Skip to main content

Tissue Engineered Skin Substitutes

  • Chapter
  • First Online:
Cell Biology and Translational Medicine, Volume 3

Abstract

The fundamental skin role is to supply a supportive barrier to protect body against harmful agents and injuries. Three layers of skin including epidermis, dermis and hypodermis form a sophisticated tissue composed of extracellular matrix (ECM) mainly made of collagens and glycosaminoglycans (GAGs) as a scaffold, different cell types such as keratinocytes, fibroblasts and functional cells embedded in the ECM. When the skin is injured, depends on its severity, the majority of mentioned components are recruited to wound regeneration. Additionally, different growth factors like fibroblast growth factor (FGF), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF) are needed to orchestrated wound healing process. In case of large surface area wounds, natural wound repair seems inefficient. Inspired by nature, scientists in tissue engineering field attempt to engineered constructs mimicking natural healing process to promote skin restoration in untreatable injuries. There are three main types of commercially available engineered skin substitutes including epidermal, dermal, and dermoepidermal. Each of them could be composed of scaffold, desired cell types or growth factors. These substitutes could have autologous, allogeneic, or xenogeneic origin. Moreover, they may be cellular or acellular. They are used to accelerate wound healing and recover normal skin functions with pain relief. Although there are a wide variety of commercially available skin substitutes, almost none of them considered as an ideal equivalents required for proper wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3D:

3 Dimensional

LOEX:

Laboratoire d'Or- ganogenese Experimentale

AATB:

American Association of Tissue Banks

MHC:

Major histocompatibility complex

AMSCs:

Adipose-derived MSCs

MSCs:

Mesenchymal stem cells

BMSCs:

Bone marrow-derived MSCs

NK:

Natural killer

CEA:

Cultured epithelial autograft

PCL:

Poly-ε-caprolactone

CSS:

Cultured skin substitutes

PDGF:

Platelet-derived growth factor

CTGF:

Connective tissue growth factor

PDLA:

Poly-D-lactic acid

EB:

Epidermolysis bullosa

PDLLA:

Poly-DL-lactic acid

ECM:

Extracellular matrix

PEG:

Polyethylene glycol

EGF:

Epidermal growth factor

PGA:

Polyglycolic acid

ESCs:

Embryonic stem cells

PHB:

Poly-β-hydroxybutyrate

FDA:

US Food and Drug Administration

PLA:

Polylactic acid

FGF:

Fibroblast growth factor

PLCL:

Poly L-lactide-co- ε –caprolactone

FGF-1:

Fibroblast growth factor-1

PLGA:

Polylactic-co-glycolic acid

FGF-2:

Fibroblast growth factor-2

PLLA:

Poly-L-lactic acid

FTSG:

Full-thickness skin grafting

POE:

Polyhydroxyortho esters

GAG:

Glycosaminoglycan

PU:

Polyurethane

HA:

Hyaluronic acid

PVA:

Poly vinyl alcohol

HIV:

Human immunodeficiency virus

SAPs:

Self-assembling peptides

IL-1:

Interleukin-1

TBSA:

Total body surface area

IL-6:

Interleukin-6

STSG:

Split-thickness skin grafting

IL-8:

Interleukin-8

TGFα:

Transforming growth factor-α

IPSCs:

Induced pluripotent stem cells

TGFβ:

Transforming growth factor-β

KGF:

keratinocyte growth factor

UMSCs:

Umbilical cord-derived MSCs

KGF-1:

keratinocyte growth factor-1

UV:

Ultraviolet

LCs:

Langerhans cells

VEGF:

Vascular endothelial growth factor

References

  • Adzick NS, Lorenz HP (1994) Cells, matrix, growth factors, and the surgeon. The biology of scarless fetal wound repair. Ann Surg 220(1):10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed TA, Dare EV, Hincke M (2008) Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng B Rev 14(2):199–215

    Article  CAS  Google Scholar 

  • Akan M, Yildirim S, Misirlioglu A, Ulusoy G, Aköz T, Avc G (2003) An alternative method to minimize pain in the split-thickness skin graft donor site. Plast Reconstr Surg 111(7):2243–2249

    Article  PubMed  Google Scholar 

  • Akasaka Y, Ono I, Tominaga A, Ishikawa Y, Ito K, Suzuki T, Imaizumi R, Ishiguro S, Jimbow K, Ishii T (2007) Basic fibroblast growth factor in an artificial dermis promotes apoptosis and inhibits expression of α-smooth muscle actin, leading to reduction of wound contraction. Wound Repair Regen 15(3):378–389

    Article  PubMed  Google Scholar 

  • Akino K, Mineda T, Akita S (2005) Early cellular changes of human mesenchymal stem cells and their interaction with other cells. Wound Repair Regen 13(4):434–440

    Article  PubMed  Google Scholar 

  • Alcantar NA, Aydil ES, Israelachvili JN (2000) Polyethylene glycol-coated biocompatible surfaces. J Biomed Mater Res 51(3):343–351

    Article  CAS  PubMed  Google Scholar 

  • Allen MJ, Schoonmaker JE, Bauer TW, Williams PF, Higham PA, Yuan HA (2004) Preclinical evaluation of a poly (vinyl alcohol) hydrogel implant as a replacement for the nucleus pulposus. Spine 29(5):515–523

    Article  PubMed  Google Scholar 

  • Almine JF, Bax DV, Mithieux SM, Nivison-Smith L, Rnjak J, Waterhouse A, Wise SG, Weiss AS (2010) Elastin-based materials. Chem Soc Rev 39(9):3371–3379

    Article  CAS  PubMed  Google Scholar 

  • Alonso L, Fuchs E (2003) Stem cells of the skin epithelium. Proc Natl Acad Sci 100(Suppl 1):11830–11835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alrubaiy L, Al-Rubaiy KK (2009) Skin substitutes: a brief review of types and clinical applications. Oman Med J 24(1):4

    PubMed  PubMed Central  Google Scholar 

  • Alt E, Yan Y, Gehmert S, Song YH, Altman A, Gehmert S, Vykoukal D, Bai X (2011) Fibroblasts share mesenchymal phenotypes with stem cells, but lack their differentiation and colony-forming potential. Biol Cell 103(4):197–208

    Article  CAS  PubMed  Google Scholar 

  • Amini-Nik S, Glancy D, Boimer C, Whetstone H, Keller C, Alman BA (2011) Pax7 expressing cells contribute to dermal wound repair, regulating scar size through a β-catenin mediated process. Stem Cells 29(9):1371–1379

    Article  CAS  PubMed  Google Scholar 

  • Amini-Nik S, Cambridge E, Yu W, Guo A, Whetstone H, Nadesan P, Poon R, Hinz B, Alman BA (2014) β-Catenin–regulated myeloid cell adhesion and migration determine wound healing. J Clin Invest 124(6):2599–2610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ankrum JA, Ong JF, Karp JM (2014) Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol 32(3):252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Annabi N, Nichol JW, Zhong X, Ji C, Koshy S, Khademhosseini A, Dehghani F (2010) Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng Part B Rev 16(4):371–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arneja JS, Gosain AK (2007) Giant congenital melanocytic nevi. Plast Reconstr Surg 120(2):26e–40e

    Article  CAS  PubMed  Google Scholar 

  • Arno AI, Amini-Nik S, Blit PH, Al-Shehab M, Belo C, Herer E, Tien CH, Jeschke MG (2014) Human Wharton’s jelly mesenchymal stem cells promote skin wound healing through paracrine signaling. Stem Cell Res Ther 5(1):28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ashkenas J, Muschler J, Bissell MJ (1996) The extracellular matrix in epithelial biology: shared molecules and common themes in distant phyla. Dev Biol 180(2)

    Google Scholar 

  • Asran AS, Razghandi K, Aggarwal N, Michler GH, Groth T (2010) Nanofibers from blends of polyvinyl alcohol and polyhydroxy butyrate as potential scaffold material for tissue engineering of skin. Biomacromolecules 11(12):3413–3421

    Article  CAS  PubMed  Google Scholar 

  • Association, A. B. (2016). Burn incidence and treatment in the United States. Accessed Nov 2010

    Google Scholar 

  • Attia-Vigneau J, Terryn C, Lorimier S, Sandre J, Antonicelli F, Hornebeck W (2014) Regeneration of human dermis by a multi-headed peptide. J Investig Dermatol 134(1):58–67

    Article  CAS  PubMed  Google Scholar 

  • Aumailley M, Rousselle P (1999) Laminins of the dermo–epidermal junction. Matrix Biol 18(1):19–28

    Article  CAS  PubMed  Google Scholar 

  • Badiavas EV, Falanga V (2003) Treatment of chronic wounds with bone marrow–derived cells. Arch Dermatol 139(4):510–516

    Article  PubMed  Google Scholar 

  • Badylak, S. F. (2002). The extracellular matrix as a scaffold for tissue reconstruction. Semin Cell Dev Biol, Elsevier.

    Google Scholar 

  • Badylak SF (2004) Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl Immunol 12(3-4):367–377

    Article  CAS  PubMed  Google Scholar 

  • Baksh D, Yao R, Tuan RS (2007) Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25(6):1384–1392

    Article  CAS  PubMed  Google Scholar 

  • Barber C, Watt A, Pham C, Humphreys K, Penington A, Mutimer K, Edwards M, Maddern G (2008) Influence of bioengineered skin substitutes on diabetic foot ulcer and venous leg ulcer outcomes. J Wound Care 17(12):517–527

    Article  CAS  PubMed  Google Scholar 

  • Bargues L, Prat M, Leclerc T, Bey E, Lataillade J (2011) Present and future of cell therapy in burns. Pathol Biol 59(3):e49–e56

    Article  CAS  PubMed  Google Scholar 

  • Basiouny HS, Salama NM, El Maadawi ZM, Farag EA (2013) Effect of bone marrow derived mesenchymal stem cells on healing of induced full-thickness skin wounds in albino rat. Int J Stem Cells 6(1):12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bechetoille N, Vachon H, Gaydon A, Boher A, Fontaine T, Schaeffer E, Decossas M, André-Frei V, Mueller CG (2011) A new organotypic model containing dermal-type macrophages. Exp Dermatol 20(12):1035–1037

    Article  CAS  PubMed  Google Scholar 

  • Behrens DT, Villone D, Koch M, Brunner G, Sorokin L, Robenek H, Bruckner-Tuderman L, Bruckner P, Hansen U (2012) The epidermal basement membrane is a composite of separate laminin-or collagen IV-containing networks connected by aggregated perlecan, but not by nidogens. J Biol Chem 287(22):18700–18709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell E, Ehrlich HP, Buttle DJ, Nakatsuji T (1981) Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science 211(4486):1052–1054

    Article  CAS  PubMed  Google Scholar 

  • Bello YM, Falabella AF, Eaglstein WH (2001a) Tissue-engineered skin. Am J Clin Dermatol 2(5):305–313

    Article  CAS  PubMed  Google Scholar 

  • Bello YM, Falabella AF, Eaglstein WH (2001b) Tissue-engineered skin. Current status in wound healing. Am J Clin Dermatol 2(5):305–313

    Article  CAS  PubMed  Google Scholar 

  • Biedermann T, Boettcher-Haberzeth S, Reichmann E (2013) Tissue engineering of skin for wound coverage. Eur J Pediatr Surg 23(5):375–382

