AC, Sansom MS (2016) Multiscale simulations suggest a mechanism for the association of the Dok7 PH domain with PIP-containing membranes. PLoS Comput Biol 12(7):e1005028

    PubMed  PubMed Central  Google Scholar 

  • Carpten JD, Faber AL, Horn C et al (2007) A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448(7152):439–444

    CAS  PubMed  Google Scholar 

  • Cash JN, Davis EM, Tesmer JJ (2016) Structural and Biochemical Characterization of the Catalytic Core of the Metastatic Factor P-Rex1 and Its Regulation by PtdIns(3,4,5)P3. Structure 24(5):730–740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ceccarelli DF, Blasutig IM, Goudreault M et al (2007) Non-canonical interaction of phosphoinositides with pleckstrin homology domains of Tiam1 and ArhGAP9. J Biol Chem 282(18):13864–13874

    CAS  PubMed  Google Scholar 

  • Chan KC, Lu L, Sun F, Fan J (2017) Molecular details of the PH domain of ACAP1BAR-PH protein binding to PIP-containing membrane. J Phys Chem B 121(15):3586–3596

    CAS  PubMed  Google Scholar 

  • Chen SF, Cao Y, Han S, Chen JZ (2014) Insight into the structural mechanism for PKBalpha allosteric inhibition by molecular dynamics simulations and free energy calculations. J Mol Graph Model 48:36–46

    CAS  PubMed  Google Scholar 

  • Chen L, Du-Cuny L, Moses S et al (2015) Novel inhibitors induce large conformational changes of GAB1 Pleckstrin homology domain and kill breast Cancer cells. PLoS Comput Biol 11(e10040211):e1004021

    PubMed  PubMed Central  Google Scholar 

  • Cozier GE, Carlton J, Bouyoucef D, Cullen PJ (2004) Membrane targeting by pleckstrin homology domains. Curr Top Microbiol Immunol 282:49–88

    CAS  PubMed  Google Scholar 

  • Davis GD, Vasanthi AH (2015) QSAR based docking studies of marine algal anticancer compounds as inhibitors of protein kinase B (PKBbeta). Eur J Pharm Sci 76:110–118

    CAS  PubMed  Google Scholar 

  • De Craene JO, Bertazzi DL, Bar S, Friant S (2017) Phosphoinositides, major actors in membrane trafficking and lipid signaling pathways. Int J Mol Sci 18(3):634

    PubMed Central  Google Scholar 

  • DiNitto JP, Lambright DG (2006) Membrane and juxtamembrane targeting by PH and PTB domains. Biochim Biophys Acta 1761(8):850–867

    CAS  PubMed  Google Scholar 

  • Du-Cuny L, Song Z, Moses S et al (2009) Computational modeling of novel inhibitors targeting the Akt pleckstrin homology domain. Bioorg Med Chem 17(19):6983–6992

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fidler DR, Murphy SE, Courtis K et al (2016) Using HHsearch to tackle proteins of unknown function: a pilot study with PH domains. Traffic 17(11):1214–1226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gallet X, Charloteaux B, Thomas A, Brasseur R (2000) A fast method to predict protein interaction sites from sequences. J Mol Biol 302(4):917–926

    CAS  PubMed  Google Scholar 

  • Ghigo A, Laffargue M, Li M, Hirsch E (2017) PI3K and calcium signaling in cardiovascular disease. Circ Res 121(3):282–292

    CAS  PubMed  Google Scholar 

  • Gorai S, Bagdi PR, Borah R et al (2015) Insights into the inhibitory mechanism of triazole-based small molecules on phosphatidylinositol-4,5-bisphosphate binding pleckstrin homology domain. Biochem Biophys Rep 2:75–86

    PubMed  PubMed Central  Google Scholar 

  • Hawkins PT, Stephens LR (2016) Emerging evidence of signalling roles for PI(3,4)P2 in class I and II PI3K-regulated pathways. Biochem Soc Trans 44(1):307–314

