Skip to main content

General Aspects on Structure and Reactivity of Framework and Extra-framework Metals in Zeolite Materials

  • Chapter
  • First Online:
Structure and Reactivity of Metals in Zeolite Materials

Part of the book series: Structure and Bonding ((STRUCTURE,volume 178))

Abstract

In the present manuscript, the general aspects involving the synthesis and the most significant catalytic applications of metal-containing zeolites will be addressed and discussed. From the different metal-containing zeolites, metal species present in extra-framework or framework positions will be considered. On the one hand, the section highlighting the extra-framework metallic species will comprise metals with different natures, including single metal cations in exchangeable positions and metal clusters or nanoparticles entrapped within the pores and cavities of the zeolite frameworks. Depending on the nature of the metal, the acid/base and redox properties of these metal-containing zeolites can be tuned, allowing their efficient application as shape-selective heterogeneous catalysts in different industrially relevant chemical processes, including petrochemistry, refining, and fine chemistry, or environmental applications. On the other hand, the isomorphic substitution of isolated transition metals in tetrahedral coordination allows introducing controlled Lewis and/or Brønsted acidities, together with redox properties to zeolites, offering new opportunities for their implementation as selective catalysts for fine chemistry and biomass-derived processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barrer RM (1982) Hydrothermal chemistry of zeolites. Academic Press, London

    Google Scholar 

  2. Barrer RM (1948) Synthesis of a zeolitic mineral with chabazite like sorptive properties. J Chem Soc 2:127–132

    CAS  PubMed  Google Scholar 

  3. Barrer RM, Riley DW (1948) Sorptive and molecular-sieve properties of a new zeolitic mineral. J Chem Soc:133–143

    Google Scholar 

  4. Barrer RM, Denny PJ (1961) Hydrothermal chemistry of the silicates. IX. Nitrogenous aluminosilicates. J Chem Soc:971–982

    Google Scholar 

  5. Lobo RF, Zones SI, Davis ME (1995) Structure-direction in zeolite synthesis. J Incl Phenom Mol Recognit Chem 21:47–78

    CAS  Google Scholar 

  6. Moliner M, Rey F, Corma A (2013) Towards the rational design of efficient organic structure-directing agents for zeolite synthesis. Angew Chem Int Ed 52:13880–13889

    CAS  Google Scholar 

  7. Martínez C, Corma A (2011) Inorganic molecular sieves: preparation, modification and industrial application in catalytic processes. Coord Chem Rev 255:1558–1580

    Google Scholar 

  8. Yilmaz B, Müller U (2009) Catalytic applications of zeolites in chemical industry. Top Catal 52:888–895

    CAS  Google Scholar 

  9. Cejka J, Centi G, Perez-Pariente J, Roth WJ (2012) Zeolite-based materials for novel catalytic applications: opportunities, perspectives and open problems. Catal Today 179:2–15

    CAS  Google Scholar 

  10. Moliner M, Martinez C, Corma A (2015) Multipore zeolites: synthesis and catalytic applications. Angew Chem Int Ed 54:3560–3579

    CAS  Google Scholar 

  11. Davis RJ (2003) New perspectives on basic zeolites as catalysts and catalysts supports. J Catal 216:396–405

    CAS  Google Scholar 

  12. Armor JN (1998) Metal-exchanged zeolites as catalysts. Microporous Mesoporous Mater 22:451–456

    CAS  Google Scholar 

  13. Vanelderen P, Vancauwenbergh J, Sels BF, Schoonheydt RA (2013) Coordination chemistry and reactivity of copper in zeolites. Coord Chem Rev 257:483–494

    CAS  Google Scholar 

  14. Moliner M, Martinez C, Corma A (2014) Synthesis strategies for preparing useful small pore zeolites and zeotypes for gas separations and catalysis. Chem Mater 26:246–258

    CAS  Google Scholar 

  15. Liu L et al (2017) Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat Mater 16:132–138

    CAS  PubMed  Google Scholar 

  16. Choi M, Wu Z, Iglesia E (2010) Mercaptosilane-assisted synthesis of metal clusters within zeolites and catalytic consequences of encapsulation. J Am Chem Soc 132:9129–9137

    CAS  PubMed  Google Scholar 

  17. Moliner M et al (2016) Reversible transformation of Pt nanoparticles into single atoms inside high-silica chabazite zeolite. J Am Chem Soc 138:15743–15750

    CAS  PubMed  Google Scholar 

  18. Wang N et al (2016) In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. J Am Chem Soc 138:7484–7487

    CAS  PubMed  Google Scholar 

  19. Kim SJ et al (2016) One-step synthesis of zeolite membranes containing catalytic metal nanoclusters. ACS Appl Mater Interfaces 8:24671–24681

    CAS  PubMed  Google Scholar 

  20. Taramasso M, Perego G, Notari B (1983) Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides. U.S. Patent 4410501

    Google Scholar 

  21. Moliner M, Corma A (2014) Advances in the synthesis of titanosilicates: from the medium pore TS-1 zeolite to highly-accessible ordered materials. Microporous Mesoporous Mater 189:31–40

    CAS  Google Scholar 

  22. Flanigen E, Patton RL (1978) Silica polymorph and process for preparing same. U.S. Patent 4073865

    Google Scholar 

  23. Camblor MA, Corma A, Valencia S (1996) Spontaneous nucleation and growth of pure silica zeolite-β free of connectivity defects. Chem Commun:2365–2366