    Article  PubMed  Google Scholar 

  • Bielefeld KA, Amini-Nik S, Whetstone H, Poon R, Youn A, Wang J, Alman BA (2011) Fibronectin and β-catenin act in a regulatory loop in dermal fibroblasts to modulate cutaneous healing. J Biol Chem 286(31):27687–27697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bielefeld KA, Amini-Nik S, Alman BA (2013) Cutaneous wound healing: recruiting developmental pathways for regeneration. Cell Mol Life Sci 70(12):2059–2081

    Article  CAS  PubMed  Google Scholar 

  • Bilker W (2002) “Santanna J, Baumgarten M.” Venous leg ulcer: incidence and prevalence in the elderly. J Am Acad Dermatol 46:381–386

    Article  PubMed  Google Scholar 

  • Biselli-Chicote P, Oliveira A, Pavarino E, Goloni-Bertollo E (2012) VEGF gene alternative splicing: pro-and anti-angiogenic isoforms in cancer. J Cancer Res Clin Oncol 138(3):363–370

    Article  CAS  PubMed  Google Scholar 

  • Bittencourt FV, Marghoob AA, Kopf AW, Koenig KL, Bart RS (2000) Large congenital melanocytic nevi and the risk for development of malignant melanoma and neurocutaneous melanocytosis. Pediatrics 106(4):736–741

    Article  CAS  PubMed  Google Scholar 

  • Black AF, Berthod F, L'heureux N, Germain L, Auger FA (1998) In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J 12(13):1331–1340

    Article  CAS  PubMed  Google Scholar 

  • Blais M, Parenteau-Bareil R, Cadau S, Berthod F (2013) Concise review: tissue-engineered skin and nerve regeneration in burn treatment. Stem Cells Transl Med 2(7):545–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E (2004) Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118(5):635–648

    Article  CAS  PubMed  Google Scholar 

  • Bock O, Schmid-Ott G, Malewski P, Mrowietz U (2006) Quality of life of patients with keloid and hypertrophic scarring. Arch Dermatol Res 297(10):433

    Article  PubMed  Google Scholar 

  • Bodnar RJ (2013) Epidermal growth factor and epidermal growth factor receptor: the yin and yang in the treatment of cutaneous wounds and cancer. Adv Wound Care 2(1):24–29

    Article  Google Scholar 

  • Bonvallet PP, Schultz MJ, Mitchell EH, Bain JL, Culpepper BK, Thomas SJ, Bellis SL (2015) Microporous dermal-mimetic electrospun scaffolds pre-seeded with fibroblasts promote tissue regeneration in full-thickness skin wounds. PLoS One 10(3):e0122359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Borena BM, Martens A, Broeckx SY, Meyer E, Chiers K, Duchateau L, Spaas JH (2015) Regenerative skin wound healing in mammals: state-of-the-art on growth factor and stem cell based treatments. Cell Physiol Biochem 36(1):1–23

    Article  CAS  PubMed  Google Scholar 

  • Böttcher-Haberzeth S, Biedermann T, Reichmann E (2010) Tissue engineering of skin. Burns 36(4):450–460

    Article  PubMed  Google Scholar 

  • Böttcher-Haberzeth S, Klar AS, Biedermann T, Schiestl C, Meuli-Simmen C, Reichmann E, Meuli M (2013) “Trooping the color”: restoring the original donor skin color by addition of melanocytes to bioengineered skin analogs. Pediatr Surg Int 29(3):239–247

    Article  PubMed  Google Scholar 

  • Boyce ST (2001) Design principles for composition and performance of cultured skin substitutes. Burns 27(5):523–533

    Article  CAS  PubMed  Google Scholar 

  • Boyce ST, Warden GD (2002) Principles and practices for treatment of cutaneous wounds with cultured skin substitutes. Am J Surg 183(4):445–456

    Article  PubMed  Google Scholar 

  • Boyce ST, Goretsky MJ, Greenhalgh DG, Kagan RJ, Rieman MT, Warden GD (1995) Comparative assessment of cultured skin substitutes and native skin autograft for treatment of full-thickness burns. Ann Surg 222(6):743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyce ST, Kagan RJ, Meyer NA, Yakuboff KP, Warden GD (1999) The 1999 clinical research award cultured skin substitutes combined with integra artificial skin to replace native skin autograft and allograft for the closure of excised full–thickness burns. Oxford University Press, Oxford

    Book  Google Scholar 

  • Boyce ST, Kagan RJ, Yakuboff KP, Meyer NA, Rieman MT, Greenhalgh DG, Warden GD (2002) Cultured skin substitutes reduce donor skin harvesting for closure of excised, full-thickness burns. Ann Surg 235(2):269

    Article  PubMed  PubMed Central  Google Scholar 

  • Braddock M, Campbell CJ, Zuder D (1999) Current therapies for wound healing: electrical stimulation, biological therapeutics, and the potential for gene therapy. Int J Dermatol 38(11):808–817

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw M, Ho D, Fear MW, Gelain F, Wood FM, Iyer KS (2014) Designer self-assembling hydrogel scaffolds can impact skin cell proliferation and migration. Sci Rep 4:6903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Branski LK, Herndon DN, Pereira C, Mlcak RP, Celis MM, Lee JO, Sanford AP, Norbury WB, Zhang X-J, Jeschke MG (2007) Longitudinal assessment of Integra in primary burn management: a randomized pediatric clinical trial. Crit Care Med 35(11):2615–2623

    Article  PubMed  Google Scholar 

  • Breitkreutz D, Mirancea N, Nischt R (2009) Basement membranes in skin: unique matrix structures with diverse functions? Histochem Cell Biol 132(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Brigido SA (2006) The use of an acellular dermal regenerative tissue matrix in the treatment of lower extremity wounds: a prospective 16-week pilot study. Int Wound J 3(3):181–187

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown JB, McDowell F (1942) Massive repairs of burns with thick split-skin grafts: emergency “dressings” with homografts. Ann Surg 115(4):658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke JF, Yannas IV, Quinby WC Jr, Bondoc CC, Jung WK (1981) Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg 194(4):413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell C, Parish LC (2010) The decubitus ulcer: facts and controversies. Clin Dermatol 28(5):527–532

    Article  PubMed  Google Scholar 

  • Cardinal M, Eisenbud DE, Armstrong DG, Zelen C, Driver V, Attinger C, Phillips T, Harding K (2009) Serial surgical debridement: a retrospective study on clinical outcomes in chronic lower extremity wounds. Wound Repair Regen 17(3):306–311

    Article  PubMed  Google Scholar 

  • Carsin H, Ainaud P, Le Bever H, Rives J-M, Lakhel A, Stephanazzi J, Lambert F, Perrot J (2000) Cultured epithelial autografts in extensive burn coverage of severely traumatized patients: a five year single-center experience with 30 patients. Burns 26(4):379–387

    Article  CAS  PubMed  Google Scholar 

  • Carter MJ, Waycaster C, Schaum K, Gilligan AM (2014) Cost-effectiveness of three adjunct cellular/tissue-derived products used in the management of chronic venous leg ulcers. Value Health 17(8):801–813

    Article  PubMed  Google Scholar 

  • Catalano E, Cochis A, Varoni E, Rimondini L, Azzimonti B (2013) Tissue-engineered skin substitutes: an overview. J Artif Organs 16(4):397–403

    Article  CAS  PubMed  Google Scholar 

  • Cen L, Liu W, Cui L, Zhang W, Cao Y (2008) Collagen tissue engineering: development of novel biomaterials and applications. Pediatr Res 63(5):492

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay S, Raines RT (2014) Review collagen-based biomaterials for wound healing. Biopolymers 101(8):821–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheah AKW, Chong SJ, Tan BK (2014) Early experience with biobrane™ in singapore in the management of partial thickness burns. SAGE Publications Sage UK, London

    Book  Google Scholar 

  • Chen DH, Leu JC, Huang TC (1994) Transport and hydrolysis of urea in a reactor–separator combining an anion-exchange membrane and immobilized urease. J Chem Technol Biotechnol 61(4):351–357

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Ushida T, Tateishi T (2002) Scaffold design for tissue engineering. Macromol Biosci 2(2):67–77

    Article  CAS  Google Scholar 

  • Chen M, Przyborowski M, Berthiaume F (2009) Stem cells for skin tissue engineering and wound healing. Crit Rev Biomed Eng 37(4-5):399–421

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng Y-L, Lee M-L (2009) Development of dynamic masking rapid prototyping system for application in tissue engineering. Rapid Prototyp J 15(1):29–41

    Article  Google Scholar 

  • Chia HN, Wu BM (2015) Recent advances in 3D printing of biomaterials. J Biol Eng 9(1):4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chick LR (1988) Brief history and biology of skin grafting. Ann Plast Surg 21(4):358–365

    Article  CAS  PubMed  Google Scholar 

  • Choi YS, Hong SR, Lee YM, Song KW, Park MH, Nam YS (1999) Study on gelatin-containing artificial skin: I. Preparation and characteristics of novel gelatin-alginate sponge. Biomaterials 20(5):409–417

    Article  CAS  PubMed  Google Scholar 

  • Choi S-M, Singh D, Shin E-J, Zo S-M, Han S-S (2015) Engineering and optimization of three-dimensional poly (vinyl alcohol)/gelatin matrix to mimic skin tissue. J Comput Theor Nanosci 12(5):858–866

    Article  CAS  Google Scholar 

  • Chua AWC, Khoo YC, Tan BK, Tan KC, Foo CL, Chong SJ (2016) Skin tissue engineering advances in severe burns: review and therapeutic applications. Burns & Trauma 4(1):3

    Google Scholar 

  • Clark RA, Lin F, Greiling D, An J, Couchman JR (2004) Fibroblast invasive migration into fibronectin/fibrin gels requires a previously uncharacterized dermatan sulfate-CD44 proteoglycan. J Investig Dermatol 122(2):266–277

    Article  CAS  PubMed  Google Scholar 

  • Clark RA, Ghosh K, Tonnesen MG (2007) Tissue engineering for cutaneous wounds. J Investig Dermatol 127(5):1018–1029

    Article  CAS  PubMed  Google Scholar 

  • Cole PD, Stal D, Sharabi SE, Hicks J, Hollier LH Jr (2011) A comparative, long-term assessment of four soft tissue substitutes. Aesthet Surg J 31(6):674–681

    Article  PubMed  Google Scholar 

  • Cooper ML, Hansbrough JF, Spielvogel RL, Cohen R, Bartel RL, Naughton G (1991) In vivo optimization of a living dermal substitute employing cultured human fibroblasts on a biodegradable polyglycolic acid or polyglactin mesh. Biomaterials 12(2):243–248

    Article  CAS  PubMed  Google Scholar 

  • Coraux C, Hilmi C, Rouleau M, Spadafora A, Hinnrasky J, Ortonne J-P, Dani C, Aberdam D (2003) Reconstituted skin from murine embryonic stem cells. Curr Biol 13(10):849–853

    Article  CAS  PubMed  Google Scholar 

  • Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49(4):780–792

    Article  CAS  Google Scholar 

  • Cui W, Zhu X, Yang Y, Li X, Jin Y (2009) Evaluation of electrospun fibrous scaffolds of poly (dl-lactide) and poly (ethylene glycol) for skin tissue engineering. Mater Sci Eng C 29(6):1869–1876

    Article  CAS  Google Scholar 

  • Curran MP, Plosker GL (2002) Bilayered bioengineered skin substitute (apligraf®). BioDrugs 16(6):439–455

