Skip to main content

Stem Cell and Obesity: Current State and Future Perspective

  • Chapter
  • First Online:
Cell Biology and Translational Medicine, Volume 2

Abstract

Obesity as a worldwide growing challenge is determined by abnormal fat deposition, which may damage general health. Weight loss and control of related risk factors like type2 diabetes, dyslipidemia, hypertension, cardiovascular diseases, and metabolic syndrome is an important concern in obesity management. Different therapeutic approaches such as lifestyle change, medications, and surgery are introduced for obesity treatment. Despite of gaining partially desirable results, the problem is remained unsolved. Therefore, finding a new approach that can overcome previous limitations is very attractive for both researchers and clinicians. Cell-based therapy using adipose-derived stromal cells seems to be a promising strategy to control obesity and related syndromes. To attain this aim, understanding of different type of adipose tissues, main signaling pathways, and different factors involved in development of adipocyte is essential. Recently, several cell-based methods like stem cell administration, brown adipose tissue transplantation, cell lysates and exosomes have been examined on obese mouse models to manage obesity and related disorders. Successful outcome of such preclinical studies can encourage the cell-based clinical trials in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADAMTS5:

A disintegrin and metalloproteinase with thrombospondin motif 5

ADSC:

Adipose derived mesenchymal stem cells

AKR1B10:

Aldo-keto reductase family 1 member B10

aP2:

Adipocyte protein 2

ASCs:

Adipose derived-stem cells

BAT:

Brown adipose tissue

BMI:

Body mass index

BM-MSCs:

Bone marrow mesenchymal stem cells

BMP4:

Bone morphogenic protein 4

C/EBP α (A)/β/δ:

CCAAT/enhancer-binding protein α/β/δ

CB-MSC:

Umbilical cord blood-mesenchymal stem cell

CB-plasma:

Cord blood plasma

CD24:

Cluster of differentiation 24

Cidea:

Cell death-inducing DFFA-like effector a

CIT:

Cold induced thermogenesis

Cox2:

Cyclooxygenase 2

CRE:

cAMP response element

CXCL3:

Chemokine(C-X-C motif) ligand3

DIO:

Diet-induced obese

DIT:

Diet-induced thermogenesis

Dlk1:

Delta like non-canonical notch ligand 1

EBF2:

Early B cell factor 2

EHMT1:

Euchromatic histone lysine methyltransferase 1

ENG:

Endoglin (protein)

ERK:

Extra cellular receptor kinase

ES:

Embryonic stem cell

EVs:

Extracellular vesicles

FDA:

Food and drug administration

FGF10:

Fibroblast growth factor 10

FPG:

Fasting plasma glucose

FTO:

Fat mass and obesity associated(gene)

H3K9:

Histone H3 lysine 9

HDL:

High-density lipoprotein

HFD:

High-fat diet

Hh:

Hedgehog

HOXC8:

HomeoboxC8

IDF:

International diabetes federation

IGF1:

Insulin-like growth factor1

IL6:

Interlukine 6

LOX:

lysyl oxidase

M-BA:

MSC-derived BAT

Mef2:

Myocyte enhancer factor 2

miR-196a:

MicroRNA 196a

miRNAs:

MicroRNAs

MSC:

Mesenchymal stem cells

Myf5:

Myogenic factor 5

NICD:

Notch intracellular domain

NRs:

Number of nuclear receptors

Pax7:

Paired box 7

PDGF:

Platelet-derived growth factor

PDGPR α /b:

Platelet derived growth factor receptor α/β

PGCα:

Peroxisome proliferator-activated receptor-gamma coactivator α

PLIN:

Perilipin

PPAR-γ/G:

Peroxisome proliferator-activated receptor-γ

PPRE:

PPAR response element

PRb/Rb:

Retinoblastoma protein/ retinoblastoma

PRDM16:

PR domain containing 16

PREF1:

Preadipocyte factor 1

RARE:

Retinoic acid response element

RIP:

Receptor interacting protein

SAT:

Subcutaneus white adipose tissue

SMA:

Spinal muscular atrophy

STAT3:

Signal transducers and activators of transcription 3

TC1:

Immune response regulator

TNFα:

Tumor necrosis factor α

TRE:

Thyroid response element

TGFβ:

Transforming growth factor beta

UCP1:

Uncoupling protein 1

VAT:

Visceral white adipose tissue

VEAT:

Visceral endothelial adipose tissue

WAT:

White adipose tissue

WHO:

World health organization

Wisp2:

Inducible signaling path-way protein 2

WNT1:

Wingless-type MMTV integration family member 1

Zfp516:

Zinc finger protein 516

P107:

Retinoblastoma-like 1

References

  • Abdesselem H, Madani A, Hani A, Al-Noubi M, Goswami N, Hamidane HB, Billing AM, Pasquier J, Bonkowski MS, Halabi N (2016) SIRT1 limits adipocyte hyperplasia through c-Myc inhibition. J Biol Chem 291:2119–2135

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822

    Article  CAS  PubMed  Google Scholar 

  • Aghayan HR, Goodarzi P, Arjmand B (2015) GMP-compliant human adipose tissue-derived mesenchymal stem cells for cellular therapy. Methods Mol Biol 1283:93–107

    Article  CAS  PubMed  Google Scholar 

  • Aghayan HR, Arjmand B, Ahmadbeigi N, Gheisari Y, Vasei M (2017) Draft of Iranian National Guideline for cell therapy manufacturing. Arch Iran Med 20:547–550