    Google Scholar 

  24. Corma A, Domine ME, Valencia S (2003) Water-resistant solid Lewis acid catalysts: Meerwein–Ponndorf–Verley and Oppenauer reactions catalyzed by tin-beta zeolite. J Catal 215:294–304

    CAS  Google Scholar 

  25. Moliner M, Román-Leshkov Y, Davis ME (2010) Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water. Proc Natl Acad Sci U S A 107:6164–6168

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Brandenberger S, Kröcher O, Tissler A, Althoff R (2008) The state of the art in selective catalytic reduction of NOx by ammonia using metal-exchanged zeolite catalysts. Catal Rev 50:493–531

    Google Scholar 

  27. Martínez-Franco R, Moliner M, Thogersen JR, Corma A (2013) Efficient one-pot preparation of Cu-SSZ-13 materials using cooperative OSDAs for their catalytic application in the SCR of NOx. ChemCatChem 5:3316–3323

    Google Scholar 

  28. Moliner M (2012) Direct synthesis of functional zeolitic materials. ISRN Mat Sci 1–24. https://doi.org/10.5402/2012/789525

  29. Barthomeuf D (1996) Basic zeolites: characterization and uses in adsorption and catalysis. Catal Rev 38:521–612

    Google Scholar 

  30. Keller TC et al (2016) Understanding the structure of cationic sites in alkali metal-grafted USY zeolites. J Phys Chem C 120:4954–4960

    CAS  Google Scholar 

  31. Doskocil EJ, Bordawekar SV, Kaye BG, Davis RJ (1999) UV−Vis spectroscopy of iodine adsorbed on alkali-metal-modified zeolite catalysts for addition of carbon dioxide to ethylene oxide. J Phys Chem B 103:6277–6282

    CAS  Google Scholar 

  32. Corma A, Fornes V, Martin-Aranda RM, García H, Primo J (1990) Zeolites as base catalysts: condensation of aldehydes with derivatives of malonic esters. Appl Catal 59:237–248

    CAS  Google Scholar 

  33. Corma A, Martín-Aranda RM (1993) Application of solid base catalysts in the preparation of prepolymers by condensation of ketones and malononitrile. Appl Catal A 105:271–279

    CAS  Google Scholar 

  34. Wieland WS, Davis RJ, Garces JM (1996) Solid base catalysts for side-chain alkylation of toluene with methanol. Catal Today 28:443–450

    CAS  Google Scholar 

  35. Wieland WS, Davis RJ, Garces JM (1998) Side-chain alkylation of toluene with methanol over alkali-exchanged zeolites X, Y, L, and β. J Catal 173:490–500

    CAS  Google Scholar 

  36. Palomares AE, Eder-Mirth G, Rep M, Lercher JA (1998) Alkylation of toluene over basic catalysts-key requirements for side chain alkylation. J Catal 180:56–65

    CAS  Google Scholar 

  37. Moreau C, Durand R, Roux A, Tichit D (2000) Isomerization of glucose into fructose in the presence of cation-exchanged zeolites and hydrotalcites. Appl Catal A 193:257–264

    CAS  Google Scholar 

  38. Leclerq E, Finiels A, Moreau C (2001) Transesterification of rapeseed oil in the presence of basic zeolites and related solid catalysts. J Am Oil Chem Soc 78:1161–1165

    Google Scholar 

  39. Climent MJ, Corma A, Hamid SBA, Iborra S, Mifsud M (2006) Chemicals from biomass derived products: synthesis of polyoxyethyleneglycol esters from fatty acid methyl esters with solid basic catalysts. Green Chem 8:524–532

    CAS  Google Scholar 

  40. Charlot G (1957) L’analyse quantitative et les reactions en solution. Masson et Cie, Paris

    Google Scholar 

  41. Shwan S et al (2015) Solid-state ion-exchange of copper into zeolites facilitated by ammonia at low temperature. ACS Catal 5:16–19

    CAS  Google Scholar 

  42. Ren L et al (2011) Designed copper-amine complex as an efficient template for one-pot synthesis of Cu-SSZ-13 zeolite with excellent activity for selective catalytic reduction of NOx by NH3. Chem Commun 47:9789–9791

    CAS  Google Scholar 

  43. Zamadics M, Chen X, Kevan L (1992) Solid-state ion exchange in H-SAPO-34: electron spin resonance and electron spin echo modulation studies of copper(II) location and adsorbate interaction. J Phys Chem 96:5488–5491

    CAS  Google Scholar 

  44. Kanazirev VI, Price GL (1995) Propane conversion on Cu-MFI zeolites. J Mol Catal A 96:145–154

    CAS  Google Scholar 

  45. Ren L et al (2012) Organotemplate-free and one-pot fabrication of nano-rod assembled plate-like micro-sized mordenite crystals. J Mater Chem 22:6564–6567

    CAS  Google Scholar 

  46. Martinez-Franco R, Moliner M, Franch C, Kustov A, Corma A (2012) Rational direct synthesis methodology of very active and hydrothermally stable Cu-SAPO-34 molecular sieves for the SCR of NOx. Appl Catal B 127:273–280

    CAS  Google Scholar 

  47. Deka U et al (2013) Changing active sites in Cu-CHA catalysts: deNOx selectivity as a function of the preparation method. Microporous Mesoporous Mater 166:144–152