    Article  PubMed  Google Scholar 

  • Dainiak MB, Allan IU, Savina IN, Cornelio L, James ES, James SL, Mikhalovsky SV, Jungvid H, Galaev IY (2010) Gelatin–fibrinogen cryogel dermal matrices for wound repair: preparation, optimisation and in vitro study. Biomaterials 31(1):67–76

    Article  CAS  PubMed  Google Scholar 

  • Damanhuri M, Boyle J, Enoch S (2011) Advances in tissue-engineered skin substitutes. Wounds Int 2(1):27–34

    Google Scholar 

  • Damodaran G, Tiong WH, Collighan R, Griffin M, Navsaria H, Pandit A (2013) In vivo effects of tailored laminin-332 α3 conjugated scaffolds enhances wound healing: a histomorphometric analysis. J Biomed Mater Res A 101(10):2788–2795

    Article  CAS  PubMed  Google Scholar 

  • de Mel A, Seifalian AM, Birchall MA (2012) Orchestrating cell/material interactions for tissue engineering of surgical implants. Macromol Biosci 12(8):1010–1021

    Article  CAS  PubMed  Google Scholar 

  • De Rosa L, De Luca M (2012) Cell biology: dormant and restless skin stem cells. Nature 489(7415):215

    Article  CAS  PubMed  Google Scholar 

  • Debels H, Hamdi M, Abberton K, Morrison W (2015) Dermal matrices and bioengineered skin substitutes: a critical review of current options. Plastic and reconstructive surgery Global open 3(1)

    Google Scholar 

  • Delvoye P, Pierard D, Noel A, Nusgens B, Foidart JM, Lapiere CM (1988) Fibroblasts induce the assembly of the macromolecules of the basement membrane. J Investig Dermatol 90(3):276–282

    Article  CAS  PubMed  Google Scholar 

  • Demidova-Rice TN, Hamblin MR, Herman IM (2012) Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 1: normal and chronic wounds: biology, causes, and approaches to care. Adv Skin Wound Care 25(7):304–314

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng W, Han Q, Liao L, Li C, Ge W, Zhao Z, You S, Deng H, Murad F, Zhao RC (2005) Engrafted bone marrow-derived Flk-1+ mesenchymal stem cells regenerate skin tissue. Tissue Eng 11(1-2):110–119

    Article  CAS  PubMed  Google Scholar 

  • Diegelmann RF, Evans MC (2004) Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 9(1):283–289

    Article  CAS  PubMed  Google Scholar 

  • Dixit S, Baganizi DR, Sahu R, Dosunmu E, Chaudhari A, Vig K, Pillai SR, Singh SR, Dennis VA (2017a) Immunological challenges associated with artificial skin grafts: available solutions and stem cells in future design of synthetic skin. J Biol Eng 11(1):49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dixit S, Baganizi DR, Sahu R, Dosunmu E, Chaudhari A, Vig K, Pillai SR, Singh SR, Dennis VA (2017b) Immunological challenges associated with artificial skin grafts: available solutions and stem cells in future design of synthetic skin. J Biol Eng 11:49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Driskell RR, Clavel C, Rendl M, Watt FM (2011) Hair follicle dermal papilla cells at a glance. J Cell Sci 124(8):1179–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Driver VR, Lavery LA, Reyzelman AM, Dutra TG, Dove CR, Kotsis SV, Kim HM, Chung KC (2015) A clinical trial of Integra Template for diabetic foot ulcer treatment. Wound Repair Regen 23(6):891–900

    Article  PubMed  Google Scholar 

  • Duan B, Yuan X, Zhu Y, Zhang Y, Li X, Zhang Y, Yao K (2006) A nanofibrous composite membrane of PLGA–chitosan/PVA prepared by electrospinning. Eur Polym J 42(9):2013–2022

    Article  CAS  Google Scholar 

  • Edmonds M, Bates M, Doxford M, Gough A, Foster A (2000) New treatments in ulcer healing and wound infection. Diabetes Metab Res Rev 16(S1)

    Google Scholar 

  • Edmonds M, European, A. A. D. F. U. S. Group (2009) Apligraf in the treatment of neuropathic diabetic foot ulcers. Int J Lower Extrem Wounds 8(1):11–18

    Article  Google Scholar 

  • English K (2013) Mechanisms of mesenchymal stromal cell immunomodulation. Immunol Cell Biol 91(1):19–26

    Article  CAS  PubMed  Google Scholar 

  • Enoch S, Roshan A, Shah M (2009) Emergency and early management of burns and scalds. BMJ 338:b1037

    Article  PubMed  Google Scholar 

  • Erdag G, Morgan JR (2004) Allogeneic versus xenogeneic immune reaction to bioengineered skin grafts. Cell Transplant 13(6):701–712

    Article  PubMed  Google Scholar 

  • Esteban-Vives R, Young MT, Zhu T, Beiriger J, Pekor C, Ziembicki J, Corcos A, Rubin P, Gerlach JC (2016) Calculations for reproducible autologous skin cell-spray grafting. Burns 42(8):1756–1765

    Article  PubMed  Google Scholar 

  • Falanga V (1993) Chronic wounds: pathophysiologic and experimental considerations. J Investig Dermatol 100(5):721–725

    Article  CAS  PubMed  Google Scholar 

  • Falanga V, Margolis D, Alvarez O, Auletta M, Maggiacomo F, Altman M, Jensen J, Sabolinski M, Hardin-Young J (1998) Rapid healing of venous ulcers and lack of clinical rejection with an allogeneic cultured human skin equivalent. Arch Dermatol 134(3):293–300

    Article  CAS  PubMed  Google Scholar 

  • Farsaei S, Khalili H, Farboud ES, Khazaeipour Z (2015) Sildenafil in the treatment of pressure ulcer: a randomised clinical trial. Int Wound J 12(1):111–117

    Article  PubMed  Google Scholar 

  • Fathke C, Wilson L, Hutter J, Kapoor V, Smith A, Hocking A, Isik F (2004) Contribution of bone marrow–derived cells to skin: collagen deposition and wound repair. Stem Cells 22(5):812–822

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferguson MW, O'Kane S (2004) Scar–free healing: from embryonic mechanisms to adult therapeutic intervention. Phil Trans R Soc B Biol Sci 359(1445):839–850

    Article  CAS  Google Scholar 

  • Fortunel, N. O., P. Vaigot, E. Cadio and M. T. Martin (2010). Functional investigations of keratinocyte stem cells and progenitors at a single-cell level using multiparallel clonal microcultures. Epidermal Cells, Springer: 13-23.

    Google Scholar 

  • Fransson J, Heffler L, Tengvall Linder M, Scheynius A (1998) Culture of human epidermal Langerhans cells in a skin equivalent. Br J Dermatol 139(4):598–604

    Article  CAS  PubMed  Google Scholar 

  • Franz S, Rammelt S, Scharnweber D, Simon JC (2011) Immune responses to implants–a review of the implications for the design of immunomodulatory biomaterials. Biomaterials 32(28):6692–6709

    Article  CAS  PubMed  Google Scholar 

  • Frykberg RG, Banks J (2015) Challenges in the treatment of chronic wounds. Adv Wound Care 4(9):560–582

    Article  Google Scholar 

  • Gallico G 3rd, O'connor N (1985) Cultured epithelium as a skin substitute. Clin Plast Surg 12(2):149–157

    Article  PubMed  Google Scholar 

  • Gallico GG III, O'Connor NE, Compton CC, Kehinde O, Green H (1984) Permanent coverage of large burn wounds with autologous cultured human epithelium. N Engl J Med 311(7):448–451

    Article  PubMed  Google Scholar 

  • Gaspar A, Moldovan L, Constantin D, Stanciuc A, Boeti PS, Efrimescu I (2011) Collagen–based scaffolds for skin tissue engineering. J Med Life 4(2):172

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gholipour-Kanani A, Bahrami SH, Joghataie MT, Samadikuchaksaraei A, Ahmadi-Taftie H, Rabbani S, Kororian A, Erfani E (2014) Tissue engineered poly(caprolactone)-chitosan-poly(vinyl alcohol) nanofibrous scaffolds for burn and cutting wound healing. IET Nanobiotechnol 8(2):123–131

    Article  CAS  PubMed  Google Scholar 

  • Ghosh K, Ren X-D, Shu XZ, Prestwich GD, Clark RA (2006) Fibronectin functional domains coupled to hyaluronan stimulate adult human dermal fibroblast responses critical for wound healing. Tissue Eng 12(3):601–613

    Article  CAS  PubMed  Google Scholar 

  • Girdner JH (1881) Skin-grafting with grafts taken from the dead subject. Medical Record (1866–1922) 20(5):119

    Google Scholar 

  • Glowacki J, Mizuno S (2008) Collagen scaffolds for tissue engineering. Biopolymers 89(5):338–344

    Article  CAS  PubMed  Google Scholar 

  • Gómez C, Galán J, Torrero V, Ferreiro I, Pérez D, Palao R, Martínez E, Llames S, Meana A, Holguín P (2011) Use of an autologous bioengineered composite skin in extensive burns: Clinical and functional outcomes. A multicentric study. Burns 37(4):580–589

    Article  PubMed  Google Scholar 

  • González-Consuegra RV, Verdú J (2011) Quality of life in people with venous leg ulcers: an integrative review. J Adv Nurs 67(5):926–944

    Article  PubMed  Google Scholar 

  • Green H, Kehinde O, Thomas J (1979) Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc Natl Acad Sci 76(11):5665–5668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groeber F, Holeiter M, Hampel M, Hinderer S, Schenke-Layland K (2011a) Skin tissue engineering--in vivo and in vitro applications. Adv Drug Deliv Rev 63(4-5):352–366

    Article  CAS  PubMed  Google Scholar 

  • Groeber F, Holeiter M, Hampel M, Hinderer S, Schenke-Layland K (2011b) Skin tissue engineering—in vivo and in vitro applications. Adv Drug Deliv Rev 63(4-5):352–366

    Article  CAS  PubMed  Google Scholar 

  • Gürsoy K, Oruç M, Kankaya Y, Ulusoy MG, Koçer U, Kankaya D, Gürsoy RN, Çevik Ö, Öğüş E, Fidanci V (2014) Effect of topically applied sildenafil citrate on wound healing: experimental study. Bosnian J Basic Med Sci 14(3):125

    Article  Google Scholar 

  • Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453(7193):314

    Article  CAS  PubMed  Google Scholar 

  • Hachiya A, Sriwiriyanont P, Kaiho E, Kitahara T, Takema Y, Tsuboi R (2005) An in vivo mouse model of human skin substitute containing spontaneously sorted melanocytes demonstrates physiological changes after UVB irradiation. J Gen Intern Med 20(5):364–372

    Google Scholar 

  • Halim AS, Khoo TL, Mohd Yussof SJ (2010a) Biologic and synthetic skin substitutes: An overview. Indian J Plast Surg 43(Suppl):S23–S28

    Article  PubMed  PubMed Central  Google Scholar 

  • Halim AS, Khoo TL, Yussof SJM (2010b) Biologic and synthetic skin substitutes: an overview. Indian J Plastic Surg 43(Suppl):S23

    Article  Google Scholar 

  • Han C-m, Zhang L-p, Sun J-z, Shi H-f, Zhou J, Gao C-y (2010) Application of collagen-chitosan/fibrin glue asymmetric scaffolds in skin tissue engineering. J Zhejiang Univ Sci B 11(7):524–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han Y, Chai J, Sun T, Li D, Tao R (2011) Differentiation of human umbilical cord mesenchymal stem cells into dermal fibroblasts in vitro. Biochem Biophys Res Commun 413(4):561–565