    PubMed  Google Scholar 

  • Aldiss P, Davies G, Woods R, Budge H, Sacks HS, Symonds ME (2017) ‘Browning’ the cardiac and peri-vascular adipose tissues to modulate cardiovascular risk. Int J Cardiol 228:265–274

    Article  PubMed Central  PubMed  Google Scholar 

  • Ali AT, Hochfeld WE, Myburgh R, Pepper MS (2013) Adipocyte and adipogenesis. Eur J Cell Biol 92:229–236

    Article  CAS  PubMed  Google Scholar 

  • Alkhalil M, Smajilagic A, Redzic A (2015) Human dental pulp mesenchymal stem cells isolation and osteoblast differentiation. Med Glas (Zenica) 12:27–32

    Google Scholar 

  • Anderson JW, Kendall CW, Jenkins DJ (2003) Importance of weight management in type 2 diabetes: review with meta-analysis of clinical studies. J Am Coll Nutr 22:331–339

    Article  PubMed  Google Scholar 

  • Augello A, De Bari C (2010) The regulation of differentiation in mesenchymal stem cells. Hum Gene Ther 21:1226–1238

    Article  CAS  PubMed  Google Scholar 

  • Baksh D, Song L, Tuan R (2004) Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med 8:301–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baptista LS, Silva KR, Borojevic R (2015) Obesity and weight loss could alter the properties of adipose stem cells? World J Stem Cells 7:165–173

    Article  PubMed Central  PubMed  Google Scholar 

  • Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K, Giacobino JP, De Matteis R, Cinti S (2010) The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab 298:E1244–E1253

    Article  CAS  PubMed  Google Scholar 

  • Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, Kaul MG, Tromsdorf UI, Weller H, Waurisch C, Eychmuller A, Gordts PL, Rinninger F, Bruegelmann K, Freund B, Nielsen P, Merkel M, Heeren J (2011) Brown adipose tissue activity controls triglyceride clearance. Nat Med 17:200–205

    Article  CAS  PubMed  Google Scholar 

  • Berkowitz DE, Brown D, Lee KM, Emala C, Palmer D, An Y, Breslow M (1998) Endotoxin-induced alteration in the expression of leptin and beta3-adrenergic receptor in adipose tissue. Am J Phys 274:E992–E997

    Article  CAS  Google Scholar 

  • Bianco P (2014) “Mesenchymal” stem cells. Annu Rev Cell Dev Biol 30:677–704

    Article  CAS  PubMed  Google Scholar 

  • Bilkovski R, Schulte DM, Oberhauser F, Gomolka M, Udelhoven M, Hettich MM, Roth B, Heidenreich A, Gutschow C, Krone W (2010) Role of WNT-5a in the determination of human mesenchymal stem cells into preadipocytes. J Biol Chem 285:6170–6178

    Article  CAS  PubMed  Google Scholar 

  • Boucher J, Softic S, EL Ouaamari A, Krumpoch MT, Kleinridders A, Kulkarni RN, O'neill BT, Kahn CR (2016) Differential roles of insulin and IGF-1 receptors in adipose tissue development and function. Diabetes 65:2201–2213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brand MD, Pakay JL, Ocloo A, Kokoszka J, Wallace DC, Brookes PS, Cornwall EJ (2005) The basal proton conductance of mitochondria depends on adenine nucleotide translocase content. Biochem J 392:353–362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS (2008) Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 134:933–944

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cao M, Pan Q, Dong H, Yuan X, Li Y, Sun Z, Dong X, Wang H (2015) Adipose-derived mesenchymal stem cells improve glucose homeostasis in high-fat diet-induced obese mice. Stem Cell Res Ther 6:208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98:1076–1084

    Article  CAS  PubMed  Google Scholar 

  • Carey AL, Febbraio MA (2004) Interleukin-6 and insulin sensitivity: friend or foe? Diabetologia 47:1135–1142

    Article  CAS  PubMed  Google Scholar 

  • Chatzistamatiou TK, Papassavas AC, Michalopoulos E, Gamaloutsos C, Mallis P, Gontika I, Panagouli E, Koussoulakos SL, Stavropoulos-Giokas C (2014) Optimizing isolation culture and freezing methods to preserve Wharton's jelly's mesenchymal stem cell (MSC) properties: an MSC banking protocol validation for the Hellenic Cord Blood Bank. Transfusion 54:3108–3120

    Article  PubMed  Google Scholar 

  • Chen M-H, Tong Q (2013) An update on the regulation of adipogenesis. Drug Discov Today: Dis Mech 10:e15–e19

    Article  Google Scholar 

  • Chen Q, Shou P, Zheng C, Jiang M, Cao G, Yang Q, Cao J, Xie N, Velletri T, Zhang X (2016) Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ 23:1128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cleal L, Aldea T, Chau YY (2017) Fifty shades of white: understanding heterogeneity in white adipose stem cells. Adipocytes 6:205–216

    Article  Google Scholar 

  • Cypess AM, Kahn CR (2010) Brown fat as a therapy for obesity and diabetes. Curr Opin Endocrinol Diabetes Obes 17:143–149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Esteve Rafols M (2014) Adipose tissue: cell heterogeneity and functional diversity. Endocrinol Nutr 61:100–112