    CAS  Google Scholar 

  48. Martinez-Franco R, Moliner M, Concepción P, Thogersen JR, Corma A (2014) Synthesis, characterization and reactivity of high hydrothermally stable Cu-SAPO-34 materials prepared by “one-pot” processes. J Catal 314:73–82

    CAS  Google Scholar 

  49. Picone AL et al (2011) A co-templating route to the synthesis of Cu SAPO STA-7, giving an active catalyst for the selective catalytic reduction of NO. Microporous Mesoporous Mater 146:36–47

    Google Scholar 

  50. Martínez-Franco R, Moliner M, Corma A (2014) Direct synthesis design of Cu-SAPO-18, a very efficient catalyst for the SCR of NOx. J Catal 319:36–43

    Google Scholar 

  51. Martin N, Boruntea CR, Moliner M, Corma A (2015) Efficient synthesis of the Cu-SSZ-39 catalyst for DeNOx applications. Chem Commun 51:11030–11033

    CAS  Google Scholar 

  52. Delabie A, Pierloot K, Groothaert MH, Schiinheydt RA, Vanquickenborne LG (2002) The coordination of CuII in zeolites − structure and spectroscopic properties. Eur J Inorg Chem:515–530

    Google Scholar 

  53. Groothaert MH, Pierloot K, Delabie A, Schoonheydt RA (2003) Identification of Cu(II) coordination structures in Cu-ZSM-5, based on a DFT/ab initio assignment of the EPR spectra. Phys Chem Chem Phys 5:2135–2144

    CAS  Google Scholar 

  54. Tomkins P, Ranocchiari M, van Bokhoven JA (2017) Direct conversion of methane to methanol under mild conditions over Cu-zeolites and beyond. Acc Chem Res 50:418–425

    CAS  PubMed  Google Scholar 

  55. Iwamoto M et al (1986) Copper(II) ion-exchanged ZSM-5 zeolites as highly active catalysts for direct and continuous decomposition of nitrogen monoxide. J Chem Soc Chem Commun 16:1272–1273

    Google Scholar 

  56. Beale AM, Gao F, Lezcano-Gonzalez I, Peden CHF, Szanyi J (2015) Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chem Soc Rev 44:7371–7405

    CAS  PubMed  Google Scholar 

  57. Kwak JH, Tonkyn RG, Kim DH, Szanyi J, Peden CHF (2010) Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3. J Catal 275:187–190

    CAS  Google Scholar 

  58. Korhonen ST, Fickel DW, Lobo RF, Weckhuysen BM, Beale AM (2011) Isolated Cu2+ ions: active sites for selective catalytic reduction of NO. Chem Commun 47:800–802

    CAS  Google Scholar 

  59. Bull I et al (2008) Copper CHA zeolite catalysts. U.S. Patent 0226545

    Google Scholar 

  60. Moliner M, Franch C, Palomares E, Grill M, Corma A (2012) Cu-SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of NOx. Chem Commun 48:8264–8266

    CAS  Google Scholar 

  61. Ryu T et al (2017) Fully copper-exchanged high-silica LTA zeolites as unrivaled hydrothermally stable NH3 SCR catalysts. Angew Chem Int Ed 56:3256–3260

    CAS  Google Scholar 

  62. Deka U et al (2012) Confirmation of isolated Cu2+ ions in SSZ-13 zeolite as active sites in NH3-selective catalytic reduction. J Phys Chem C 116:4809–4818

    CAS  Google Scholar 

  63. Paolucci C et al (2014) Isolation of the copper redox steps in the standard selective catalytic reduction on Cu-SSZ-13. Angew Chem Int Ed 53:11828–11833

    CAS  Google Scholar 

  64. Paolucci C et al (2017) Dynamic multinuclear sites formed by mobilized copper ions in NOx selective catalytic reduction. Science 357(6354):898–903.

    CAS  PubMed  Google Scholar 

  65. Mueller K, Fabisch F, Arlt W (2014) Energy transport and storage using methanol as a carrier. Green 4:19–25

    CAS  Google Scholar 

  66. Schüth F (2011) Chemical compounds for energy storage. Chem Ing Tech 83:1984–1993

    Google Scholar 

  67. Groothaert MH, Smeets PJ, Sels BF, Jacobs PA, Schoonheydt RA (2005) Selective oxidation of methane by the Bis(μ-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites. J Am Chem Soc 127:1394–1395

    CAS  PubMed  Google Scholar 

  68. Woertink JS et al (2009) A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol. Proc Natl Acad Sci U S A 106:18908–18913

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Grundner S et al (2015) Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nat Commun 6:7546

    PubMed  PubMed Central  Google Scholar 

  70. Palagin D, Knorpp A, Pinar AB, Ranocchiari M, van Bokhoven J (2017) Assessing relative stability of copper oxide clusters as active sites of CuMOR zeolite for methane to methanol conversion: size matters? Nanoscale 9:1144–1153

    CAS  PubMed  Google Scholar 

  71. Maeda Y, Kato N, Kawasaki S, Takashima Y (1990) Characterization of iron species in Y-type zeolite and modified form of the zeolite. Zeolites 10:21–27

    CAS  Google Scholar 

  72. Pirngruber GD, Roy PK, Prins R (2006) On determining the nuclearity of iron sites in Fe-ZSM-5, a critical evaluation. Phys Chem Chem Phys 8:3939–3950