    Article  CAS  PubMed  Google Scholar 

  • Hanson SE, Bentz ML, Hematti P (2010) Mesenchymal stem cell therapy for nonhealing cutaneous wounds. Plast Reconstr Surg 125(2):510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey C (2005) Wound healing. Orthop Nurs 24(2):143–157 quiz 158-149

    Article  PubMed  Google Scholar 

  • Haslik W, Kamolz L-P, Nathschläger G, Andel H, Meissl G, Frey M (2007) First experiences with the collagen-elastin matrix Matriderm® as a dermal substitute in severe burn injuries of the hand. Burns 33(3):364–368

    Article  CAS  PubMed  Google Scholar 

  • Hay ED (2005) The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn 233(3):706–720

    Article  CAS  PubMed  Google Scholar 

  • Hayashi Y, Yamada S, Guchi KY, Koyama Z, Ikeda T (2012) Chitosan and fish collagen as biomaterials for regenerative medicine. Adv Food Nutr Res, Elsevier 65:107–120

    Article  Google Scholar 

  • Heidari F, Yari A, Rasoolijazi H, Soleimani M, Dehpoor A, Sajedi N, Joulai SV, Nobakht M (2016) Bulge hair follicle stem cells accelerate cutaneous wound healing in rats. Wounds: Compendium Clin Res Practice 28(4):132–141

    Google Scholar 

  • Heimbach DM, Warden GD, Luterman A, Jordan MH, Ozobia N, Ryan CM, Voigt DW, Hickerson WL, Saffle JR, DeClement FA (2003) Multicenter postapproval clinical trial of Integra® dermal regeneration template for burn treatment. J Burn Care Rehabil 24(1):42–48

    Article  PubMed  Google Scholar 

  • Heitland A, Piatkowski A, Noah E, Pallua N (2004) Update on the use of collagen/glycosaminoglycate skin substitute—six years of experiences with artificial skin in 15 German burn centers. Burns 30(5):471–475

    Article  CAS  PubMed  Google Scholar 

  • Herndon DN (2007) Total burn care. Elsevier Health Sciences, Edinburgh

    Google Scholar 

  • Herndon DN, Parks DH (1986) Comparison of serial debridement and autografting and early massive excision with cadaver skin overlay in the treatment of large burns in children. J Trauma 26(2):149–152

    Article  CAS  PubMed  Google Scholar 

  • Herndon DN, Barrow RE, Rutan RL, Rutan TC, Desai MH, Abston S (1989) A comparison of conservative versus early excision. Therapies in severely burned patients. Ann Surg 209(5):547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilmi ABM, Halim AS, Hassan A, Lim CK, Noorsal K, Zainol I (2013) In vitro characterization of a chitosan skin regenerating template as a scaffold for cells cultivation. Springerplus 2(1):79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ho WS (2002) Skin substitutes: an overview. Surg Pract 6(4):102–108

    Google Scholar 

  • Hold GL, Untiveros P, Saunders KA, El-Omar EM (2009) Role of host genetics in fibrosis. Fibrogenesis Tissue Repair 2(1):6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Horch RE, Jeschke MG, Spilker G, Herndon DN, Kopp J (2005) Treatment of second degree facial burns with allografts—preliminary results. Burns 31(5):597–602

    Article  PubMed  Google Scholar 

  • Humphrey JD, Dufresne ER, Schwartz MA (2014) Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol 15(12):802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue S, Kijima H, Kidokoro M, Tanaka M, Suzuki Y, Motojuku M, Inokuchi S (2009) The effectiveness of basic fibroblast growth factor in fibrin-based cultured skin substitute in vivo. J Burn Care Res 30(3):514–519

    Article  PubMed  Google Scholar 

  • Ito M, Cotsarelis G (2008) Is the hair follicle necessary for normal wound healing? J Investig Dermatol 128(5):1059–1061

    Article  CAS  PubMed  Google Scholar 

  • Janeway C Jr, Travers P, Walport M, Shlomchik M (2001) Immunobiology: the immune system in health and disease, 5th edn. Garland Science, New York T cell-mediated cytotoxicity

    Google Scholar 

  • Janeway C, Travers P, Walport M, Shlomchik M (2005) Immunobiology: The Immune System in Health and Disease. Garland Science, New York

    Google Scholar 

  • Järbrink K, Ni G, Sönnergren H, Schmidtchen A, Pang C, Bajpai R, Car J (2017) The humanistic and economic burden of chronic wounds: a protocol for a systematic review. Syst Rev 6:1–7

    Article  Google Scholar 

  • Jensen P, Wheelock M (1996) The relationships among adhesion, stratification and differentiation in keratinocytes. Cell Death Differ 3(4):357–371

    CAS  PubMed  Google Scholar 

  • Jeschke MG, Rose C, Angele P, Fuchtmeier B, Nerlich MN, Bolder U (2004) Development of new reconstructive techniques: use of Integra in combination with fibrin glue and negative-pressure therapy for reconstruction of acute and chronic wounds. Plast Reconstr Surg 113(2):525–530

    Article  PubMed  Google Scholar 

  • Jones I, Currie L, Martin R (2002) A guide to biological skin substitutes. Br J Plast Surg 55(3):185–193

    Article  CAS  PubMed  Google Scholar 

  • Kahn SA, Beers RJ, Lentz CW (2011) Use of acellular dermal replacement in reconstruction of nonhealing lower extremity wounds. J Burn Care Res 32(1):124–128

    Article  PubMed  Google Scholar 

  • Kalluri R (2003) Angiogenesis: basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 3(6):422

    Article  CAS  PubMed  Google Scholar 

  • Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491

    Article  CAS  PubMed  Google Scholar 

  • Kearney J (2001) Clinical evaluation of skin substitutes. Burns 27(5):545–551

    Article  CAS  PubMed  Google Scholar 

  • Kendall RT, Feghali-Bostwick CA (2014) Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol 5:123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kern S, Eichler H, Stoeve J, Klüter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24(5):1294–1301

    Article  CAS  PubMed  Google Scholar 

  • Khademhosseini A, Suh KY, Yang JM, Eng G, Yeh J, Levenberg S, Langer R (2004) Layer-by-layer deposition of hyaluronic acid and poly-L-lysine for patterned cell co-cultures. Biomaterials 25(17):3583–3592

    Article  CAS  PubMed  Google Scholar 

  • Khalilov R, Khomutov G, Tikhonov A (1993) Effect of ultraviolet radiation on structural-functional characteristics of the thylakoid membrane. Russian Plant Physiol 40(3):338–342

    Google Scholar 

  • Khan F, Ahmad SR (2013) Polysaccharides and their derivatives for versatile tissue engineering application. Macromol Biosci 13(4):395–421

    Article  CAS  PubMed  Google Scholar 

  • Khil MS, Cha DI, Kim HY, Kim IS, Bhattarai N (2003) Electrospun nanofibrous polyurethane membrane as wound dressing. J Biomed Mater Res B Appl Biomater 67(2):675–679

    Article  CAS  PubMed  Google Scholar 

  • Kim J-H, Auerbach JM, Rodríguez-Gómez JA, Velasco I, Gavin D, Lumelsky N, Lee S-H, Nguyen J, Sánchez-Pernaute R, Bankiewicz K (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature 418(6893):50

    Article  CAS  PubMed  Google Scholar 

  • Kim KL, Han DK, Park K, Song S-H, Kim JY, Kim J-M, Ki HY, Yie SW, Roh C-R, Jeon E-S (2009a) Enhanced dermal wound neovascularization by targeted delivery of endothelial progenitor cells using an RGD-g-PLLA scaffold. Biomaterials 30(22):3742–3748

    Article  CAS  PubMed  Google Scholar 

  • Kim SE, Heo DN, Lee JB, Kim JR, Park SH, Jeon SH, Kwon IK (2009b) Electrospun gelatin/polyurethane blended nanofibers for wound healing. Biomed Mater 4(4):044106

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Jang DH, Park WH, Min B-M (2010) Fabrication and characterization of 3-dimensional PLGA nanofiber/microfiber composite scaffolds. Polymer 51(6):1320–1327

    Article  CAS  Google Scholar 

  • Kim MS, Song HJ, Lee SH, Lee CK (2014) Comparative study of various growth factors and cytokines on type I collagen and hyaluronan production in human dermal fibroblasts. J Cosmet Dermatol 13(1):44–51

    Article  PubMed  Google Scholar 

  • Klar AS, Zimoch J, Biedermann T (2017) Skin tissue engineering: application of adipose-derived stem cells. Biomed Res Int:2017

    Google Scholar 

  • Klein B, Schiffer R, Hafemann B, Klosterhalfen B, Zwadlo-Klarwasser G (2001) Inflammatory response to a porcine membrane composed of fibrous collagen and elastin as dermal substitute. J Mater Sci Mater Med 12(5):419–424

    Article  CAS  PubMed  Google Scholar 

  • Kober J, Gugerell A, Schmid M, Kamolz L-P, Keck M (2015) Generation of a fibrin based three-layered skin substitute. Biomed Res Int:2015

    Google Scholar 

  • Koch L, Kuhn S, Sorg H, Gruene M, Schlie S, Gaebel R, Polchow B, Reimers K, Stoelting S, Ma N (2009) Laser printing of skin cells and human stem cells. Tissue Eng Part C Methods 16(5):847–854

    Article  CAS  Google Scholar 

  • Koh TJ, DiPietro LA (2011) Inflammation and wound healing: the role of the macrophage. Expert Rev Mol Med 13:e23

    Article  PubMed  PubMed Central  Google Scholar 

  • Koide S (1998) Chitin-chitosan: properties, benefits and risks. Nutr Res 18(6):1091–1101

    Article  CAS  Google Scholar 

  • Kozlov P, Burdygina G (1983) The structure and properties of solid gelatin and the principles of their modification. Polymer 24(6):651–666

    Article  CAS  Google Scholar 

  • Kumar MR, Muzzarelli RA, Muzzarelli C, Sashiwa H, Domb A (2004a) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104(12):6017–6084

    Article  PubMed  Google Scholar 

  • Kumar RJ, Kimble RM, Boots R, Pegg SP (2004b) Treatment of partial-thickness burns: a prospective, randomized trial using Transcyte. ANZ J Surg 74(8):622–626

    Article  PubMed  Google Scholar 

  • Kuroyanagi M, Yamamoto A, Shimizu N, Ishihara E, Ohno H, Takeda A, Kuroyanagi Y (2014) Development of cultured dermal substitute composed of hyaluronic acid and collagen spongy sheet containing fibroblasts and epidermal growth factor. J Biomater Sci Polym Ed 25(11):1133–1143

    Article  CAS  PubMed  Google Scholar 

  • Kyle S, Aggeli A, Ingham E, McPherson MJ (2009) Production of self-assembling biomaterials for tissue engineering. Trends Biotechnol 27(7):423–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamme EN, De Vries H, van Veen H, Gabbiani G, Westerhof W, Middelkoop E (1996) Extracellular matrix characterization during healing of full-thickness wounds treated with a collagen/elastin dermal substitute shows improved skin regeneration in pigs. J Histochem Cytochem 44(11):1311–1322