    Article  PubMed  Google Scholar 

  • Ferrannini E, Camastra S (1998) Relationship between impaired glucose tolerance, non-insulin-dependent diabetes mellitus and obesity. Eur J Clin Investig 28(Suppl 2):3–6 discussion 6-7

    Article  Google Scholar 

  • Feve B (2013) Adiponectin: an anti-carcinogenic adipokine? Ann Endocrinol (Paris) 74:102–105

    Article  CAS  Google Scholar 

  • Fontaine C, Cousin W, Plaisant M, Dani C, Peraldi P (2008) Hedgehog signaling alters adipocyte maturation of human mesenchymal stem cells. Stem Cells 26:1037–1046

    Article  CAS  PubMed  Google Scholar 

  • Fruhbeck G, Becerril S, Sainz N, Garrastachu P, Garcia-Velloso MJ (2009) BAT: a new target for human obesity? Trends Pharmacol Sci 30:387–396

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Salomon C, Freeman DJ (2017) Extracellular vesicles from adipose tissue-a potential role in obesity and type 2 diabetes? Front Endocrinol (Lausanne) 8:202

    Article  Google Scholar 

  • Gao Y, Vidal-Itriago A, Milanova I, Korpel NL, Kalsbeek MJ, Tom RZ, Kalsbeek A, Hofmann SM, Yi CX (2018) Deficiency of leptin receptor in myeloid cells disrupts hypothalamic metabolic circuits and causes body weight increase. Mol Metab 7:155–160

    Article  CAS  PubMed  Google Scholar 

  • Gimble J, Guilak F (2003) Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 5:362–369

    Article  PubMed  Google Scholar 

  • Gori F, Thomas T, Hicok KC, Spelsberg TC, Riggs BL (1999) Differentiation of human marrow stromal precursor cells: bone morphogenetic Protein-2 increases OSF2/CBFA1, enhances osteoblast commitment, and inhibits late adipocyte maturation. J Bone Miner Res 14:1522–1535

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Li X, Tang Q-Q (2015) Transcriptional regulation of adipocyte differentiation: a central role for CCAAT/enhancer-binding protein (C/EBP) β. J Biol Chem 290:755–761

    Article  CAS  PubMed  Google Scholar 

  • Halse R, Pearson SL, Mccormack JG, Yeaman SJ, Taylor R (2001) Effects of tumor necrosis factor-alpha on insulin action in cultured human muscle cells. Diabetes 50:1102–1109

    Article  CAS  PubMed  Google Scholar 

  • Hammarstedt A, Hedjazifar S, Jenndahl L, Gogg S, Grunberg J, Gustafson B, Klimcakova E, Stich V, Langin D, Laakso M, Smith U (2013) WISP2 regulates preadipocyte commitment and PPARgamma activation by BMP4. Proc Natl Acad Sci U S A 110:2563–2568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Han Y-F, Tao R, Sun T-J, Chai J-K, Xu G, Liu J (2013) Optimization of human umbilical cord mesenchymal stem cell isolation and culture methods. Cytotechnology 65:819–827

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harms M, Seale P (2013) Brown and beige fat: development, function and therapeutic potential. Nat Med 19:1252

    Article  CAS  PubMed  Google Scholar 

  • Herrera BM, Keildson S, Lindgren CM (2011) Genetics and epigenetics of obesity. Maturitas 69:41–49

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu E, Tontonoz P, Spiegelman BM (1995) Transdifferentiation of myoblasts by the adipogenic transcription factors PPAR gamma and C/EBP alpha. Proc Natl Acad Sci U S A 92:9856–9860

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang H, Song T-J, Li X, Hu L, He Q, Liu M, Lane MD, Tang Q-Q (2009) BMP signaling pathway is required for commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc Natl Acad Sci 106:12670–12675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda K, Maretich P, Kajimura S (2018) The common and distinct features of Brown and Beige adipocytes. Trends Endocrinol Metab 29:191–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Illouz Y-G, Sterodimas A, Green A C (2011) Role of adipose stem cells therapy in obesity. 133–139

    Google Scholar 

  • Jafari-Adli S, Jouyandeh Z, Qorbani M, Soroush A, Larijani B, Hasani-Ranjbar S (2014) Prevalence of obesity and overweight in adults and children in Iran; a systematic review. J Diabetes Metab Disord 13:121

    Article  PubMed Central  PubMed  Google Scholar 

  • James AW (2013) Review of signaling pathways governing MSC osteogenic and Adipogenic differentiation. Scientifica (Cairo) 2013:684736

    Google Scholar 

  • Jang H, Kim M, Lee S, Kim J, Woo D-C, Kim KW, Song K, Lee I (2016) Adipose tissue hyperplasia with enhanced adipocyte-derived stem cell activity in Tc1(C8orf4)-deleted mice. Sci Rep 6:35884

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jo J, Gavrilova O, Pack S, Jou W, Mullen S, Sumner AE, Cushman SW, Periwal V (2009) Hypertrophy and/or hyperplasia: dynamics of adipose tissue growth. PLoS Comput Biol 5:e1000324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Joe AW, Yi L, Even Y, Vogl AW, Rossi FM (2009) Depot-specific differences in adipogenic progenitor abundance and proliferative response to high-fat diet. Stem Cells 27:2563–2570

    Article  CAS  PubMed  Google Scholar 

  • Karagianni M, Brinkmann I, Kinzebach S, Grassl M, Weiss C, Bugert P, Bieback K (2013) A comparative analysis of the adipogenic potential in human mesenchymal stromal cells from cord blood and other sources. Cytotherapy 15:76–88