    CAS  PubMed  Google Scholar 

  73. Gao F et al (2016) Iron loading effects in Fe/SSZ-13 NH3-SCR catalysts: nature of the Fe ions and structure-function relationships. ACS Catal 6:2939–2954

    CAS  Google Scholar 

  74. Perez-Ramirez J, Gallardo-Llamas A (2005) Impact of the preparation method and iron impurities in Fe-ZSM-5 zeolites for propylene production via oxidative dehydrogenation of propane with N2O. Appl Catal A 279:117–123

    CAS  Google Scholar 

  75. Perez-Ramirez J et al (2005) Evolution of isomorphously substituted iron zeolites during activation: comparison of Fe-beta and Fe-ZSM-5. J Catal 232:318–334

    CAS  Google Scholar 

  76. Martin N, Vennestrom PNR, Thogersen JR, Moliner M, Corma A (2017) Fe-containing zeolites for NH3-SCR of NOx: effect of structure, synthesis procedure, and chemical composition on catalytic performance and stability. Chem Eur J 23:13404–13414

    CAS  PubMed  Google Scholar 

  77. Krocher O, Brandenberger S (2012) Active sites, deactivation and stabilization of Fe-ZSM-5 for the selective catalytic reduction (SCR) of NO with NH3. Chimia 66:687–693

    CAS  PubMed  Google Scholar 

  78. Pidko EA, Hensen EJM, van Saten RA (2012) Self-organization of extra-framework cations in zeolites. Proc R Soc A 468:2070–2086

    CAS  Google Scholar 

  79. Gao F et al (2015) Fe/SSZ-13 as an NH3-SCR catalyst: a reaction kinetics and FTIR/Mössbauer spectroscopic study. Appl Catal B 164:407–419

    CAS  Google Scholar 

  80. Martin N, Vennestrom PNR, Thogersen JR, Moliner M, Corma A (2017) Iron-containing SSZ-39 (AEI) zeolite: an active and stable high-temperature NH3-SCR catalyst. ChemCatChem 9:1754–1757

    CAS  Google Scholar 

  81. Martín N et al (2017) Cage-based small-pore catalysts for NH3-SCR prepared by combining bulky organic structure directing agents with modified zeolites as reagents. Appl Catal B 217:125–136

    Google Scholar 

  82. Nedyalkova R, Shwan S, Skoglundh M, Olsson L (2013) Improved low-temperature SCR activity for Fe-BEA catalysts by H2-pretreatment. Appl Catal B 138–139:373–380

    Google Scholar 

  83. Long RQ, Yang RT (2001) Fe-ZSM-5 for selective catalytic reduction of NO with NH3: a comparative study of different preparation techniques. Catal Lett 74:201–205

    CAS  Google Scholar 

  84. Ma AZ, Grüner W (1999) Selective catalytic reduction of NO by ammonia over Fe-ZSM-5 catalysts. Chem Commun:71–72

    Google Scholar 

  85. Wu G et al (2013) Oxidative dehydrogenation of propane with nitrous oxide over Fe-ZSM-5 prepared by grafting: characterization and performance. Appl Catal A 468:230–239

    CAS  Google Scholar 

  86. Kondratenko EV, Perez-Ramirez J (2004) Oxidative functionalization of propane over FeMFI zeolites: effect of reaction variables and catalyst constitution on the mechanism and performance. Appl Catal A 267:181–189

    CAS  Google Scholar 

  87. Sánchez-Galofré O, Segura Y, Perez-Ramirez J (2007) Deactivation and regeneration of iron-containing MFI zeolites in propane oxidative dehydrogenation by N2O. J Catal 249:123–133

    Google Scholar 

  88. Panov GI, Uriarte AK, Rodkin MA, Sobolev VI (1998) Generation of active oxygen species on solid surfaces. Opportunity for novel oxidation technologies over zeolites. Catal Today 41:365–385

    CAS  Google Scholar 

  89. Kevan L (1987) Catalitically important metal ion intermediates on zeolites and silica surfaces. Rev Chem Intermed 8:53–85

    CAS  Google Scholar 

  90. Michalik J, Narayana M, Kevan L (1984) Formation of monovalent nickel in NiCa-X zeolite and its interaction with various inorganic and organic adsorbates. Electron spin resonance studies. J Phys Chem 88:5236–5240

    CAS  Google Scholar 

  91. Garcia R, Coombs TD, Shannon IJ, Wright PA, Cox PA (2003) Nickel amine complexes as structure-directing agents for aluminophophate molecular sieves: a new route to supported nickel catalysts. Top Catal 24:115–124

    CAS  Google Scholar 

  92. Garcia R, Philp EF, Slawin AMZ, Wright PA, Cox PA (2001) Nickel complexed within an azamacrocycle as structure directing agent in the crystallization of the framework metalloaluminophosphates STA-6 and STA-7. J Mater Chem 11:1421–1427

    CAS  Google Scholar 

  93. Garcia R et al (2003) Synthesis, structure and thermal transformations of aluminophosphates containing the nickel complex [Ni(diethylenetriamine)2]2+ as a structure directing agent. Microporous Mesoporous Mater 58:91–104

    CAS  Google Scholar 

  94. Cui Y et al (2017) One-pot synthesis of Ni-SSZ-13 zeolite using a nickel-amine complex as an efficient organic template. J Mater Sci 52:10156–10162