    Article  CAS  PubMed  Google Scholar 

  • Lamme EN, van Leeuwen RT, Jonker A, van Marle J, Middelkoop E (1998) Living skin substitutes: survival and function of fibroblasts seeded in a dermal substitute in experimental wounds. J Investig Dermatol 111(6):989–995

    Article  CAS  PubMed  Google Scholar 

  • Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 15(3):178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langer A, Rogowski W (2009) Systematic review of economic evaluations of human cell-derived wound care products for the treatment of venous leg and diabetic foot ulcers. BMC Health Serv Res 9(1):115

    Article  PubMed  PubMed Central  Google Scholar 

  • Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926

    Article  CAS  PubMed  Google Scholar 

  • Larouche D, Cantin-Warren L, Desgagné M, Guignard R, Martel I, Ayoub A, Lavoie A, Gauvin R, Auger FA, Moulin VJ (2016) Improved methods to produce tissue-engineered skin substitutes suitable for the permanent closure of full-thickness skin injuries. BioResearch Open Access 5(1):320–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lataillade J-J, Magne B, Bey E, Leclerc T, Trouillas M (2017a) L’ingénierie cutanée pour le traitement des brûlures graves. Transfus Clin Biol 24(3):245–250

    Article  PubMed  Google Scholar 

  • Lataillade J, Magne B, Bey E, Leclerc T, Trouillas M (2017b) Skin engineering for severe burns. Transfusion clinique et biologique: journal de la Societe francaise de transfusion sanguine 24(3):245–250

    Article  Google Scholar 

  • Laurie C, Hogan BK, Murray CK, Loo FL, Hospenthal DR, Cancio LC, Kim SH, Renz EM, Barillo D, Holcomb JB (2010) Contribution of bacterial and viral infections to attributable mortality in patients with severe burns: an autopsy series. Burns 36(6):773–779

    Article  Google Scholar 

  • LeBleu VS, MacDonald B, Kalluri R (2007) Structure and function of basement membranes. Exp Biol Med 232(9):1121–1129

    Article  CAS  Google Scholar 

  • Lee KH (2000) Tissue-engineered human living skin substitutes: development and clinical application. Yonsei Med J 41(6):774–779

    Article  CAS  PubMed  Google Scholar 

  • Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CH, Singla A, Lee Y (2001) Biomedical applications of collagen. Int J Pharm 221(1-2):1–22

    Article  CAS  PubMed  Google Scholar 

  • Lee SB, Jeon HW, Lee YW, Lee YM, Song KW, Park MH, Nam YS, Ahn HC (2003) Bio-artificial skin composed of gelatin and (1→ 3),(1→ 6)-β-glucan. Biomaterials 24(14):2503–2511

    Article  CAS  PubMed  Google Scholar 

  • Lee SB, Kim YH, Chong MS, Hong SH, Lee YM (2005) Study of gelatin-containing artificial skin V: fabrication of gelatin scaffolds using a salt-leaching method. Biomaterials 26(14):1961–1968

    Article  CAS  PubMed  Google Scholar 

  • Leibovich S, Ross R (1975) The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum. Am J Pathol 78(1):71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leigh IM, Watt FM (1994) Keratinocyte methods. Cambridge University Press, Cambridge

    Google Scholar 

  • Leng L, Amini-Nik S, Jeschke M, Guenther A (2013) Skin printer: microfluidic approach for skin regeneration and wound dressing. US Prov Patent Application 61817860.

    Google Scholar 

  • Lepow BD, Downey M, Yurgelon J, Klassen L, Armstrong DG (2011) Bioengineered tissues in wound healing: a progress report. Expert Rev Dermatol 6(3):255–262

    Article  Google Scholar 

  • Li A, Pouliot N, Redvers R, Kaur P (2004) Extensive tissue-regenerative capacity of neonatal human keratinocyte stem cells and their progeny. J Clin Invest 113(3):390–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W-J, Tuli R, Huang X, Laquerriere P, Tuan RS (2005) Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials 26(25):5158–5166

    Article  CAS  PubMed  Google Scholar 

  • Li X, Chen S, Zhang B, Li M, Diao K, Zhang Z, Li J, Xu Y, Wang X, Chen H (2012) In situ injectable nano-composite hydrogel composed of curcumin, N, O-carboxymethyl chitosan and oxidized alginate for wound healing application. Int J Pharm 437(1-2):110–119

    Article  CAS  PubMed  Google Scholar 

  • Ljungberg C, Johansson-Ruden G, Boström KJ, Novikov L, Wiberg M (1999) Neuronal survival using a resorbable synthetic conduit as an alternative to primary nerve repair. Microsurgery 19(6):259–264

    Article  CAS  PubMed  Google Scholar 

  • Llames S, García E, García V, del Río M, Larcher F, Jorcano JL, López E, Holguín P, Miralles F, Otero J (2006) Clinical results of an autologous engineered skin. Cell Tissue Bank 7(1):47–53

    Article  PubMed  Google Scholar 

  • Lorden ER, Miller KJ, Bashirov L, Ibrahim MM, Hammett E, Jung Y, Medina MA, Rastegarpour A, Selim MA, Leong KW (2015) Mitigation of hypertrophic scar contraction via an elastomeric biodegradable scaffold. Biomaterials 43:61–70

    Article  CAS  PubMed  Google Scholar 

  • Lovett M, Lee K, Edwards A, Kaplan DL (2009) Vascularization strategies for tissue engineering. Tissue Eng B Rev 15(3):353–370

    Article  CAS  Google Scholar 

  • MacNeil S (2007) Progress and opportunities for tissue-engineered skin. Nature 445(7130):874

    Article  CAS  PubMed  Google Scholar 

  • MacNeil S (2008) Biomaterials for tissue engineering of skin. Mater Today 11(5):26–35

    Article  CAS  Google Scholar 

  • Mahboob Morshed N, Chowdhury S, Ruszymah B (2014) The current available biomaterials being used for skin tissue engineering. Regen Res 3:17–22

    Google Scholar 

  • Maheshwari G, Brown G, Lauffenburger DA, Wells A, Griffith LG (2000) Cell adhesion and motility depend on nanoscale RGD clustering. J Cell Sci 113(10):1677–1686

    Article  CAS  PubMed  Google Scholar 

  • Mann BK, Gobin AS, Tsai AT, Schmedlen RH, West JL (2001) Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials 22(22):3045–3051

    Article  CAS  PubMed  Google Scholar 

  • Mann EA, Baun MM, Meininger JC, Wade CE (2012) Comparison of mortality associated with sepsis in the burn, trauma, and general intensive care unit patient: a systematic review of the literature. Shock 37(1):4–16

    Article  PubMed  Google Scholar 

  • Mansbridge JN (2009) Tissue-engineered skin substitutes in regenerative medicine. Curr Opin Biotechnol 20(5):563–567

    Article  CAS  PubMed  Google Scholar 

  • Mao JS, Yin YJ, De Yao K (2003a) The properties of chitosan–gelatin membranes and scaffolds modified with hyaluronic acid by different methods. Biomaterials 24(9):1621–1629

    Article  CAS  PubMed  Google Scholar 

  • Mao J, Zhao L, De Yao K, Shang Q, Yang G, Cao Y (2003b) Study of novel chitosan-gelatin artificial skin in vitro. J Biomed Mater Res A 64((2):301–308

    Article  CAS  Google Scholar 

  • Marino, D., J. Luginbühl, S. Scola, M. Meuli and E. Reichmann (2014). "Bioengineering dermo-epidermal skin grafts with blood and lymphatic capillaries." Sci Transl Med 6(221): 221ra214-221ra214.

    Google Scholar 

  • Masuda R, Mochizuki M, Hozumi K, Takeda A, Uchinuma E, Yamashina S, Nomizu M, Kadoya Y (2009) A novel cell-adhesive scaffold material for delivering keratinocytes reduces granulation tissue in dermal wounds. Wound Repair Regen 17(1):127–135

    Article  PubMed  Google Scholar 

  • Meana A, Iglesias J, Del Rio M, Larcher F, Madrigal B, Fresno M, Martin C, San Roman F, Tevar F (1998) Large surface of cultured human epithelium obtained on a dermal matrix based on live fibroblast-containing fibrin gels. Burns 24(7):621–630

    Article  CAS  PubMed  Google Scholar 

  • Meaume S (2002) Chronic wound scars. Wound Repair Regen 10(2):103–106

    Article  PubMed  Google Scholar 

  • Meruane MA, Rojas M, Marcelain K (2012) The use of adipose tissue–derived stem cells within a dermal substitute improves skin regeneration by increasing neoangiogenesis and collagen synthesis. Plast Reconstr Surg 130(1):53–63

    Article  CAS  PubMed  Google Scholar 

  • Metallo CM, Azarin SM, Ji L, De Pablo JJ, Palecek SP (2008) Engineering tissue from human embryonic stem cells. J Cell Mol Med 12(3):709–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metcalfe AD, Ferguson MW (2007) Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J R Soc Interface 4(14):413–437

    Article  CAS  PubMed  Google Scholar 

  • Micallef L, Vedrenne N, Billet F, Coulomb B, Darby IA, Desmouliere A (2012) The myofibroblast, multiple origins for major roles in normal and pathological tissue repair. Fibrogenesis Tissue Repair 5(Suppl 1):S5

    Article  PubMed  PubMed Central  Google Scholar 

  • Michaeli D, McPherson M (1990) Immunologic study of artificial skin used in the treatment of thermal injuries. J Burn Care Rehabil 11(1):21–26

    Article  CAS  PubMed  Google Scholar 

  • Midwood KS, Williams LV, Schwarzbauer JE (2004) Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol 36(6):1031–1037

    Article  CAS  PubMed  Google Scholar 

  • Miki T, Mitamura K, Ross MA, Stolz DB, Strom SC (2007) Identification of stem cell marker-positive cells by immunofluorescence in term human amnion. J Reprod Immunol 75(2):91–96

    Article  CAS  PubMed  Google Scholar 

  • Min JH, Yun IS, Lew DH, Roh TS, Lee WJ (2014) The use of matriderm and autologous skin graft in the treatment of full thickness skin defects. Arch Plast Surg 41(4):330

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyamoto S, KATHZ BZ, Lafrenie RM, Yamada KM (1998) Fibronectin and integrins in cell adhesion, signaling, and morphogenesis. Ann N Y Acad Sci 857(1):119–129

    Article  CAS  PubMed  Google Scholar 

  • Moiemen N, Yarrow J, Hodgson E, Constantinides J, Chipp E, Oakley H, Shale E, Freeth M (2011) Long-term clinical and histological analysis of Integra dermal regeneration template. Plast Reconstr Surg 127(3):1149–1154

    Article  CAS  PubMed  Google Scholar 

  • Montaño I, Schiestl C, Schneider J, Pontiggia L, Luginbühl J, Biedermann T, Böttcher-Haberzeth S, Braziulis E, Meuli M, Reichmann E (2009) Formation of human capillaries in vitro: the engineering of prevascularized matrices. Tissue Eng A 16(1):269–282

    Article  CAS  Google Scholar 

  • Monteiro IP, Shukla A, Marques AP, Reis RL, Hammond PT (2015) Spray-assisted layer-by-layer assembly on hyaluronic acid scaffolds for skin tissue engineering. J Biomed Mater Res A 103(1):330–340

    Article  CAS  PubMed  Google Scholar 

  • Moore MA, Samsell B, Wallis G, Triplett S, Chen S, Jones AL, Qin X (2015) Decellularization of human dermis using non-denaturing anionic detergent and endonuclease: a review. Cell Tissue Bank 16(2):249–259