    Article  CAS  PubMed  Google Scholar 

  • Kawai M, Mushiake S, Bessho K, Murakami M, Namba N, Kokubu C, Michigami T, Ozono K (2007) Wnt/Lrp/β-catenin signaling suppresses adipogenesis by inhibiting mutual activation of PPARγ and C/EBPα. Biochem Biophys Res Commun 363:276–282

    Article  CAS  PubMed  Google Scholar 

  • Kolonin MG, Saha PK, Chan L, Pasqualini R, Arap W (2004) Reversal of obesity by targeted ablation of adipose tissue. Nat Med 10:625–632

    Article  CAS  PubMed  Google Scholar 

  • Kopan R, Ilagan MXG (2009) The canonical notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kusuyama J, Komorizono A, Bandow K, Ohnishi T, Matsuguchi T (2016) CXCL3 positively regulates adipogenic differentiation. J Lipid Res 57:1806–1820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lagathu C, Christodoulides C, Tan CY, Virtue S, Laudes M, Campbell M, Ishikawa K, Ortega F, Tinahones FJ, Fernández-Real J-M (2010) Secreted frizzled-related protein 1 regulates adipose tissue expansion and is dysregulated in severe obesity. Int J Obes 34:1695

    Article  CAS  Google Scholar 

  • Lee P, Linderman JD, Smith S, Brychta RJ, Wang J, Idelson C, Perron RM, Werner CD, Phan GQ, Kammula US, Kebebew E, Pacak K, Chen KY, Celi FS (2014) Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab 19:302–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CW, Hsiao WT, Lee OK (2017) Mesenchymal stromal cell-based therapies reduce obesity and metabolic syndromes induced by a high-fat diet. Transl Res 182:61–74.e8

    Article  PubMed  Google Scholar 

  • Lehr S, Hartwig S, Sell H (2012) Adipokines: a treasure trove for the discovery of biomarkers for metabolic disorders. Proteomics Clin Appl 6:91–101

    Article  CAS  PubMed  Google Scholar 

  • Li H, Li T, Wang S, Wei J, Fan J, Li J, Han Q, Liao L, Shao C, Zhao RC (2013) miR-17-5p and miR-106a are involved in the balance between osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells. Stem Cell Res 10:313–324

    Article  CAS  PubMed  Google Scholar 

  • Lidell ME, Betz MJ, Leinhard OD, Heglind M, Elander L, Slawik M, Mussack T, Nilsson D, Romu T, Nuutila P, Virtanen KA, Beuschlein F, Persson A, Borga M, Enerbäck S (2013) Evidence for two types of brown adipose tissue in humans. Nat Med 19:631

    Article  CAS  PubMed  Google Scholar 

  • Lien CC, Jiang JL, Jian DY, Kwok CF, Ho LT, Juan CC (2016) Chronic endothelin-1 infusion causes adipocyte hyperplasia in rats. Obesity 24:643–653

    Article  CAS  PubMed  Google Scholar 

  • Lin F-T, Lane MD (1994) CCAAT/enhancer binding protein alpha is sufficient to initiate the 3T3-L1 adipocyte differentiation program. Proc Natl Acad Sci 91:8757–8761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Farmer SR (2004) Regulating the balance between peroxisome proliferator-activated receptor γ and β-catenin signaling during Adipogenesis A glycogen synthase kinase 3β phosphorylation-defective mutant of β-catenin inhibits EXPRESSION of a subset of adipogenic genes. J Biol Chem 279:45020–45027

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Wang S, You Y, Meng M, Zheng Z, Dong M, Lin J, Zhao Q, Zhang C, Yuan X, Hu T, Liu L, Huang Y, Zhang L, Wang D, Zhan J, Jong Lee H, Speakman JR, Jin W (2015) Brown adipose tissue transplantation reverses obesity in Ob/Ob mice. Endocrinology 156:2461–2469

    Article  CAS  PubMed  Google Scholar 

  • Liu GY, Liu J, Wang YL, Liu Y, Shao Y, Han Y, Qin YR, Xiao FJ, Li PF, Zhao LJ, Gu EY, Chen SY, Gao LH, Wu CT, Hu XW, Duan HF (2016) Adipose-derived mesenchymal stem cells ameliorate lipid metabolic disturbance in mice. Stem Cells Transl Med 5:1162–1170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lopatina T, Bruno S, Tetta C, Kalinina N, Porta M, Camussi G (2014) Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential. Cell Communication and Signaling : CCS 12:26–26

    Article  CAS  PubMed Central  Google Scholar 

  • Matsushita K (2016) Mesenchymal stem cells and metabolic syndrome: current understanding and potential clinical implications. Stem Cells Int 2016:10

    Article  CAS  Google Scholar 

  • Matsushita K, Dzau VJ (2017) Mesenchymal stem cells in obesity: insights for translational applications. Lab Investig 97:1158

    Article  PubMed  Google Scholar 

  • Ming Shi XC, Blair H, Yang X, Mcdonald J, Cao X (2000) Tandem repeat of C/EBP binding sites mediates PPARγ2 gene transcription in glucocorticoid-induced adipocyte differentiation