    CAS  Google Scholar 

  95. Lacarriere A et al (2012) Distillate-range products from non-oil-based sources by catalytic cascade reactions. ChemSusChem 5:1787–1792

    CAS  PubMed  Google Scholar 

  96. Moussa S, Arribas MA, Concepción P, Martínez A (2016) Heterogeneous oligomerization of ethylene to liquids on bifunctional Ni-based catalysts: the influence of support properties on nickel speciation and catalytic performance. Catal Today 277:78–88

    CAS  Google Scholar 

  97. Lallemand M, Finiels A, Fajula F, Hulea V (2006) Catalytic oligomerization of ethylene over Ni-containing dealuminated Y zeolites. Appl Catal A 301:196–201

    CAS  Google Scholar 

  98. EU Project OCMOL (Oxidative Coupling of Methane followed by Oligomerization to Liquids), 7th Framework Programme (GA no 228953). http://www.ocmol.eu

  99. Sohn JR, Park WC, Park SE (2002) Characterization of nickel sulfate supported on SiO2–Al2O3 for ethylene dimerization and its relationship to acidic properties. Catal Lett 81:259–264

    CAS  Google Scholar 

  100. Cai T, Cao D, Song Z, Li L (1993) Catalytic behavior of NiS04/γ-Al2O3 for ethene dimerization. Appl Catal A 95:L1–L7

    CAS  Google Scholar 

  101. Cai T (1999) Studies of a new alkene oligomerization catalyst derived from nickel sulfate. Catal Today 51:153–160

    CAS  Google Scholar 

  102. Davydov AA, Kantcheva M, Chepotko ML (2002) FTIR spectroscopic study on nickel(II)-exchanged sulfated alumina: nature of the active sites in the catalytic oligomerization of ethene. Catal Lett 83:97–108

    CAS  Google Scholar 

  103. Lallemand M, Finiels A, Fajula F, Hulea V (2009) Nature of the active sites in ethylene oligomerization catalyzed by Ni-containing molecular sieves: chemical and IR spectral investigation. J Phys Chem C 113:20360–20364

    CAS  Google Scholar 

  104. Martínez A, Arribas MA, Concepción P, Moussa S (2013) New bifunctional Ni–H-Beta catalysts for the heterogeneous oligomerization of ethylene. Appl Catal A 467:509–518

    Google Scholar 

  105. Degnan Jr TF (2000) Applications of zeolites in petroleum refining. Top Catal 13:349–356

    CAS  Google Scholar 

  106. Gates BC, Flytzani-Stephanopoulos M, Dixon DA, Katz A (2017) Atomically dispersed supported metal catalysts: perspectives and suggestions for future research. Cat Sci Technol 7:4259–4275

    CAS  Google Scholar 

  107. Liu J (2017) Catalysis by supported single metal atoms. ACS Catal 7:34–59

    CAS  Google Scholar 

  108. Flytzani-Stephanopoulos M, Gates BC (2012) Atomically dispersed supported metal catalysts. Ann Rev Chem Biomol Eng 3:545–574

    CAS  Google Scholar 

  109. Yang M et al (2015) A common single-site Pt(II)−O(OH)x− species stabilized by sodium on “Active” and “Inert” supports catalyzes the water-gas shift reaction. J Am Chem Soc 137:3470–3473

    CAS  PubMed  Google Scholar 

  110. Rubio-Marqués P, Rivero-Crespo MA, Leyva-Pérez A, Corma A (2015) Well-defined noble metal single sites in zeolites as an alternative to catalysis by insoluble metal salts. J Am Chem Soc 137:11832–11837

    PubMed  Google Scholar 

  111. Kistler JD et al (2014) A single-site platinum CO oxidation catalyst in zeolite KLTL: microscopic and spectroscopic determination of the locations of the platinum atoms. Angew Chem Int Ed 53:8904–8907

    CAS  Google Scholar 

  112. Yang M et al (2014) Catalytically active Au-O(OH)x species stabilized by alkali ions on zeolites and mesoporous oxides. Science 346:1498–1501

    CAS  PubMed  Google Scholar 

  113. Huang W et al (2016) Low-temperature transformation of methane to methanol on Pd1O4 single sites anchored on the internal surface of microporous silicate. Angew Chem Int Ed 55:13441–13445

    CAS  Google Scholar 

  114. Guczi L, Kiricsi I (1999) Zeolite supported mono- and bimetallic systems: structure and performance as CO hydrogenation catalysts. Appl Catal A 186:375–394

    CAS  Google Scholar 

  115. Li X, Iglesia E (2008) Pt/[Fe]ZSM-5 modified by Na and Cs cations: an active and selective catalyst for dehydrogenation of n-alkanes to n-alkenes. Chem Commun 5:594–596

    Google Scholar 

  116. Guzman J, Gates BC (2003) Supported molecular catalysts: metal complexes and clusters on oxides and zeolites. Dalton Trans 17:3303–3318

    Google Scholar 

  117. Gallezot P (2002) Post-synthesis modification I, vol 3. Springer, Berlin, pp 257–305

    Google Scholar 

  118. Sun Q et al (2017) Subnanometric hybrid Pd-M(OH)2, M = Ni, Co, clusters in zeolites as highly efficient nanocatalysts for hydrogen generation. Chem 3:477–493