    Article  PubMed  Google Scholar 

  • Moran JM, Pazzano D, Bonassar LJ (2003) Characterization of polylactic acid–polyglycolic acid composites for cartilage tissue engineering. Tissue Eng 9(1):63–70

    Article  CAS  PubMed  Google Scholar 

  • Müller HM, Seebach D (1993) Poly (hydroxyalkanoates): a fifth class of physiologically important organic biopolymers? Angew Chem Int Ed 32(4):477–502

    Article  Google Scholar 

  • Munster AM, Weiner SH, Spence RJ (1990) Cultured epidermis for the coverage of massive burn wounds. A single center experience. Ann Surg 211(6):676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mustoe TA, O’shaughnessy K, Kloeters O (2006) Chronic wound pathogenesis and current treatment strategies: a unifying hypothesis. Plast Reconstr Surg 117(7S):35S–41S

    Article  CAS  PubMed  Google Scholar 

  • Namdar T, Stollwerck PL, Stang FH, Siemers F, Mailänder P, Lange T (2010) Transdermal fluid loss in severely burned patients. GMS German Med Sci 8

    Google Scholar 

  • Nathoo R, Howe N, Cohen G (2014a) Skin substitutes: an overview of the key players in wound management. J Clin Aesthet Dermatol 7(10):44–48

    PubMed  PubMed Central  Google Scholar 

  • Nathoo R, Howe N, Cohen G (2014b) Skin substitutes: an overview of the key players in wound management. J Clin Aesthetic Dermatol 7(10):44

    Google Scholar 

  • Navarro F, Stoner M, Park C, Huertas J, Lee H, Wood F, Orgill D (2000) Sprayed keratinocyte suspensions accelerate epidermal coverage in a porcine microwound model. J Burn Care Rehabil 21(6):513–518

    Article  CAS  PubMed  Google Scholar 

  • Ng KW, Hutmacher DW, Schantz J-T, Ng CS, Too H-P, Lim TC, Phan TT, Teoh SH (2001) Evaluation of ultra-thin poly (ε-caprolactone) films for tissue-engineered skin. Tissue Eng 7(4):441–455

    Article  CAS  PubMed  Google Scholar 

  • Niccole M, Thornton J, Danet R, Bartlett R, Tavis M (1977) Hyperbaric oxygen in burn management: a controlled study. Surgery 82(5):727–733

    CAS  PubMed  Google Scholar 

  • Nicholas MN, Yeung J (2017a) Current status and future of skin substitutes for chronic wound healing. J Cutan Med Surg 21(1):23–30

    Article  PubMed  Google Scholar 

  • Nicholas MN, Yeung J (2017b) Current status and future of skin substitutes for chronic wound healing. J Cutan Med Surg 21(1):23–30

    Article  PubMed  Google Scholar 

  • Nicholas MN, Jeschke MG, Amini-Nik S (2016a) Cellularized bilayer pullulan-gelatin hydrogel for skin regeneration. Tissue Eng A 22(9–10):754–764

    Article  CAS  Google Scholar 

  • Nicholas MN, Jeschke MG, Amini-Nik S (2016b) Methodologies in creating skin substitutes. Cell Mol Life Sci 73(18):3453–3472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicoletti G, Brenta F, Bleve M, Pellegatta T, Malovini A, Faga A, Perugini P (2015) Long-term in vivo assessment of bioengineered skin substitutes: a clinical study. J Tissue Eng Regen Med 9(4):460–468

    Article  CAS  PubMed  Google Scholar 

  • Niessen CM (2007) Tight junctions/adherens junctions: basic structure and function. J Investig Dermatol 127(11):2525–2532

    Article  CAS  PubMed  Google Scholar 

  • Niessen FB, Spauwen PH, Schalkwijk J, Kon M (1999) On the nature of hypertrophic scars and keloids: a review. Plast Reconstr Surg 104(5):1435–1458

    Article  CAS  PubMed  Google Scholar 

  • Niessen FB, Andriessen MP, Schalkwijk J, Visser L, Timens W (2001) Keratinocyte-derived growth factors play a role in the formation of hypertrophic scars. J Pathol 194(2):207–216

    Article  CAS  PubMed  Google Scholar 

  • Niknejad H, Peirovi H, Jorjani M, Ahmadiani A, Ghanavi J, Seifalian AM (2008) Properties of the amniotic membrane for potential use in tissue engineering. Eur Cells Mater 15:88–99

    Article  CAS  Google Scholar 

  • Nimni ME, Cheung D, Strates B, Kodama M, Sheikh K (1987) Chemically modified collagen: a natural biomaterial for tissue replacement. J Biomed Mater Res A 21(6):741–771

    Article  CAS  Google Scholar 

  • Nodder S, Martin P (1997) Wound healing in embryos: a review. Anat Embryol (Berl) 195(3):215–228

    Article  CAS  Google Scholar 

  • Nolte SV, Xu W, Rennekampff H-O, Rodemann HP (2008) Diversity of fibroblasts–a review on implications for skin tissue engineering. Cells Tissues Organs 187(3):165–176

    Article  PubMed  Google Scholar 

  • Nordlund JJ, Abdel-Malek ZA, Boissy RE, Rheins LA (1989) Pigment cell biology: an historical review. J Investig Dermatol 92(4):S53–S60

    Article  Google Scholar 

  • Nyame TT, Chiang HA, Orgill DP (2014a) Clinical applications of skin substitutes. Surg Clin 94(4):839–850

    Google Scholar 

  • Nyame TT, Chiang HA, Orgill DP (2014b) Clinical applications of skin substitutes. Surg Clin North Am 94(4):839–850

    Article  PubMed  Google Scholar 

  • O'brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14(3):88–95

    Article  CAS  Google Scholar 

  • O'Connor N, Mulliken J, Banks-Schlegel S, Kehinde O, Green H (1981) Grafting of burns with cultured epithelium prepared from autologous epidermal cells. Lancet 317(8211):75–78

    Article  Google Scholar 

  • Okamoto Y, Yano R, Miyatake K, Tomohiro I, Shigemasa Y, Minami S (2003) Effects of chitin and chitosan on blood coagulation. Carbohydr Polym 53(3):337–342

    Article  CAS  Google Scholar 

  • Olsen D, Yang C, Bodo M, Chang R, Leigh S, Baez J, Carmichael D, Perälä M, Hämäläinen E-R, Jarvinen M (2003) Recombinant collagen and gelatin for drug delivery. Adv Drug Deliv Rev 55(12):1547–1567

    Article  CAS  PubMed  Google Scholar 

  • Parkinson LG, Rea SM, Stevenson AW, Wood FM, Fear MW (2011) The effect of nano-scale topography on keratinocyte phenotype and wound healing following burn injury. Tissue Eng A 18(7-8):703–714

    Article  CAS  Google Scholar 

  • Pasparakis M, Haase I, Nestle FO (2014) Mechanisms regulating skin immunity and inflammation. Nat Rev Immunol 14(5):289

    Article  CAS  PubMed  Google Scholar 

  • Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, Patel SB, Khalid L, Isseroff RR, Tomic-Canic M (2014) Epithelialization in wound healing: a comprehensive review. Adv Wound Care 3(7):445–464

    Article  Google Scholar 

  • Pearson, K., N. Dock and S. Brubaker (2008). "Standards for tissue banking." Am Assoc Tissue Banks McClean, VA: American Association of Tissue Banks.

    Google Scholar 

  • Pham C, Greenwood J, Cleland H, Woodruff P, Maddern G (2007) Bioengineered skin substitutes for the management of burns: a systematic review. Burns 33(8):946–957

    Article  PubMed  Google Scholar 

  • Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82(3):233–247

    Article  CAS  Google Scholar 

  • Phillips TJ (1994) Chronic cutaneous ulcers: etiology and epidemiology. J Investig Dermatol 102(6)

    Google Scholar 

  • Phillips TJ (2001) Current approaches to venous ulcers and compression. Dermatol Surg 27(7):611–621

    CAS  PubMed  Google Scholar 

  • Phillips T, Gilchrest B (1990) Cultured epidermal grafts in the treatment of leg ulcers. Adv Dermatol 5:33–48 discussion 49

    CAS  PubMed  Google Scholar 

  • Polverini PJ, Cotran RS, Gimbrone MA Jr, Unanue ER (1977) Activated macrophages induce vascular proliferation. Nature 269(5631):804

    Article  CAS  PubMed  Google Scholar 

  • Pouliot R, Larouche D, Auger FA, Juhasz J, Xu W, Li H, Germain L (2002) Reconstructed human skin produced in vitro and grafted on athymic mice1, 2. Transplantation 73(11):1751–1757

    Article  PubMed  Google Scholar 

  • Price RD, Myers S, Leigh IM, Navsaria HA (2005a) The role of hyaluronic acid in wound healing. Am J Clin Dermatol 6(6):393–402

    Article  PubMed  Google Scholar 

  • Price RD, Myers S, Leigh IM, Navsaria HA (2005b) The role of hyaluronic acid in wound healing: assessment of clinical evidence. Am J Clin Dermatol 6(6):393–402

    Article  PubMed  Google Scholar 

  • Price RD, Berry MG, Navsaria HA (2007) Hyaluronic acid: the scientific and clinical evidence. J Plast Reconstr Aesthet Surg 60(10):1110–1119

    Article  PubMed  Google Scholar 

  • Priya SG, Jungvid H, Kumar A (2008) Skin tissue engineering for tissue repair and regeneration. Tissue Eng B Rev 14(1):105–118

    Article  CAS  Google Scholar 

  • R, R (1969) Wound healing. Sci Am 220:240

    Google Scholar 

  • Rahmani Del Bakhshayesh A, Annabi N, Khalilov R, Akbarzadeh A, Samiei M, Alizadeh E, Alizadeh-Ghodsi M, Davaran S, Montaseri A (2017) Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. Artificial Cells Nanomed Biotechnol:1–15

    Google Scholar 

  • Remes A, Williams D (2006) Immune response in biocompatibility. In: The Biomaterials: Silver Jubilee Compendium, pp 79–91

    Chapter  Google Scholar 

  • Rheinwald JG, Green H (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6(3):331–343

    Article  CAS  PubMed  Google Scholar 

  • Rheinwald JG, Green H (1977) Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes. Nature 265(5593):421

    Article  CAS  PubMed  Google Scholar 

  • Rheinwatd JG, Green H (1975) Seria cultivation of strains of human epidemal keratinocytes: the formation keratinizin colonies from single cell is. Cell 6(3):331–343

    Article  Google Scholar 

  • Rhett JM, Ghatnekar GS, Palatinus JA, O’Quinn M, Yost MJ, Gourdie RG (2008) Novel therapies for scar reduction and regenerative healing of skin wounds. Trends Biotechnol 26(4):173–180

    Article  CAS  PubMed  Google Scholar 

  • Rho KS, Jeong L, Lee G, Seo B-M, Park YJ, Hong S-D, Roh S, Cho JJ, Park WH, Min B-M (2006) Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 27(8):1452–1461

    Article  CAS  PubMed  Google Scholar 

  • Richardson GD, Arnott EC, Whitehouse CJ, Lawrence CM, Hole N, Jahoda C (2005) Cultured cells from the adult human hair follicle dermis can be directed toward adipogenic and osteogenic differentiation. J Invest Dermatol 124(5):1090