    Google Scholar 

  • Mori M, Nakagami H, Rodriguez-Araujo G, Nimura K, Kaneda Y (2012) Essential role for miR-196a in brown adipogenesis of white fat progenitor cells. PLoS Biol 10:e1001314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Narayanaswami V, Dwoskin LP (2017) Obesity: current and potential pharmacotherapeutics and targets. Pharmacol Ther 170:116–147

    Article  CAS  PubMed  Google Scholar 

  • Nerlov C (2007) The C/EBP family of transcription factors: a paradigm for interaction between gene expression and proliferation control. Trends Cell Biol 17:318–324

    Article  CAS  PubMed  Google Scholar 

  • Nishimura S, Manabe I, Nagasaki M, Hosoya Y, Yamashita H, Fujita H, Ohsugi M, Tobe K, Kadowaki T, Nagai R, Sugiura S (2007) Adipogenesis in obesity requires close interplay between differentiating adipocytes, stromal cells, and blood vessels. Diabetes 56:1517–1526

    Article  CAS  PubMed  Google Scholar 

  • Payab M, Hasani-Ranjbar S, Larijani B (2014) Whether all obese subjects both in metabolic groups and non-metabolic groups should be treated or not. J Diabetes Metab Disord 13:21–21

    Article  PubMed Central  PubMed  Google Scholar 

  • Payab M, Amoli MM, Qorbani M, Hasani-Ranjbar S (2017a) Adiponectin gene variants and abdominal obesity in an Iranian population. Eat Weight Disord – Studies on Anorexia, Bulimia and Obesity 22:85–90

    Article  Google Scholar 

  • Payab M, Hasani-Ranjbar S, Merati Y, Esteghamati A, Qorbani M, Hematabadi M, Rashidian H, Shirzad N (2017b) The prevalence of metabolic syndrome and different obesity phenotype in Iranian male military personnel. Am J Mens Health 11:404–413

    Article  PubMed  Google Scholar 

  • Pellegrinelli V, Carobbio S, Vidal-Puig A (2016) Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues. Diabetologia 59:1075–1088

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Penfornis P, Pochampally R (2011) Isolation and expansion of mesenchymal stem cells/multipotential stromal cells from human bone marrow. In: Mesenchymal stem cell assays and applications. Springer, Cham

    Google Scholar 

  • Perez LM, Suarez J, Bernal A, DE Lucas B, San Martin N, Galvez BG (2016) Obesity-driven alterations in adipose-derived stem cells are partially restored by weight loss. Obesity (Silver Spring) 24:661–669

    Article  Google Scholar 

  • Petroni ML, Caletti MT, Calugi S, Dalle Grave R, Marchesini G (2017) Long-term treatment of severe obesity: are lifestyle interventions still an option? Expert Rev Endocrinol Metabol 12:391–400

    Article  CAS  Google Scholar 

  • Pietrabissa G, Manzoni GM, Corti S, Vegliante N, Molinari E, Castelnuovo G (2012) Addressing motivation in Globesity treatment: a new challenge for clinical psychology. Front Psychol 3:317

    Article  PubMed Central  PubMed  Google Scholar 

  • Pi-Sunyer X (2009) The medical risks of obesity. Postgrad Med 121:21–33

    Article  PubMed Central  PubMed  Google Scholar 

  • Poher AL, Altirriba J, Veyrat-Durebex C, Rohner-Jeanrenaud F (2015) Brown adipose tissue activity as a target for the treatment of obesity/insulin resistance. Front Physiol 6:4

    Article  PubMed Central  PubMed  Google Scholar 

  • Pories WJ (2008) Bariatric surgery: risks and rewards. J Clin Endocrinol Metab 93:S89–S96

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rabelo R, Reyes C, Schifman A, Silva JE (1996) Interactions among receptors, thyroid hormone response elements, and ligands in the regulation of the rat uncoupling protein gene expression by thyroid hormone. Endocrinology 137:3478–3487

    Article  CAS  PubMed  Google Scholar 

  • Rieusset J, Touri F, Michalik L, Escher P, Desvergne B, Niesor E, Wahli W (2002) A new selective peroxisome proliferator-activated receptor gamma antagonist with antiobesity and antidiabetic activity. Mol Endocrinol 16:2628–2644

    Article  CAS  PubMed  Google Scholar 

  • Rogers NH (2015) Brown adipose tissue during puberty and with aging. Ann Med 47:142–149

    Article  CAS  PubMed  Google Scholar 

  • Rosell M, Jones MC, Parker MG (2011) Role of nuclear receptor corepressor RIP140 in metabolic syndrome. Biochim Biophys Acta 1812:919–928

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosen ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS, Spiegelman BM, Mortensen RM (1999) PPARγ is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 4:611–617

    Article  CAS  PubMed  Google Scholar 

  • Rosen ED, Hsu C-H, Wang X, Sakai S, Freeman MW, Gonzalez FJ, Spiegelman BM (2002) C/EBPα induces adipogenesis through PPARγ: a unified pathway. Genes Dev 16:22–26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosenwald M, Perdikari A, Rülicke T, Wolfrum C (2013) Bi-directional interconversion of brite and white adipocytes. Nat Cell Biol 15:659

    Article  CAS  PubMed  Google Scholar 

  • Rui L (2017) Brown and Beige adipose tissues in health and disease. Compr Physiol 7:1281–1306