    CAS  Google Scholar 

  119. Otto T et al (2016) Synthesis of stable monodisperse AuPd, AuPt, and PdPt bimetallic clusters encapsulated within LTA-zeolites. J Catal 342:125–137

    CAS  Google Scholar 

  120. Ratnasamy P, Srinivas D, Knözinger H (2004) Active sites and reactive intermediates in titanium silicate molecular sieves. Adv Catal 48:1–169

    CAS  Google Scholar 

  121. Xu H, Wu P (2017) Recent progresses in titanosilicates. Chin J Chem 35:836–844

    CAS  Google Scholar 

  122. Perego C et al (1986) Titanium-silicalite: a novel derivative in the pentasil family. Stud Surf Sci Catal 28:129–136

    CAS  Google Scholar 

  123. Perego C, Carati A, Ingallina P, Mantegazza MA, Bellussi G (2001) Production of titanium containing molecular sieves and their application in catalysis. Appl Catal A 221:63–71

    CAS  Google Scholar 

  124. Blasco T et al (1996) Unseeded synthesis of Al-free Ti-β zeolite in fluoride medium: a hydrophobic selective oxidation catalyst. Chem Commun 20:2367–2368

    Google Scholar 

  125. Corma A, Nemeth LT, Renz M, Valencia S (2001) Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer–Villiger oxidations. Nature 412:423–425

    CAS  PubMed  Google Scholar 

  126. Corma A, Llabres F, Xamena I, Prestipino C, Renz M, Valencia S (2009) Water resistant, catalytically active Nb and Ta isolated Lewis acid sites, homogeneously distributed by direct synthesis in a beta zeolite. J Phys Chem C 113:11306–11315

    CAS  Google Scholar 

  127. Zhu Y, Chuah G, Jaenicke S (2004) Chemo- and regioselective Meerwein–Ponndorf–Verley and Oppenauer reactions catalyzed by Al-free Zr-zeolite beta. J Catal 227:1–10

    CAS  Google Scholar 

  128. Lewis JD, Van de Vyver S, Román-Leshkov Y (2015) Acid-base pairs in Lewis acidic zeolites promote direct aldol reactions by soft enolization. Angew Chem Int Ed 54:9835–9838

    CAS  Google Scholar 

  129. Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502

    CAS  PubMed  Google Scholar 

  130. Roman-Leshkov Y, Davis ME (2011) Activation of carbonyl-containing molecules with solid Lewis acids in aqueous media. ACS Catal 1:1566–1580

    CAS  Google Scholar 

  131. Moliner M (2014) State of the art of Lewis acid-containing zeolites: lessons from fine chemistry to new biomass transformation processes. Dalton Trans 43:4197–4208

    CAS  PubMed  Google Scholar 

  132. Luo HY, Lewis JD, Román-Leshkov Y (2016) Lewis acid zeolites for biomass conversion: perspectives and challenges on reactivity, synthesis, and stability. Ann Rev Chem Biomol Eng 7:663–692

    CAS  Google Scholar 

  133. Romano U, Esposito A, Maspero F, Neri C, Clerici MG (1990) Selective oxidation with titanium silicalite. Chim Ind 72:610–616

    CAS  Google Scholar 

  134. Tuel A, Ben Taarit Y (1993) Comparison between TS-1 and TS-2 in the hydroxylation of phenol with hydrogen peroxide. Appl Catal A 102:69–77

    CAS  Google Scholar 

  135. Bhaumik A, Mukherjiee P, Kumar R (1998) Triphase catalysis over titanium–silicate molecular sieves under solvent-free conditions: I. Direct hydroxylation of benzene. J Catal 178:101–107

    CAS  Google Scholar 

  136. Clerini MG, Ingallina P (1993) Epoxidation of lower olefins with hydrogen peroxide and titanium silicalite. J Catal 140:71–83

    Google Scholar 

  137. Clerici MG, Ingallina P (1998) Oxidation reactions with in situ generated oxidants. Catal Today 41:351–364

    CAS  Google Scholar 

  138. Huybrechts DRC, De Bruycker L, Jacobs PA (1990) Oxyfunctionalization of alkanes with hydrogen peroxide on titanium silicalite. Nature 345:240–242

    CAS  Google Scholar 

  139. Esposito A, Taramasso M, Neri C, Buonomo F (1984) Process for oxidizing alcohols to aldehydes and/or ketones. U.S. Patent 4480135

    Google Scholar 

  140. Mantegazza MA, Cesana A, Pastori M (1996) Ammoximation of ketones on titanium silicalite. A study of the reaction byproducts. Top Catal 3:327–335

    Google Scholar 

  141. Cesana A, Mantegazza MA, Pastori M (1997) A study of the organic by-products in the cyclohexanone ammoximation. J Mol Catal A 117:367–373

    CAS  Google Scholar 

  142. Xia C et al (2017) Environmental-friendly catalytic oxidation processes based on hierarchical titanium silicate zeolites at SINOPEC. In: Karamé I (ed) Green chemical processing and synthesis. InTech, Rijeka

    Google Scholar 

  143. Camblor MA, Corma A, Martínez A, Perez-Pariente J (1992) Synthesis of a titaniumsilicoaluminate isomorphous to zeolite Beta and its application as a catalyst for the selective oxidation of large organic molecules. Chem Commun 8:589–590