    Article  CAS  PubMed  Google Scholar 

  • Rnjak J, Li Z, Maitz PK, Wise SG, Weiss AS (2009) Primary human dermal fibroblast interactions with open weave three-dimensional scaffolds prepared from synthetic human elastin. Biomaterials 30(32):6469–6477

    Article  CAS  PubMed  Google Scholar 

  • Rnjak J, Wise SG, Mithieux SM, Weiss AS (2011) Severe burn injuries and the role of elastin in the design of dermal substitutes. Tissue Eng B Rev 17(2):81–91

    Article  CAS  Google Scholar 

  • Rockwell WB, Daane S, Zakhireh M, Carroll KL (2003) Human skin allograft used to treat open wounds after club foot release. Ann Plast Surg 51(6):593–597

    Article  PubMed  Google Scholar 

  • Rose J, Herndon D (1997) Advances in the treatment of burn patients. Burns 23:S19–S26

    Article  PubMed  Google Scholar 

  • Rue LW, Cioffi WG, McManus WF, Pruitt BA (1993) Wound closure and outcome in extensively burned patients treated with cultured autologous keratinocytes. Army Institute of Surgical Research, Fort Samhouston

    Book  Google Scholar 

  • Sabapathy V, Sundaram B, Sreelakshmi V, Mankuzhy P, Kumar S (2014) Human Wharton’s jelly mesenchymal stem cells plasticity augments scar-free skin wound healing with hair growth. PLoS One 9(4):e93726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sadeghi-Avalshahr A (2017) Synthesis and characterization of collagen/PLGA biodegradable skin scaffold fibers. 4(5):309–314

    Google Scholar 

  • Saffle JR (2009) Closure of the excised burn wound: temporary skin substitutes. Clin Plast Surg 36(4):627–641

    Article  PubMed  Google Scholar 

  • Sahota PS, Burn JL, Heaton M, Freedlander E, Suvarna SK, Brown NJ, Mac Neil S (2003) Development of a reconstructed human skin model for angiogenesis. Wound Repair Regen 11(4):275–284

    Article  PubMed  Google Scholar 

  • Santoro M, Shah SR, Walker JL, Mikos AG (2016) Poly(lactic acid) nanofibrous scaffolds for tissue engineering. Adv Drug Deliv Rev 107:206–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar SD, Farrugia BL, Dargaville TR, Dhara S (2013) Chitosan–collagen scaffolds with nano/microfibrous architecture for skin tissue engineering. J Biomed Mater Res A 101(12):3482–3492

    Article  CAS  PubMed  Google Scholar 

  • Sasai Y (2013) Next-generation regenerative medicine: organogenesis from stem cells in 3D culture. Cell Stem Cell 12(5):520–530

    Article  CAS  PubMed  Google Scholar 

  • Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H (2008) Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 180(4):2581–2587

    Article  CAS  PubMed  Google Scholar 

  • Schiestl C, Stiefel D, Meuli M (2010) Giant naevus, giant excision, eleg (i) ant closure? Reconstructive surgery with Integra Artificial Skin® to treat giant congenital melanocytic naevi in children. J Plast Reconstr Aesthet Surg 63(4):610–615

    Article  CAS  PubMed  Google Scholar 

  • Schneider A, Garlick JA, Egles C (2008) Self-assembling peptide nanofiber scaffolds accelerate wound healing. PLoS One 3(1):e1410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schneider RK, Püllen A, Kramann R, Bornemann J, Knüchel R, Neuss S, Perez-Bouza A (2010) Long-term survival and characterisation of human umbilical cord-derived mesenchymal stem cells on dermal equivalents. Differentiation 79(3):182–193

    Article  CAS  PubMed  Google Scholar 

  • Schultz GS, Wysocki A (2009) Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen 17(2):153–162

    Article  PubMed  Google Scholar 

  • Schwarzbauer JE (1991) Fibronectin: from gene to protein. Curr Opin Cell Biol 3(5):786–791

    Article  CAS  PubMed  Google Scholar 

  • Schwarzbauer J (1999) Basement membrane: Putting up the barriers. Curr Biol 9(7):R242–R244

    Article  CAS  PubMed  Google Scholar 

  • Serena TE, Carter MJ, Le LT, Sabo MJ, DiMarco DT (2014) A multicenter, randomized, controlled clinical trial evaluating the use of dehydrated human amnion/chorion membrane allografts and multilayer compression therapy vs. multilayer compression therapy alone in the treatment of venous leg ulcers. Wound Repair Regen 22(6):688–693

    Article  PubMed  Google Scholar 

  • Sethi KK, Yannas IV, Mudera V, Eastwood M, McFarland C, Brown RA (2002) Evidence for sequential utilization of fibronectin, vitronectin, and collagen during fibroblast-mediated collagen contraction. Wound Repair Regen 10(6):397–408

    Article  PubMed  Google Scholar 

  • Shah A, Amini-Nik S (2017) The role of phytochemicals in the inflammatory phase of wound healing. Int J Mol Sci 18(5):1068

    Article  CAS  PubMed Central  Google Scholar 

  • Shahrokhi S, Arno A, Jeschke MG (2014) The use of dermal substitutes in burn surgery: acute phase. Wound Repair Regen 22(1):14–22

    Article  PubMed  Google Scholar 

  • Shakespeare P (2001) Burn wound healing and skin substitutes. Burns 27(5):517–522

    Article  CAS  PubMed  Google Scholar 

  • Shakespeare PG (2005) The role of skin substitutes in the treatment of burn injuries. Clin Dermatol 23(4):413–418

    Article  PubMed  Google Scholar 

  • Shamis Y, Silva EA, Hewitt KJ, Brudno Y, Levenberg S, Mooney DJ, Garlick JA (2013) Fibroblasts derived from human pluripotent stem cells activate angiogenic responses in vitro and in vivo. PLoS One 8(12):e83755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sheikholeslam M, Wright ME, Jeschke MG, Amini-Nik S (2017) Biomaterials for Skin Substitutes. Adv Healthcare Mater

    Google Scholar 

  • Sheridan R (2009) Closure of the excised burn wound: autografts, semipermanent skin substitutes, and permanent skin substitutes. Clin Plast Surg 36(4):643–651

    Article  PubMed  Google Scholar 

  • Sheridan R, Choucair R, Donelan M, Lydon M, Petras L, Tompkins R (1998) Acellular allodermis in burn surgery: 1-year results of a pilot trial. J Burn Care Rehabil 19(6):528–530

    Article  CAS  PubMed  Google Scholar 

  • Shevchenko RV, James SL, James SE (2009) A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface: rsif20090403

    Google Scholar 

  • Shevchenko RV, James SL, James SE (2010) A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface 7(43):229–258

    Article  CAS  PubMed  Google Scholar 

  • Shevchenko RV, Eeman M, Rowshanravan B, Allan IU, Savina IN, Illsley M, Salmon M, James SL, Mikhalovsky SV, James SE (2014) The in vitro characterization of a gelatin scaffold, prepared by cryogelation and assessed in vivo as a dermal replacement in wound repair. Acta Biomater 10(7):3156–3166

    Article  CAS  PubMed  Google Scholar 

  • Shimizu R, Kishi K (2012) Skin Graft. Plast Surg Int 2012

    Google Scholar 

  • Shores JT, Gabriel A, Gupta S (2007) Skin substitutes and alternatives: a review. Adv Skin Wound Care 20(9):493–508

    Article  PubMed  Google Scholar 

  • Siddiqui AR, Bernstein JM (2010) Chronic wound infection: facts and controversies. Clin Dermatol 28(5):519–526

    Article  PubMed  Google Scholar 

  • Smith AM, Hunt NC, Shelton RM, Birdi G, Grover LM (2012) Alginate hydrogel has a negative impact on in vitro collagen 1 deposition by fibroblasts. Biomacromolecules 13(12):4032–4038

    Article  CAS  PubMed  Google Scholar 

  • Sorrell JM, Baber MA, Caplan AI (2008) Human dermal fibroblast subpopulations; differential interactions with vascular endothelial cells in coculture: nonsoluble factors in the extracellular matrix influence interactions. Wound Repair Regen 16(2):300–309

    Article  PubMed  Google Scholar 

  • Souza C, Mesquita L, Souza D, Irioda A, Francisco J, Souza C, Guarita-Souza L, Sierakowski M-R, Carvalho K (2014) Regeneration of skin tissue promoted by mesenchymal stem cells seeded in nanostructured membrane. Transplant Proc, Elsevier 46:882–1886

    Google Scholar 

  • Spasova M, Paneva D, Manolova N, Radenkov P, Rashkov I (2008) Electrospun chitosan-coated fibers of poly (L-lactide) and poly (L-lactide)/poly (ethylene glycol): preparation and characterization. Macromol Biosci 8(2):153–162

    Article  CAS  PubMed  Google Scholar 

  • Spyrou GE, Naylor IL (2002) The effect of basic fibroblast growth factor on scarring. Br J Plast Surg 55(4):275–282

    Article  CAS  PubMed  Google Scholar 

  • Sriwiriyanont P, Lynch KA, Maier EA, Hahn JM, Supp DM, Boyce ST (2012) Morphogenesis of chimeric hair follicles in engineered skin substitutes with human keratinocytes and murine dermal papilla cells. Exp Dermatol 21(10):783–785

    Article  CAS  PubMed  Google Scholar 

  • Sriwiriyanont P, Lynch KA, McFarland KL, Supp DM, Boyce ST (2013) Characterization of hair follicle development in engineered skin substitutes. PLoS One 8(6):e65664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su K, Wang C (2015) Recent advances in the use of gelatin in biomedical research. Biotechnol Lett 37(11):2139–2145

    Article  CAS  PubMed  Google Scholar 

  • Sun BK, Siprashvili Z, Khavari PA (2014) Advances in skin grafting and treatment of cutaneous wounds. Science 346(6212):941–945

    Article  CAS  PubMed  Google Scholar 

  • Supp DM, Boyce ST (2005a) Engineered skin substitutes: practices and potentials. Clin Dermatol 23(4):403–412

    Article  PubMed  Google Scholar 

  • Supp DM, Boyce ST (2005b) Engineered skin substitutes: practices and potentials. Clin Dermatol 23(4):403–412

    Article  PubMed  Google Scholar 

  • Supp AP, Wickett RR, Swope VB, Harriger MD, Hoath SB, Boyce ST (1999) Incubation of cultured skin substitutes in reduced humidity promotes cornification in vitro and stable engraftment in athymic mice. Wound Repair Regen 7(4):226–237

    Article  CAS  PubMed  Google Scholar 

  • Suzuki S, Matsuda K, Isshiki N, Tamada Y, Ikada Y (1990) Experimental study of a newly developed bilayer artificial skin. Biomaterials 11(5):356–360

    Article  CAS  PubMed  Google Scholar 

  • Swope VB, Supp AP, Cornelius JR, Babcock GF, Boyce ST (1997) Regulation of pigmentation in cultured skin substitutes by cytometric sorting of melanocytes and keratinocytes. J Investig Dermatol 109(3):289–295

    Article  CAS  PubMed  Google Scholar 

  • Takemoto S, Morimoto N, Kimura Y, Taira T, Kitagawa T, Tomihata K, Tabata Y, Suzuki S (2008) Preparation of collagen/gelatin sponge scaffold for sustained release of bFGF. Tissue Eng A 14(10):1629–1638