    Article  PubMed Central  PubMed  Google Scholar 

  • Sakurai T, Ogasawara J, Kizaki T, Ishibashi Y, Sumitani Y, Takahashi K, Ishida H, Miyazaki H, Saitoh D, Haga S, Izawa T, Ohno H (2012) Preventive and improvement effects of exercise training and supplement intake in white adipose tissues on obesity and lifestyle-related diseases. Environ Health Prev Med 17:348–356

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sano S, Izumi Y, Yamaguchi T, Yamazaki T, Tanaka M, Shiota M, Osada-Oka M, Nakamura Y, Wei M, Wanibuchi H, Iwao H, Yoshiyama M (2014) Lipid synthesis is promoted by hypoxic adipocyte-derived exosomes in 3T3-L1 cells. Biochem Biophys Res Commun 445:327–333

    Article  CAS  PubMed  Google Scholar 

  • Seale P, Kajimura S, Yang W, Chin S, Rohas LM, Uldry M, Tavernier G, Langin D, Spiegelman BM (2007) Transcriptional control of brown fat determination by PRDM16. Cell Metab 6:38–54

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scime A, Devarakonda S, Conroe HM, Erdjument-Bromage H, Tempst P, Rudnicki MA, Beier DR, Spiegelman BM (2008) PRDM16 controls a brown fat/skeletal muscle switch. Nature 454:961–967

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shan T, Liu J, Wu W, Xu Z, Wang Y (2017) Roles of notch signaling in adipocyte progenitor cells and mature adipocytes. J Cell Physiol 232:1258–1261

    Article  CAS  PubMed  Google Scholar 

  • Shang Q, Bai Y, Wang G, Song Q, Guo C, Zhang L, Wang Q (2015) Delivery of adipose-derived stem cells attenuates adipose tissue inflammation and insulin resistance in obese mice through remodeling macrophage phenotypes. Stem Cells Dev 24:2052–2064

    Article  CAS  PubMed  Google Scholar 

  • Short B, Brouard N, Occhiodoro-Scott T, Ramakrishnan A, Simmons PJ (2003) Mesenchymal stem cells. Arch Med Res 34:565–571

    Article  CAS  PubMed  Google Scholar 

  • Silva JE, Bianco SD (2008) Thyroid-adrenergic interactions: physiological and clinical implications. Thyroid 18:157–165

    Article  CAS  PubMed  Google Scholar 

  • Song B-Q, Chi Y, Li X, Du W-J, Han Z-B, Tian J-J, Li J-J, Chen F, Wu H-H, Han L-X (2015) Inhibition of notch signaling promotes the adipogenic differentiation of mesenchymal stem cells through autophagy activation and PTEN-PI3K/AKT/mTOR pathway. Cell Physiol Biochem 36:1991–2002