    CAS  PubMed  Google Scholar 

  • Hokanson DE, Laakso JM, Lin T et al (2006) Myo1c binds phosphoinositides through a putative pleckstrin homology domain. Mol Biol Cell 17(11):4856–4865

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hurley JH, Misra S (2000) Signaling and subcellular targeting by membrane-binding domains. Annu Rev Biophys Biomol Struct 29:49–79

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hyvonen M, Saraste M (1997) Structure of the PH domain and Btk motif from Bruton’s tyrosine kinase: molecular explanations for X-linked agammaglobulinaemia. EMBO J 16(12):3396–3404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jian X, Tang WK, Zhai P et al (2015) Molecular basis for cooperative binding of anionic phospholipids to the PH domain of the Arf GAP ASAP1. Structure 23(11):1977–1988

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Z, Liang Z, Shen B, Hu G (2015) Computational analysis of the binding specificities of PH domains. Biomed Res Int 2015:792904

    PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Jiang H, Zhou S et al (2016) Crystal structure of hGEF-H1 PH domain provides insight into incapability in phosphoinositide binding. Biochem Biophys Res Commun 471(4):621–627

    CAS  PubMed  Google Scholar 

  • Kallberg M, Bhardwaj N, Langlois R, Lu H (2012) A structure-based protocol for learning the family-specific mechanisms of membrane-binding domains. Bioinformatics 28(18):i431–i437

    PubMed  PubMed Central  Google Scholar 

  • Kalli AC, Sansom MS (2014) Interactions of peripheral proteins with model membranes as viewed by molecular dynamics simulations. Biochem Soc Trans 42(5):1418–1424

    CAS  PubMed  Google Scholar 

  • Kancharla A, Maoz M, Jaber M et al (2015) PH motifs in PAR1&2 endow breast cancer growth. Nat Commun 6:8853

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krauss M, Haucke V (2007) Phosphoinositides: regulators of membrane traffic and protein function. FEBS Lett 581(11):2105–2111

    CAS  PubMed  Google Scholar 

  • Kuang G, Bulone V, Tu Y (2016) Computational studies of the binding profile of phosphoinositide PtdIns (3,4,5) P(3) with the pleckstrin homology domain of an oomycete cellulose synthase. Sci Rep 6:20555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Purohit R (2013) Cancer associated E17K mutation causes rapid conformational drift in AKT1 pleckstrin homology (PH) domain. PLoS One 8(5):e64364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lapierre JM, Eathiraj S, Vensel D et al (2016) Discovery of 3-(3-(4-(1-Aminocyclobutyl)phenyl)-5-phenyl-3H-imidazo[4,5-b]pyridin-2-yl)pyridin −2-amine (ARQ 092): an orally bioavailable, selective, and potent allosteric AKT inhibitor. J Med Chem 59(13):6455–6469

    CAS  PubMed  Google Scholar 

  • Lemmon MA (2007) Pleckstrin homology (PH) domains and phosphoinositides. Biochem Soc Symp 74:81–93

    CAS  Google Scholar 

  • Lemmon MA (2008) Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 9(2):99–111

    CAS  PubMed  Google Scholar 

  • Lemmon MA, Ferguson KM (2000) Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem J 350(Pt 1):1–18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lemmon MA, Ferguson KM, Schlessinger J (1996) PH domains: diverse sequences with a common fold recruit signaling molecules to the cell surface. Cell 85(5):621–624

    CAS  PubMed  Google Scholar 

  • Lenoir M, Kufareva I, Abagyan R, Overduin M (2015) Membrane and protein interactions of the Pleckstrin homology domain superfamily. Membranes (Basel) 5(4):646–663

    CAS  Google Scholar 

  • Letunic I, Doerks T, Bork P (2015) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 43(Database issue):D257–D260