    Google Scholar 

  144. Corma A, Camblor MA, Esteve P, Martinez A, Perez-Pariente J (1994) Activity of Ti-Beta catalyst for the selective oxidation of alkenes and alkanes. J Catal 145:151–158

    CAS  Google Scholar 

  145. Camblor MA et al (1996) Synthesis and catalytic activity of aluminium-free zeolite Ti-B oxidation catalysts. Chem Commun 11:1339–1340

    Google Scholar 

  146. Blasco T et al (1998) Direct synthesis and characterization of hydrophobic aluminum-free Ti-Beta zeolite. J Phys Chem B 102:75–88

    CAS  Google Scholar 

  147. Camblor MA, Corma A, Esteve P, Martinez A, Valencia S (1997) Epoxidation of unsaturated fatty esters over large-pore Ti-containing molecular sieves as catalysts: important role of the hydrophobic-hydrophilic properties of the molecular sieve. Chem Commun 8:795–796

    Google Scholar 

  148. Tuel A (1995) Synthesis, characterization, and catalytic properties of the new TiZSM-12 zeolite. Zeolites 15:236–242

    CAS  Google Scholar 

  149. Corma A, Diaz-Cabañas MJ, Domine ME, Rey F (2000) Ultra fast and efficient synthesis of Ti-ITQ-7 and positive catalytic implications. Chem Commun 18:1725–1726

    Google Scholar 

  150. Moliner M et al (2008) Synthesis of the Ti-silicate form of BEC polymorph of β-zeolite assisted by molecular modeling. J Phys Chem C 112:19547–19554

    CAS  Google Scholar 

  151. Fan W, Wu P, Namba S, Tatsumi T (2006) Synthesis and catalytic properties of a new titanosilicate molecular sieve with the structure analogous to MWW-type lamellar precursor. J Catal 243:183–191

    CAS  Google Scholar 

  152. Ruan J, Wu P, Slater B, Terasaki O (2005) Structure elucidation of the highly active titanosilicate catalyst Ti-YNU-1. Angew Chem Int Ed 44:6719–6723

    CAS  Google Scholar 

  153. Corma A, Domine ME, Nemeth L, Valencia S (2002) Al-free Sn-Beta zeolite as a catalyst for the selective reduction of carbonyl compounds (Meerwein-Ponndorf-Verley reaction). J Am Chem Soc 124:3194–3195

    CAS  PubMed  Google Scholar 

  154. Boronat M, Concepción P, Corma A, Renz M, Valencia S (2005) Determination of the catalytically active oxidation Lewis acid sites in Sn-beta zeolites, and their optimisation by the combination of theoretical and experimental studies. J Catal 234:111–118

    CAS  Google Scholar 

  155. Boronat M, Corma A, Renz M, Sastre G, Viruela PM, Multisite Molecular A (2005) Mechanism for Baeyer–Villiger oxidations on solid catalysts using environmentally friendly H2O2 as oxidant. Chem Eur J 11:6905–6915

    CAS  PubMed  Google Scholar 

  156. Boronat M, Corma A, Renz M (2006) Mechanism of the Meerwein−Ponndorf−Verley−Oppenauer (MPVO) redox equilibrium on Sn− and Zr−beta zeolite catalysts. J Phys Chem B 110:21168–21174

    CAS  PubMed  Google Scholar 

  157. Li P et al (2011) Postsynthesis and selective oxidation properties of nanosized Sn-beta zeolite. J Phys Chem C 115:3663–3670

    CAS  Google Scholar 

  158. Kessler H, Patarin J, Schott-Darie C (1994) The opportunities of the fluoride route in the synthesis of microporous materials. Stud Surf Sci Catal 85:75–113

    CAS  Google Scholar 

  159. Chang CC, Wang Z, Dornath P, Cho HJ, Fan W (2012) Rapid synthesis of Sn-Beta for the isomerization of cellulosic sugars. RSC Adv 2:10475–10477

    CAS  Google Scholar 

  160. Dijkmans J et al (2013) Productive sugar isomerization with highly active Sn in dealuminated β zeolites. Green Chem 15:2777–2785

    CAS  Google Scholar 

  161. van der Graaff WNP, Tempelman CHL, Pidko EA, Hensen EJM (2017) Influence of pore topology on synthesis and reactivity of Sn-modified zeolite catalysts for carbohydrate conversions. Cat Sci Technol 7:3151–3162

    Google Scholar 

  162. Luo HY, Bui L, Gunther WR, Min E, Roman-Leshkov Y (2012) Synthesis and catalytic activity of Sn-MFI nanosheets for the Baeyer–Villiger oxidation of cyclic ketones. ACS Catal 2:2695–2699

    CAS  Google Scholar 

  163. Corma A, Iborra S, Mifsud M, Renz M, Susarte M (2004) A new environmentally benign catalytic process for the asymmetric synthesis of lactones: synthesis of the flavouring δ-decalactone molecule. Adv Synth Catal 346:257–262

    CAS  Google Scholar 

  164. Corma A, Iborra S, Mifsud M, Renz M (2005) A new, alternative, halogen-free synthesis for the fragrance compound Melonal using zeolites and mesoporous materials as oxidation catalysts. J Catal 234:96–100

    CAS  Google Scholar 

  165. Corma A, Renz M (2004) Sn-beta zeolite as diastereoselective water-resistant heterogeneous Lewis-acid catalyst for carbon–carbon bond formation in the intramolecular carbonyl–ene reaction. Chem Commun:550–551