    Article  CAS  PubMed  Google Scholar 

  • Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, Lango Allen H, Lindgren CM, Luan J, Magi R, Randall JC, Vedantam S, Winkler TW, Qi L, Workalemahu T, Heid IM, Steinthorsdottir V, Stringham HM, Weedon MN, Wheeler E, Wood AR, Ferreira T, Weyant RJ, Segre AV, Estrada K, Liang L, Nemesh J, Park JH, Gustafsson S, Kilpelainen TO, Yang J, Bouatia-Naji N, Esko T, Feitosa MF, Kutalik Z, Mangino M, Raychaudhuri S, Scherag A, Smith AV, Welch R, Zhao JH, Aben KK, Absher DM, Amin N, Dixon AL, Fisher E, Glazer NL, Goddard ME, Heard-Costa NL, Hoesel V, Hottenga JJ, Johansson A, Johnson T, Ketkar S, Lamina C, Li S, Moffatt MF, Myers RH, Narisu N, Perry JR, Peters MJ, Preuss M, Ripatti S, Rivadeneira F, Sandholt C, Scott LJ, Timpson NJ, Tyrer JP, Van Wingerden S, Watanabe RM, White CC, Wiklund F, Barlassina C, Chasman DI, Cooper MN, Jansson JO, Lawrence RW, Pellikka N, Prokopenko I, Shi J, Thiering E, Alavere H, Alibrandi MT, Almgren P, Arnold AM, Aspelund T, Atwood LD, Balkau B, Balmforth AJ, Bennett AJ, Ben-Shlomo Y, Bergman RN, Bergmann S, Biebermann H, Blakemore AI, Boes T, Bonnycastle LL, Bornstein SR, Brown MJ, Buchanan TA, Busonero F, Campbell H, Cappuccio FP, Cavalcanti-Proenca C, Chen YD, Chen CM, Chines PS, Clarke R, Coin L, Connell J, Day IN, Den Heijer M, Duan J, Ebrahim S, Elliott P, Elosua R, Eiriksdottir G, Erdos MR, Eriksson JG, Facheris MF, Felix SB, Fischer-Posovszky P, Folsom AR, Friedrich N, Freimer NB, Fu M, Gaget S, Gejman PV, Geus EJ, Gieger C, Gjesing AP, Goel A, Goyette P, Grallert H, Grassler J, Greenawalt DM, Groves CJ, Gudnason V, Guiducci C, Hartikainen AL, Hassanali N, Hall AS, Havulinna AS, Hayward C, Heath AC, Hengstenberg C, Hicks AA, Hinney A, Hofman A, Homuth G, Hui J, Igl W, Iribarren C, Isomaa B, Jacobs KB, Jarick I, Jewell E, John U, Jorgensen T, Jousilahti P, Jula A, Kaakinen M, Kajantie E, Kaplan LM, Kathiresan S, Kettunen J, Kinnunen L, Knowles JW, Kolcic I, Konig IR, Koskinen S, Kovacs P, Kuusisto J, Kraft P, Kvaloy K, Laitinen J, Lantieri O, Lanzani C, Launer LJ, Lecoeur C, Lehtimaki T, Lettre G, Liu J, Lokki ML, Lorentzon M, Luben RN, Ludwig B, Manunta P, Marek D, Marre M, Martin NG, Mcardle WL, Mccarthy A, Mcknight B, Meitinger T, Melander O, Meyre D, Midthjell K, Montgomery GW, Morken MA, Morris AP, Mulic R, Ngwa JS, Nelis M, Neville MJ, Nyholt DR, O'donnell CJ, O'rahilly S, Ong KK, Oostra B, Pare G, Parker AN, Perola M, Pichler I, Pietilainen KH, Platou CG, Polasek O, Pouta A, Rafelt S, Raitakari O, Rayner NW, Ridderstrale M, Rief W, Ruokonen A, Robertson NR, Rzehak P, Salomaa V, Sanders AR, Sandhu MS, Sanna S, Saramies J, Savolainen MJ, Scherag S, Schipf S, Schreiber S, Schunkert H, Silander K, Sinisalo J, Siscovick DS, Smit JH, Soranzo N, Sovio U, Stephens J, Surakka I, Swift AJ, Tammesoo ML, Tardif JC, Teder-Laving M, Teslovich TM, Thompson JR, Thomson B, Tonjes A, Tuomi T, Van Meurs JB, Van Ommen GJ, Vatin V, Viikari J, Visvikis-Siest S, Vitart V, Vogel CI, Voight BF, Waite LL, Wallaschofski H, Walters GB, Widen E, Wiegand S, Wild SH, Willemsen G, Witte DR, Witteman JC, Xu J, Zhang Q, Zgaga L, Ziegler A, Zitting P, Beilby JP, Farooqi IS, Hebebrand J, Huikuri HV, James AL, Kahonen M, Levinson DF, Macciardi F, Nieminen MS, Ohlsson C, Palmer LJ, Ridker PM, Stumvoll M, Beckmann JS, Boeing H, Boerwinkle E, Boomsma DI, Caulfield MJ, Chanock SJ, Collins FS, Cupples LA, Smith GD, Erdmann J, Froguel P, Gronberg H, Gyllensten U, Hall P, Hansen T, Harris TB, Hattersley AT, Hayes RB, Heinrich J, Hu FB, Hveem K, Illig T, Jarvelin MR, Kaprio J, Karpe F, Khaw KT, Kiemeney LA, Krude H, Laakso M, Lawlor DA, Metspalu A, Munroe PB, Ouwehand WH, Pedersen O, Penninx BW, Peters A, Pramstaller PP, Quertermous T, Reinehr T, Rissanen A, Rudan I, Samani NJ, Schwarz PE, Shuldiner AR, Spector TD, Tuomilehto J, Uda M, Uitterlinden A, Valle TT, Wabitsch M, Waeber G, Wareham NJ, Watkins H, Wilson JF, Wright AF, Zillikens MC, Chatterjee N, Mccarroll SA, Purcell S, Schadt EE, Visscher PM, Assimes TL, Borecki IB, Deloukas P, Fox CS, Groop LC, Haritunians T, Hunter DJ, Kaplan RC, Mohlke KL, O'connell JR, Peltonen L, Schlessinger D, Strachan DP, Van Duijn CM, Wichmann HE, Frayling TM, Thorsteinsdottir U, Abecasis GR, Barroso I, Boehnke M, Stefansson K, North KE, Mccarthy MI, Hirschhorn JN, Ingelsson E, Loos RJ (2010) Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 42:937–948

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spinella-Jaegle S, Rawadi G, Kawai S, Gallea S, Faucheu C, Mollat P, Courtois B, Bergaud B, Ramez V, Blanchet AM (2001) Sonic hedgehog increases the commitment of pluripotent mesenchymal cells into the osteoblastic lineage and abolishes adipocytic differentiation. J Cell Sci 114:2085–2094

    CAS  PubMed  Google Scholar 

  • Stanford KI, Middelbeek RJ, Townsend KL, An D, Nygaard EB, Hitchcox KM, Markan KR, Nakano K, Hirshman MF, Tseng YH, Goodyear LJ (2013) Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin Invest 123:215–223

    Article  CAS  PubMed  Google Scholar 

  • Suh JM, Gao X, Mckay J, Mckay R, Salo Z, Graff JM (2006) Hedgehog signaling plays a conserved role in inhibiting fat formation. Cell Metab 3:25–34

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Trajkovski M (2014) MiR-27 orchestrates the transcriptional regulation of brown adipogenesis. Metabolism 63:272–282

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Xie H, Mori MA, Alexander R, Yuan B, Hattangadi SM, Liu Q, Kahn CR, Lodish HF (2011) Mir193b-365 is essential for brown fat differentiation. Nat Cell Biol 13:958–965

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tang Q, Chen C, Zhang Y, Dai M, Jiang Y, Wang H, Yu M, Jing W, Tian W (2018) Wnt5a regulates the cell proliferation and adipogenesis via MAPK-independent pathway in early stage of obesity. Cell Biol Int 42:63–74