    CAS  PubMed  Google Scholar 

  • Li H, Marshall AJ (2015) Phosphatidylinositol (3,4) bisphosphate-specific phosphatases and effector proteins: a distinct branch of PI3K signaling. Cell Signal 27(9):1789–1798

    PubMed  Google Scholar 

  • Lien EC, Dibble CC, Toker A (2017) PI3K signaling in cancer: beyond AKT. Curr Opin Cell Biol 45:62–71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu P, Cheng H, Roberts TM, Zhao JJ (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8(8):627–644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Fukuda K, Xu Z et al (2011) Structural basis of phosphoinositide binding to kindlin-2 protein pleckstrin homology domain in regulating integrin activation. J Biol Chem 286(50):43334–43342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu P, Gan W, Chin YR et al (2015) PtdIns(3,4,5)P3-dependent activation of the mTORC2 kinase complex. Cancer Discov 5(11):1194–1209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu D, Jiang J, Liang Z et al (2013) Molecular dynamic simulation to explore the molecular basis of Btk-PH domain interaction with Ins(1,3,4,5)P4. Sci World J 2013:580456

    Google Scholar 

  • Lumb CN, Sansom MS (2012) Finding a needle in a haystack: the role of electrostatics in target lipid recognition by PH domains. PLoS Comput Biol 8(7):e1002617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lumb CN, He J, Xue Y et al (2011) Biophysical and computational studies of membrane penetration by the GRP1 pleckstrin homology domain. Structure 19(9):1338–1346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo HR, Mondal S (2015) Molecular control of PtdIns(3,4,5)P3 signaling in neutrophils. EMBO Rep 16(2):149–163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maffucci T, Falasca M (2001) Specificity in pleckstrin homology (PH) domain membrane targeting: a role for a phosphoinositide-protein co-operative mechanism. FEBS Lett 506(3):173–179

    CAS  PubMed  Google Scholar 

  • Mahadevan D, Powis G, Mash EA et al (2008) Discovery of a novel class of AKT pleckstrin homology domain inhibitors. Mol Cancer Ther 7(9):2621–2632

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mak LH, Georgiades SN, Rosivatz E et al (2011) A small molecule mimicking a phosphatidylinositol (4,5)-bisphosphate binding pleckstrin homology domain. ACS Chem Biol 6(12):1382–1390

    CAS  PubMed  Google Scholar 

  • Manna P, Jain SK (2015) Phosphatidylinositol-3,4,5-triphosphate and cellular signaling: implications for obesity and diabetes. Cell Physiol Biochem 35(4):1253–1275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marchler-Bauer A, Derbyshire MK, Gonzales NR et al (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43(Database issue):D222–D226

    CAS  PubMed  Google Scholar 

  • Meuillet EJ (2011) Novel inhibitors of AKT: assessment of a different approach targeting the pleckstrin homology domain. Curr Med Chem 18(18):2727–2742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miao B, Skidan I, Yang J et al (2010) Small molecule inhibition of phosphatidylinositol-3,4,5-triphosphate (PIP3) binding to pleckstrin homology domains. Proc Natl Acad Sci U S A 107(46):20126–20131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miroshnychenko D, Dubrovska A, Maliuta S et al (2010) Novel role of pleckstrin homology domain of the Bcr-Abl protein: analysis of protein-protein and protein-lipid interactions. Exp Cell Res 316(4):530–542

    CAS  PubMed  Google Scholar 

  • Mohamed AJ, Yu L, Backesjo CM et al (2009) Bruton’s tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain. Immunol Rev 228(1):58–73

    CAS  PubMed  Google Scholar 

  • Morales J, Sobol M, Rodriguez-Zapata LC et al (2017) Aromatic amino acids and their relevance in the specificity of the PH domain. J Mol Recognit 30:e2649

    Google Scholar 

  • Moses SA, Ali MA, Zuohe S et al (2009) In vitro and in vivo activity of novel small-molecule inhibitors targeting the pleckstrin homology domain of protein kinase B/AKT. Cancer Res 69(12):5073–5081