    Google Scholar 

  166. Corma A, Fornes V, Iborra S, Mifsud M, Renz M (2004) One-pot synthesis of phenols from aromatic aldehydes by Baeyer–Villiger oxidation with H2O2 using water-tolerant Lewis acids in molecular sieves. J Catal 221:67–76

    CAS  Google Scholar 

  167. Román-Leshkov Y, Moliner M, Labinger JA, Davis ME (2010) Mechanism of glucose isomerization using a solid lewis acid catalyst in water. Angew Chem Int Ed 49:8954–8957

    Google Scholar 

  168. Bermejo-Deval R et al (2012) Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites. Proc Natl Acad Sci U S A 109:9727–9732

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Gunther WR, Wang Y, Michaelis VK, Hunt ST, Griffin RG (2012) Sn-Beta zeolites with borate salts catalyse the epimerization of carbohydrates via an intramolecular carbon shift. Nat Commun 3:1109

    PubMed  PubMed Central  Google Scholar 

  170. Gunther WR, Duong Q, Román-Leshkov Y (2013) Catalytic consequences of borate complexation and pH on the epimerization of l-arabinose to l-ribose in water catalyzed by Sn-Beta zeolite with borate salts. J Mol Catal A 379:294–302

    CAS  Google Scholar 

  171. Bermejo-Deval R, Gounder R, Davis ME (2012) Framework and extraframework tin sites in zeolite beta react glucose differently. ACS Catal 2:2705–2713

    CAS  Google Scholar 

  172. Taarning E et al (2009) Zeolite-catalyzed isomerization of triose sugars. ChemSusChem 2:625–627

    CAS  PubMed  Google Scholar 

  173. Holm MS, Saravanamurugan S, Taarning E (2010) Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts. Science 328:602–605

    CAS  PubMed  Google Scholar 

  174. Nikolla E, Roman-Leshkov Y, Moliner M, Davis ME (2011) “One-pot” synthesis of 5-(Hydroxymethyl)furfural from carbohydrates using tin-beta zeolite. ACS Catal 1:408–410

    CAS  Google Scholar 

  175. Lew CM, Rajabbeigi N, Tsapatsis M (2012) One-pot synthesis of 5-(Ethoxymethyl)furfural from glucose using Sn-BEA and amberlyst catalysts. Ind Eng Chem Res 51:5364–5366

    CAS  Google Scholar 

  176. Paris C, Moliner M, Corma A (2013) Metal-containing zeolites as efficient catalysts for the transformation of highly valuable chiral biomass-derived products. Green Chem 15:2101–2109

    CAS  Google Scholar 

  177. Yang G, Zhou L, Han X (2012) Lewis and Bronsted acidic sites in M4+-doped zeolites (M=Ti, Zr, Ge, Sn, Pb) as well as interactions with probe molecules: a DFT study. J Mol Catal A 363:371–379

    Google Scholar 

  178. Li H et al (2015) Structural stability and Lewis acidity of tetravalent Ti, Sn, or Zr-linked interlayer-expanded zeolite COE-4: a DFT study. Microporous Mesoporous Mater 218:160–166

    CAS  Google Scholar 

  179. Gunther WR, Michaelis VK, Griffin RG, Roman-Leshkov Y (2016) Interrogating the Lewis acidity of metal sites in beta zeolites with 15N pyridine adsorption coupled with MAS NMR spectroscopy. J Phys Chem C 120:28533–28544

    CAS  Google Scholar 

  180. Boronat M, Corma A, Renz M, Viruela PM (2006) Predicting the activity of single isolated Lewis acid sites in solid catalysts. Chem Eur J 12:7067–7077

    CAS  PubMed  Google Scholar 

  181. Luo HY, Consoli DF, Gunther WR, Román-Leshkov Y (2014) Investigation of the reaction kinetics of isolated Lewis acid sites in beta zeolites for the Meerwein-Ponndorf-Verley reduction of methyl levulinate to γ-valerolactone. J Catal 320:198–207

    CAS  Google Scholar 

  182. Lewis JD et al (2014) A continuous flow strategy for the coupled transfer hydrogenation and etherification of 5-(hydroxymethyl) furfural using Lewis acid zeolites. ChemSusChem 7:2255–2265

    CAS  PubMed  Google Scholar 

  183. Gallego EM et al (2017) “Ab initio” synthesis of zeolites for preestablished catalytic reactions. Science 355:1051–1055

    CAS  PubMed  Google Scholar 

  184. Abate S, Barbera K, Centi G, Lanzafame P, Perathoner S (2016) Disruptive catalysis by zeolites. Cat Sci Technol 6:2485–2501

    CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Spanish Government (MINECO) through “Severo Ochoa” (SEV-2016-0683) and MAT2015-71261-R and by the Fundación Ramón Areces through a research contract of the “Life and Materials Science” program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manuel Moliner or Avelino Corma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moliner, M., Corma, A. (2018). General Aspects on Structure and Reactivity of Framework and Extra-framework Metals in Zeolite Materials. In: Pérez Pariente, J., Sánchez-Sánchez, M. (eds) Structure and Reactivity of Metals in Zeolite Materials. Structure and Bonding, vol 178. Springer, Cham. https://doi.org/10.1007/430_2017_21

Download citation

Publish with us

Policies and ethics