    Article  CAS  PubMed  Google Scholar 

  • Tarte K, Gaillard J, Lataillade JJ, Fouillard L, Becker M, Mossafa H, Tchirkov A, Rouard H, Henry C, Splingard M, Dulong J, Monnier D, Gourmelon P, Gorin NC, Sensebe L (2010) Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood 115:1549–1553

    Article  CAS  PubMed  Google Scholar 

  • Thirumala S, Goebel WS, Woods EJ (2009) Clinical grade adult stem cell banking. Organogenesis 5:143–154

    Article  PubMed Central  PubMed  Google Scholar 

  • Tontonoz P, Hu E, Spiegelman BM (1994) Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell 79:1147–1156

    Article  CAS  PubMed  Google Scholar 

  • Trajkovski M, Ahmed K, Esau CC, Stoffel M (2012) MyomiR-133 regulates brown fat differentiation through Prdm16. Nat Cell Biol 14:1330–1335

    Article  CAS  PubMed  Google Scholar 

  • Tseng YH, Kokkotou E, Schulz TJ, Huang TL, Winnay JN, Taniguchi CM, Tran TT, Suzuki R, Espinoza DO, Yamamoto Y, Ahrens MJ, Dudley AT, Norris AW, Kulkarni RN, Kahn CR (2008) New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454:1000–1004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Unser AM, Tian Y, Xie Y (2015) Opportunities and challenges in three-dimensional brown adipogenesis of stem cells. Biotechnol Adv 33:962–979

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Zoelen EJ, Duarte I, Hendriks JM, Van Der Woning SP (2016) TGFβ-induced switch from adipogenic to osteogenic differentiation of human mesenchymal stem cells: identification of drug targets for prevention of fat cell differentiation. Stem Cell Res Ther 7:123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vargas-Castillo A, Fuentes-Romero R, Rodriguez-Lopez LA, Torres N, Tovar AR (2017) Understanding the biology of thermogenic fat: is browning a new approach to the treatment of obesity? Arch Med Res 48:401–413

    Article  CAS  PubMed  Google Scholar 

  • Vellasamy S, Sandrasaigaran P, Vidyadaran S, George E, Ramasamy R (2012) Isolation and characterisation of mesenchymal stem cells derived from human placenta tissue. World J Stem Cells 4:53

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang QA, Tao C, Gupta RK, Scherer PE (2013) Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med 19:1338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • White UA, Tchoukalova YD (2014) Adipose stem cells and Adipogenesis, pp 15–32

    Google Scholar 

  • Wong JC, Krueger KC, Costa MJ, Aggarwal A, Du H, Mclaughlin TL, Feldman BJ (2016) A glucocorticoid-and diet-responsive pathway toggles adipocyte precursor cell activity in vivo. Sci Signal 9:ra103-ra103

    Google Scholar 

  • Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G, Huang K, Tu H, Van Marken Lichtenbelt WD, Hoeks J, Enerback S, Schrauwen P, Spiegelman BM (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150:366–376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yanovski SZ, Yanovski JA (2014) Long-term drug treatment for obesity: a systematic and clinical review. JAMA 311:74–86

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yao X, Shan S, Zhang Y, Ying H (2011) Recent progress in the study of brown adipose tissue. Cell Biosci 1:35–35

    Article  PubMed Central  PubMed  Google Scholar 

  • Yarak S, Okamoto OK (2010) Human adipose-derived stem cells: current challenges and clinical perspectives. An Bras Dermatol 85:647–656

    Article  PubMed  Google Scholar 

  • Yuan Z, Li Q, Luo S, Liu Z, Luo D, Zhang B, Zhang D, Rao P, Xiao J (2016) PPARγ and Wnt signaling in adipogenic and osteogenic differentiation of mesenchymal stem cells. Curr Stem Cell Res Ther 11:216–225

    Article  CAS  PubMed  Google Scholar 

  • Zerradi M, Dereumetz J, Boulet MM, Tchernof A (2014) Androgens, body fat distribution and Adipogenesis. Curr Obes Rep 3:396–403

    Article  PubMed  Google Scholar 

  • Zhang C, Weng Y, Shi F, Jin W (2016) The Engrailed-1 gene stimulates Brown Adipogenesis. Stem Cells Int 2016:7369491

    PubMed Central  PubMed  Google Scholar 

  • Zhao, H., Shang, Q., Pan, Z., Bai, Y., Li, Z., Zhang, H., Zhang, Q., Guo, C., Zhang, L., Wang, Q. (2017) Exosomes from adipose-derived stem cells attenuate adipose inflammation and obesity through polarizing M2 macrophages and Beiging in white adipose tissues. Diabetes

    Google Scholar 

  • Zhao H, Shang Q, Pan Z, Bai Y, Li Z, Zhang H, Zhang Q, Guo C, Zhang L, Wang Q (2018) Exosomes from adipose-derived stem cells attenuate adipose inflammation and obesity through polarizing M2 macrophages and Beiging in white adipose tissue. Diabetes 67:235–247

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge Rasta Arjmand for her assistance in figure design. We also thank Dr. Mohsen khorshidi, and Maryam Afshari for their kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Arjmand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Payab, M. et al. (2018). Stem Cell and Obesity: Current State and Future Perspective. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 2. Advances in Experimental Medicine and Biology(), vol 1089. Springer, Cham. https://doi.org/10.1007/5584_2018_227

Download citation

Publish with us

Policies and ethics