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murayama K, Kato-Murayama M, Mishima C et al (2008) Crystal structure of the Bruton’s tyrosine kinase PH domain with phosphatidylinositol. Biochem Biophys Res Commun 377(1):23–28

    CAS  PubMed  Google Scholar 

  • Nastou KC, Tsaousis GN, Papandreou NC, Hamodrakas SJ (2016) MBPpred: proteome-wide detection of membrane lipid-binding proteins using profile hidden Markov models. Biochim Biophys Acta 1864(7):747–754

    CAS  PubMed  Google Scholar 

  • Ni T, Kalli AC, Naughton FB et al (2017) Structure and lipid-binding properties of the kindlin-3 pleckstrin homology domain. Biochem J 474(4):539–556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa A, Yamazaki Y, Nakamori M et al (2013) Characterization and distribution of adaptor protein containing a PH domain, PTB domain and leucine zipper motif (APPL1) in Alzheimer’s disease hippocampus: an immunohistochemical study. Brain Res 1494:118–124

    CAS  PubMed  Google Scholar 

  • Ojteg G, Lundahl P, Wolgast M (1989) The net electric charge of proteins. A comparison of determinations by Donnan potential measurements and by gel electrophoresis. Biochim Biophys Acta 991(2):317–323

    CAS  PubMed  Google Scholar 

  • Pang X, Fan J, Zhang Y et al (2014) A PH domain in ACAP1 possesses key features of the BAR domain in promoting membrane curvature. Dev Cell 31(1):73–86

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parikh C, Janakiraman V, Wu WI et al (2012) Disruption of PH-kinase domain interactions leads to oncogenic activation of AKT in human cancers. Proc Natl Acad Sci U S A 109(47):19368–19373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Politz O, Siegel F, Barfacker L et al (2017) BAY 1125976, a selective allosteric AKT1/2 inhibitor, exhibits high efficacy on AKT signaling-dependent tumor growth in mouse models. Int J Cancer 140(2):449–459

    CAS  PubMed  Google Scholar 

  • Psachoulia E, Sansom MS (2008) Interactions of the pleckstrin homology domain with phosphatidylinositol phosphate and membranes: characterization via molecular dynamics simulations. Biochemistry 47(14):4211–4220

    CAS  PubMed  Google Scholar 

  • Rebecchi MJ, Scarlata S (1998) Pleckstrin homology domains: a common fold with diverse functions. Annu Rev Biophys Biomol Struct 27:503–528

    CAS  PubMed  Google Scholar 

  • Riehle RD, Cornea S, Degterev A (2013) Role of phosphatidylinositol 3,4,5-trisphosphate in cell signaling. Adv Exp Med Biol 991:105–139

    CAS  PubMed  Google Scholar 

  • Rodgers SJ, Ferguson DT, Mitchell CA, Ooms LM (2017) Regulation of PI3K effector signalling in cancer by the phosphoinositide phosphatases. Biosci Rep 37(1):BSR20160432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rong SB, Hu Y, Enyedy I et al (2001) Molecular modeling studies of the Akt PH domain and its interaction with phosphoinositides. J Med Chem 44(6):898–908

    CAS  PubMed  Google Scholar 

  • Rosen SA, Gaffney PR, Gould IR (2011) A theoretical investigation of inositol 1,3,4,5-tetrakisphosphate. Phys Chem Chem Phys 13(3):1070–1081

    CAS  PubMed  Google Scholar 

  • Rosen SA, Gaffney PR, Spiess B, Gould IR (2012) Understanding the relative affinity and specificity of the pleckstrin homology domain of protein kinase B for inositol phosphates. Phys Chem Chem Phys 14(2):929–936

    CAS  PubMed  Google Scholar 

  • Roy NS, Yohe ME, Randazzo PA, Gruschus JM (2016) Allosteric properties of PH domains in Arf regulatory proteins. Cell Logist 6(2):e1181700