    Article  CAS  Google Scholar 

  • Takeo M, Lee W, Ito M (2015) Wound healing and skin regeneration. Cold Spring Harbor Perspectives in Medicine 5(1):a023267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tannous ZS, Mihm MC, Sober AJ, Duncan LM (2005) Congenital melanocytic nevi: clinical and histopathologic features, risk of melanoma, and clinical management. J Am Acad Dermatol 52(2):197–203

    Article  PubMed  Google Scholar 

  • Tausche AK, Skaria M, Böhlen L, Liebold K, Hafner J, Friedlein H, Meurer M, Goedkoop RJ, Wollina U, Salomon D (2003a) An autologous epidermal equivalent tissue-engineered from follicular outer root sheath keratinocytes is as effective as split-thickness skin autograft in recalcitrant vascular leg ulcers. Wound Repair Regen 11(4):248–252

    Article  PubMed  Google Scholar 

  • Tausche AK, Skaria M, Bohlen L, Liebold K, Hafner J, Friedlein H, Meurer M, Goedkoop RJ, Wollina U, Salomon D, Hunziker T (2003b) An autologous epidermal equivalent tissue-engineered from follicular outer root sheath keratinocytes is as effective as split-thickness skin autograft in recalcitrant vascular leg ulcers. Wound Repair Regen 11(4):248–252

    Article  PubMed  Google Scholar 

  • Thangapazham RL, Darling TN, Meyerle J (2014) Alteration of skin properties with autologous dermal fibroblasts. Int J Mol Sci 15(5):8407–8427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timpl R, Brown JC (1996) Supramolecular assembly of basement membranes. Bioessays 18(2):123–132

    Article  CAS  PubMed  Google Scholar 

  • Tiwari VK (2012) Burn wound: How it differs from other wounds? Indian J Plast Surg 45(2):364–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3(5):349

    Article  CAS  PubMed  Google Scholar 

  • Tracy LE, Minasian RA, Caterson E (2016) Extracellular matrix and dermal fibroblast function in the healing wound. Adv Wound Care 5(3):119–136

    Article  Google Scholar 

  • Tremblay PL, Hudon V, Berthod F, Germain L, Auger FA (2005) Inosculation of tissue-engineered capillaries with the host's vasculature in a reconstructed skin transplanted on mice. Am J Transplant 5(5):1002–1010

    Article  PubMed  Google Scholar 

  • Trottier V, Marceau-Fortier G, Germain L, Vincent C, Fradette J (2008) IFATS collection: Using human adipose-derived stem/stromal cells for the production of new skin substitutes. Stem Cells 26(10):2713–2723

    Article  PubMed  Google Scholar 

  • Tsuji T, Sawabe M (1987) Elastic fibers in scar tissue: scanning and transmission electron microscopic studies. J Cutan Pathol 14(2):106–113

    Article  CAS  PubMed  Google Scholar 

  • Uccioli L (2003) A clinical investigation on the characteristics and outcomes of treating chronic lower extremity wounds using the tissuetech autograft system. Int J Low Extrem Wounds 2(3):140–151

    Article  CAS  PubMed  Google Scholar 

  • Uitto J, Pulkkinen L (2001) Molecular genetics of heritable blistering disorders. Arch Dermatol 137(11):1458–1461

    Article  CAS  PubMed  Google Scholar 

  • Ushiki T (2002) Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint. Arch Histol Cytol 65(2):109–126

    Article  PubMed  Google Scholar 

  • Vahidi M, Frounchi M, Dadbin S (2017) Porous gelatin/poly (ethylene glycol) scaffolds for skin cells. Soft Mater 15(1):95–102

    Article  CAS  Google Scholar 

  • Valencia IC, Falabella A, Kirsner RS, Eaglstein WH (2001) Chronic venous insufficiency and venous leg ulceration. J Am Acad Dermatol 44(3):401–424

    Article  CAS  PubMed  Google Scholar 

  • Van der Rest M, Garrone R (1991) Collagen family of proteins. FASEB J 5(13):2814–2823

    Article  PubMed  Google Scholar 

  • Varkey M, Ding J, Tredget EE (2015a) Advances in skin substitutes-potential of tissue engineered skin for facilitating anti-fibrotic healing. J Funct Biomater 6(3):547–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varkey M, Ding J, Tredget EE (2015b) Advances in skin substitutes—potential of tissue engineered skin for facilitating anti-fibrotic healing. J Funct Biomater 6(3):547–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vermette M, Trottier V, Ménard V, Saint-Pierre L, Roy A, Fradette J (2007) Production of a new tissue-engineered adipose substitute from human adipose-derived stromal cells. Biomaterials 28(18):2850–2860

    Article  CAS  PubMed  Google Scholar 

  • Vig K, Chaudhari A, Tripathi S, Dixit S, Sahu R, Pillai S, Dennis VA, Singh SR (2017) Advances in skin regeneration using tissue engineering. Int J Mol Sci 18(4):789

    Article  PubMed Central  CAS  Google Scholar 

  • Viswanathan P, Guvendiren M, Chua W, Telerman SB, Liakath-Ali K, Burdick JA, Watt FM (2016) Mimicking the topography of the epidermal–dermal interface with elastomer substrates. Integr Biol 8(1):21–29

    Article  CAS  Google Scholar 

  • Wang H, Pieper J, Peters F, van Blitterswijk CA, Lamme EN (2005) Synthetic scaffold morphology controls human dermal connective tissue formation. J Biomed Mater Res A 74(4):523–532

    Article  CAS  PubMed  Google Scholar 

  • Waymack P, Duff RG, Sabolinski M (2000) The effect of a tissue engineered bilayered living skin analog, over meshed split-thickness autografts on the healing of excised burn wounds. Burns 26(7):609–619

    Article  CAS  PubMed  Google Scholar 

  • Weigel PH, Fuller GM, LeBoeuf RD (1986) A model for the role of hyaluronic acid and fibrin in the early events during the inflammatory response and wound healing. J Theor Biol 119(2):219–234

    Article  CAS  PubMed  Google Scholar 

  • Widgerow AD (2012) Bioengineered matrices—Part 1: Attaining structural success in biologic skin substitutes. Ann Plast Surg 68(6):568–573

    Article  CAS  PubMed  Google Scholar 

  • Wilgus TA, Ferreira AM, Oberyszyn TM, Bergdall VK, DiPietro LA (2008) Regulation of scar formation by vascular endothelial growth factor. Lab Investig 88(6):579

    Article  CAS  PubMed  Google Scholar 

  • Wong VW, Rustad KC, Galvez MG, Neofytou E, Glotzbach JP, Januszyk M, Major MR, Sorkin M, Longaker MT, Rajadas J (2010) Engineered pullulan–collagen composite dermal hydrogels improve early cutaneous wound healing. Tissue Eng A 17(5–6):631–644

    Google Scholar 

  • Wong VW, Rustad KC, Glotzbach JP, Sorkin M, Inayathullah M, Major MR, Longaker MT, Rajadas J, Gurtner GC (2011) Pullulan Hydrogels Improve Mesenchymal Stem Cell Delivery into High-Oxidative-Stress Wounds. Macromol Biosci 11(11):1458–1466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wood FM, Stoner ML, Fowler BV, Fear MW (2007) The use of a non-cultured autologous cell suspension and Integra® dermal regeneration template to repair full-thickness skin wounds in a porcine model: a one-step process. Burns 33(6):693–700

    Article  PubMed  Google Scholar 

  • Woodroof EA (2009) The search for an ideal temporary skin substitute: AWBAT. Eplasty 9

    Google Scholar 

  • Wright KA, Nadire KB, Busto P, Tubo R, McPherson JM, Wentworth BM (1998) Alternative delivery of keratinocytes using a polyurethane membrane and the implications for its use in the treatment of full-thickness burn injury. Burns 24(1):7–17

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Chen L, Scott PG, Tredget EE (2007) Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25(10):2648–2659

    Article  CAS  PubMed  Google Scholar 

  • Wu EC, Zhang S, Hauser CA (2012) Self-assembling peptides as cell-interactive scaffolds. Adv Funct Mater 22(3):456–468

    Article  CAS  Google Scholar 

  • Wynn T (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214(2):199–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie J, MacEwan MR, Ray WZ, Liu W, Siewe DY, Xia Y (2010) Radially aligned, electrospun nanofibers as dural substitutes for wound closure and tissue regeneration applications. ACS Nano 4(9):5027–5036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue M, Jackson CJ (2015) Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Adv Wound Care (New Rochelle) 4(3):119–136

    Article  Google Scholar 

  • Yamamoto A, Shimizu N, Kuroyanagi Y (2013) Potential of wound dressing composed of hyaluronic acid containing epidermal growth factor to enhance cytokine production by fibroblasts. J Artif Org 16(4):489–494

    Article  CAS  Google Scholar 

  • Yamanaka S (2007) Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1(1):39–49

    Article  CAS  PubMed  Google Scholar 

  • Yildirimer L, Thanh NT, Seifalian AM (2012) Skin regeneration scaffolds: a multimodal bottom-up approach. Trends Biotechnol 30(12):638–648

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Vodyanik MA, He P, Slukvin II, Thomson JA (2006) Human embryonic stem cells reprogram myeloid precursors following cell–cell fusion. Stem Cells 24(1):168–176

    Article  PubMed  Google Scholar 

  • Yuvarani I, Kumar SS, Venkatesan J, Kim S-K, Sudha P (2012) Preparation and characterization of curcumin coated chitosan-alginate blend for wound dressing application. J Biomater Tissue Eng 2(1):54–60

    Article  CAS  Google Scholar 

  • Zacchi V, Soranzo C, Cortivo R, Radice M, Brun P, Abatangelo G (1998) In vitro engineering of human skin-like tissue. J Biomed Mater Res A 40(2):187–194

    Article  CAS  Google Scholar 

  • Zaulyanov L, Kirsner RS (2007a) A review of a bi-layered living cell treatment (Apligraf®) in the treatment of venous leg ulcers and diabetic foot ulcers. Clin Interv Aging 2(1):93–98

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaulyanov L, Kirsner RS (2007b) A review of a bi-layered living cell treatment (Apligraf®) in the treatment of venous leg ulcers and diabetic foot ulcers. Clin Interv Aging 2(1):93

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng J, Chen X, Liang Q, Xu X, Jing X (2004) Enzymatic degradation of poly (L-lactide) and poly (ε-caprolactone) electrospun fibers. Macromol Biosci 4(12):1118–1125

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Du X, Wang W, Boucher M, Parimoo S, Stenn KS (2005) Organogenesis from dissociated cells: generation of mature cycling hair follicles from skin-derived cells. J Investig Dermatol 124(5):867–876

    Article  CAS  PubMed  Google Scholar 

  • Zhu J (2010a) Bioactive modification of poly (ethylene glycol) hydrogels for tissue engineering. Biomaterials 31(17):4639–4656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J (2010b) Bioactive Modification of Poly(ethylene glycol) Hydrogels for Tissue Engineering. Biomaterials 31(17):4639–4656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Marchant RE (2011) Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices 8(5):607–626

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu X, Cui W, Li X, Jin Y (2008) Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering. Biomacromolecules 9(7):1795–1801

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Dr. Hossein Adibi and Dr. Mohsen Khorshidi, and Rasta Arjmand for their kind help in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Arjmand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goodarzi, P. et al. (2018). Tissue Engineered Skin Substitutes. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 3. Advances in Experimental Medicine and Biology(), vol 1107. Springer, Cham. https://doi.org/10.1007/5584_2018_226

Download citation

Publish with us

Policies and ethics