    PubMed  PubMed Central  Google Scholar 

  • Santos-Garcia L, Assis LC, Silva DR et al (2016) QSAR analysis of nicotinamidic compounds and design of potential Bruton’s tyrosine kinase (Btk) inhibitors. J Biomol Struct Dyn 34(7):1421–1440

    CAS  PubMed  Google Scholar 

  • Shen B, Bai J, Vihinen M (2008) Physicochemical feature-based classification of amino acid mutations. Protein Eng Des Sel 21(1):37–44

    CAS  PubMed  Google Scholar 

  • Singh SM, Murray D (2003) Molecular modeling of the membrane targeting of phospholipase C pleckstrin homology domains. Protein Sci 12(9):1934–1953

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stahelin RV, Scott JL, Frick CT (2014) Cellular and molecular interactions of phosphoinositides and peripheral proteins. Chem Phys Lipids 182:3–18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang N, Lin T, Ostap EM (2002) Dynamics of myo1c (myosin-ibeta) lipid binding and dissociation. J Biol Chem 277(45):42763–42768

    CAS  PubMed  Google Scholar 

  • Tran HT, Zhang S (2011) Accurate prediction of the bound form of the Akt pleckstrin homology domain using normal mode analysis to explore structural flexibility. J Chem Inf Model 51(9):2352–2360

    CAS  PubMed  Google Scholar 

  • Valiaho J, Faisal I, Ortutay C et al (2015) Characterization of all possible single-nucleotide change caused amino acid substitutions in the kinase domain of Bruton tyrosine kinase. Hum Mutat 36(6):638–647

    PubMed  Google Scholar 

  • Wadhwa B, Makhdoomi U, Vishwakarma R, Malik F (2017) Protein kinase B: emerging mechanisms of isoform-specific regulation of cellular signaling in cancer. Anti-Cancer Drugs 28(6):569–580

    CAS  PubMed  Google Scholar 

  • Yamamoto E, Kalli AC, Yasuoka K, Sansom MS (2016) Interactions of Pleckstrin homology domains with membranes: adding back the bilayer via high-throughput molecular dynamics. Structure 24(8):1421–1431

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto E, Akimoto T, Kalli AC et al (2017) Dynamic interactions between a membrane binding protein and lipids induce fluctuating diffusivity. Sci Adv 3(1):e1601871

    PubMed  PubMed Central  Google Scholar 

  • Yao L, Kawakami Y, Kawakami T (1994) The pleckstrin homology domain of Bruton tyrosine kinase interacts with protein kinase C. Proc Natl Acad Sci U S A 91(19):9175–9179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yates LA, Lumb CN, Brahme NN et al (2012) Structural and functional characterization of the kindlin-1 pleckstrin homology domain. J Biol Chem 287(52):43246–43261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yilmaz OG, Olmez EO, Ulgen KO (2014) Targeting the Akt1 allosteric site to identify novel scaffolds through virtual screening. Comput Biol Chem 48:1–13

    CAS  PubMed  Google Scholar 

  • Yu JW, Mendrola JM, Audhya A et al (2004) Genome-wide analysis of membrane targeting by S. cerevisiae pleckstrin homology domains. Mol Cell 13(5):677–688

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61401068), the China Postdoctoral Science Foundation (2016 M590495), Jiangsu College Natural Science Research Key Program (17KJA520004), and the Jiangsu Planned Projects for Postdoctoral Research Funds (1601168C).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Xiao or Guang Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feng, J., He, L., Li, Y., Xiao, F., Hu, G. (2018). Modeling of PH Domains and Phosphoinositides Interactions and Beyond. In: Atassi, M. (eds) Protein Reviews – Purinergic Receptors. Advances in Experimental Medicine and Biology(), vol 1111. Springer, Cham. https://doi.org/10.1007/5584_2018_236

Download citation

Publish with us

Policies and ethics